NOTE ON CHEBYSHEV POLYNOMIALS

In this note we show that Chebyshev polynomials are completely bounded in the sense of ABP19. As an immediate corollary, using the characterization of quantum query algorithms from [ABP19] and a well-known result of Nisan and Szegedy [NS94], we recover the quantum algorithm for the OR_{n} function restricted to strings of Hamming weight at most 1, as implied by Grover.

For each $k \in \mathbb{N} \cup\{0\}$ the Chebyshev polynomial $T_{k} \in \mathbb{R}[x]$ is the degree- k polynomial defined recursively by

$$
\begin{aligned}
T_{0}(x) & =1 \\
T_{1}(x) & =x \\
T_{k+1}(x) & =2 x T_{k}(x)-T_{k-1}(x) .
\end{aligned}
$$

Define the n-variate polynomials $p_{k} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ by

$$
\begin{equation*}
p_{k}\left(x_{1}, \ldots, x_{n}\right)=T_{k}\left(\frac{x_{1}+\cdots+x_{n}}{n}\right) . \tag{1}
\end{equation*}
$$

1. Main lemma

Lemma 1.1. For each $k \geq 2$ there exists a k-linear form F_{k} on \mathbb{R}^{n} such that $\left\|F_{k}\right\|_{\mathrm{cb}} \leq 1$ and $F_{k}(x, \ldots, x)=p_{k}(x)$ for each $x \in\{-1,1\}^{n}$.

Proof: Define the bilinear form F_{2} on \mathbb{R}^{n} and linear forms $f_{1}^{1}, \ldots, f_{1}^{n}$ on \mathbb{R}^{n} by

$$
\begin{equation*}
F_{2}(x, y)=\mathbb{E}_{i \in[n]}[x_{i}(\underbrace{2 \mathbb{E}_{j \in[n]}\left[y_{j}\right]-y_{i}}_{f_{1}^{i}(y)})], \tag{2}
\end{equation*}
$$

where the expectations are over uniformly random indices in $[n]$. For $k \geq 2$, recursively define the $(k+1)$-linear form F_{k+1} and k-linear forms $f_{k}^{1}, \ldots, f_{k}^{n}$ by

$$
\begin{equation*}
F_{k+1}(x, y, \mathbf{z})=\mathbb{E}_{i \in[n]}[x_{i}(\underbrace{2 F_{k}(y, \mathbf{z})-y_{i} f_{k-1}^{i}(\mathbf{z})}_{f_{k}^{i}(y, \mathbf{z})})] \tag{3}
\end{equation*}
$$

for $x, y \in \mathbb{R}^{n}$ and $\mathbf{z} \in\left(\mathbb{R}^{n}\right)^{k-2}$.

We first show by induction on k that $F_{k}(x, \ldots, x)=p_{k}(x)$ for every $x \in\{-1,1\}^{n}$. Since $x_{i}^{2}=1$ for $x_{i} \in\{-1,1\}$, it is easy to see from (2) that

$$
F_{2}(x, x)=2\left(\mathbb{E}_{i \in[n]}\left[x_{i}\right]\right) p_{1}(x)-1=p_{2}(x) .
$$

Let $k \geq 2$ and assume that the claim holds for k. Below, the number of repetitions of x in a sequence (x, \ldots, x) will vary but be clear from the context. Again using that $x_{i}^{2}=1$, it follows from (3) that

$$
F_{k+1}(x, \ldots, x)=2 \mathbb{E}_{i \in[n]}\left[x_{i}\right] F_{k}(x, \ldots, x)-\mathbb{E}_{i \in[n]}\left[f_{k-1}^{i}(x, \ldots, x)\right]
$$

By the induction hypothesis, that $F_{k}(x, \ldots, x)=p_{k}(x)$, we find that

$$
\begin{aligned}
\mathbb{E}_{i \in[n]}\left[f_{k-1}^{i}(x, \ldots, x)\right] & =\mathbb{E}_{i \in[n]}\left[2 F_{k-1}(x, \ldots, x)-x_{i} f_{k-2}^{i}(x, \ldots, x)\right] \\
& =2 p_{k-1}(x)-\mathbb{E}_{i \in[n]}\left[x_{i} f_{k-2}^{i}(x, \ldots, x)\right] \\
& =2 p_{k-1}(x)-F_{k-1}(x, \ldots, x) \\
& =2 p_{k-1}(x)-p_{k-1}(x)=p_{k-1}(x) .
\end{aligned}
$$

Hence,

$$
F_{k+1}(x, \ldots, x)=2 \mathbb{E}_{i \in[n]}\left[x_{i}\right] p_{k}(x)-p_{k-1}(x)=p_{k+1}(x),
$$

which proves the claim.
Next we show that $\left\|F_{k}\right\|_{\mathrm{cb}} \leq 1$. To this end, we first show that for every $k, d \in \mathbb{N}$, vector $v \in \mathbb{C}^{d}$ and collection of contractions $\mathbf{X}=$ $\left(\left(X_{i}^{1}\right)_{i=1}^{n}, \ldots,\left(X_{i}^{k}\right)_{i=1}^{n}\right)$ in $\mathbb{C}^{d \times d}$, we have

$$
\begin{equation*}
\mathbb{E}_{i \in[n]}\left[\left\|\left(f_{k}^{i}\right)_{d}(\mathbf{X}) v\right\|_{2}^{2}\right] \leq\|v\|_{2}^{2}, \tag{4}
\end{equation*}
$$

where $\left(f_{k}^{i}\right)_{d}$ is the "lifted" version of the k-linear form f_{k}^{i} as in (3).
We again induct on k. For $k=1$, the expectation (4) reduces to

$$
\begin{equation*}
\mathbb{E}_{i \in[n]}\left\|\left(2 \mathbb{E}_{j \in[n]}\left[X_{j}\right]-X_{i}\right) v\right\|_{2}^{2} \tag{5}
\end{equation*}
$$

The above square norm equals
(6)

$$
4 \mathbb{E}_{j, k \in[n]}\left\langle X_{j} v, X_{k} v\right\rangle-2 \mathbb{E}_{j \in[n]}\left[\left\langle X_{j} v, X_{i} v\right\rangle\right]-2 \mathbb{E}_{k \in[n]}\left[\left\langle X_{i} v, X_{k} v\right\rangle\right]+\left\|X_{i} v\right\|_{2}^{2}
$$

The expectation over i in (5) thus causes the first three terms in (6) to cancel. The result follows since each X_{i} is a contraction.

Let $k \geq 1$ and assume the claim for k. Let $X=\left(X_{i}^{1}\right)_{i=1}^{n}$ and let $\mathbf{Y}=\left(\left(X_{i}^{2}\right)_{i=1}^{n}, \ldots,\left(X_{i}^{k}\right)_{i=1}^{n}\right)$. By definition of f_{k+1}^{i}, we then have that

$$
\left(f_{k+1}^{i}\right)_{d}(X, \mathbf{Y})=2\left(F_{k+1}\right)_{d}(X, \mathbf{Y})-X_{i}^{1}\left(f_{k}^{i}\right)_{d}(\mathbf{Y})
$$

Define $A=\left(F_{k+1}\right)_{d}(X, \mathbf{Y})$ and $B_{i}=X_{i}^{1}\left(f_{k}^{i}\right)_{d}(\mathbf{Y})$, so that the above equals $2 A-B_{i}$. Observe that by definition of F_{k+1}, we have

$$
\mathbb{E}_{i \in[n]}\left[B_{i}\right]=\left(F_{k+1}\right)_{d}(Y, \mathbf{X})=A
$$

Hence,

$$
\begin{aligned}
\mathbb{E}_{i \in[n]}\left[\left\|\left(f_{k}^{i}\right)_{d}(\mathbf{X}) v\right\|_{2}^{2}\right] & =\mathbb{E}_{i \in[n]}\left[\left\|\left(2 A-B_{i}\right) v\right\|_{2}^{2}\right] \\
& =\mathbb{E}_{i \in[n]}\left[4\|A v\|_{2}^{2}-2\left\langle A v, B_{i} v\right\rangle-2\left\langle B_{i} v, A v\right\rangle+\left\|B_{i} v\right\|_{2}^{2}\right] \\
& =\mathbb{E}_{i \in[n]}\left[\left\|B_{i} v\right\|_{2}^{2}\right] \\
& =\mathbb{E}_{i \in[n]}\left[\left\|X_{i}\left(f_{k}^{i}\right)_{d}(\mathbf{Y}) v\right\|_{2}^{2}\right] \\
& \leq \mathbb{E}_{i \in[n]}\left[\left\|\left(f_{k}^{i}\right)_{d}(\mathbf{Y}) v\right\|_{2}^{2}\right] \\
& \leq\|v\|_{2}^{2},
\end{aligned}
$$

where the first inequality follows from the fact that X_{i} is a contraction and and the second inequality follows by the induction hypothesis. This proves (4).

Let $\mathbf{X}, X, \mathbf{Y}$ and v be as above. Then, by Jensen's inequality and (4),

$$
\begin{aligned}
\left\|\left(F_{k}\right)_{d}(X, \mathbf{Y}) v\right\|_{2} & =\left\|\mathbb{E}_{i \in[n]}\left[X_{i}\left(f_{k-1}^{i}\right)_{d}(\mathbf{Y})\right] v\right\|_{2} \\
& \leq \mathbb{E}_{i \in[n]}\left\|\left(f_{k-1}^{i}\right)_{d}(\mathbf{Y}) v\right\|_{2} \\
& \leq\left(\mathbb{E}_{i \in[n]}\left\|\left(f_{k-1}^{i}\right)_{d}(\mathbf{Y}) v\right\|_{2}^{2}\right)^{1 / 2} \\
& \leq\|v\|_{2}
\end{aligned}
$$

showing that $\left\|F_{k}\right\|_{\mathrm{cb}} \leq 1$.

2. Obtaining Grover's algorithm.

Notation. For $i \in[n]$, let $e_{i} \in\{-1,1\}^{n}$ be the vector with -1 on the i th position and 1s otherwise. Let OR_{n} be an n-bit function defined as: $\operatorname{OR}_{n}(x)=1$ if and only if $x=1^{n}$. Let $|x|=\sum_{i} x_{i}$.

Nisan and Szegedy [NS94] showed that the Chebyshev polynomials can be used to find low-degree polynomials that approximate OR_{n}. A slight modification of their argument allows us to recover a the existence of a $O(\sqrt{n})$-quantum query algorithm for OR_{n} restricted to strings of Hamming weight at most 1 , as implied by Grover.

Lemma 2.1. Let $D=\left\{e_{i}\right\}_{i \in[n]} \cup\left\{1^{n}\right\}$ and let $\mathrm{OR}_{n}: D \rightarrow\{-1,1\}$. There exists a $O(\sqrt{n})$-query quantum algorithm that, on input x, outputs a sign with expected value $\operatorname{OR}(x)$, with error at most $1 / 4$.

Proof: Let $d=2 \pi / 5 \cdot \sqrt{n}$. Here, we show that

$$
\begin{equation*}
\left|T_{d}\left(\frac{|x|}{n}\right)-\operatorname{OR}(x)\right| \leq 1 / 4 \quad \text { for all } x \in D \tag{7}
\end{equation*}
$$

To see this, first observe that for $x=1^{n}$, we have $T_{d}(|x| / n)=1$ and $\mathrm{OR}_{n}\left(1^{n}\right)=1$, so Eq. (7) is satisfied. Let $x=e_{i}$ for some $i \in[n]$. By the definition of Chebyshev polynomials, we have

$$
T_{d}\left(\frac{|x|}{n}\right)=T_{d}\left(1-\frac{2}{n}\right)=\cos \left(d \arccos \left(1-\frac{2}{n}\right)\right) .
$$

By the Taylor series expansion of $\arccos (1-z)$ (around the point $z=0$), we have $\arccos (1-z) \geq \sqrt{2 z}$. This implies that $d \arccos (1-2 / n) \geq$ $2 \pi / 5 \cdot \sqrt{n} \cdot \sqrt{4 / n}=4 \pi / 5$. Using the monotonicity and negativity of $\cos (\phi)$ for $\phi \in(\pi / 2, \pi)$, we have

$$
T_{d}\left(\frac{|x|}{n}\right)=\cos \left(d \arccos \left(1-\frac{2}{n}\right)\right) \leq \cos (4 \pi / 5) \leq-\frac{3}{4}
$$

In particular, for such x s the value of $\mathrm{OR}_{n}(x)=-1$, so Eq. (7) is satisfied.

The proof of the lemma follows from Eq. (1) and Lemma 1.1.

References

[ABP19] Srinivasan Arunachalam, Jop Briët, and Carlos Palazuelos. Quantum query algorithms are completely bounded forms. SIAM J. Comput, 48(3):903-925, 2019. Preliminary version in ITCS'18.
[NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Computational Complexity, 4(4):301-313, 1994. Earlier version in STOC'92.

