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Abstract. We show that for infinitely many primes p, there exist
dual functions of order k over Fn

p that cannot be approximated in
L∞-distance by polynomial phase functions of degree k − 1. This
answers in the negative a natural finite-field analog of a problem
of Frantzikinakis on L∞-approximations of dual functions over N
(a.k.a. multiple correlation sequences) by nilsequences.

1. Introduction

For k ≥ 2, integer vector i = (i1, . . . , ik) ∈ Zk≥0 and finite abelian
group G, the associated set of order-k dual functions is given by

∆i =
{
φ : y 7→ Ex∈Gf1(x+ i1y) · · · fk(x+ iky) | fi : G→ D

}
,

where D denotes the complex unit disc. For example, if A ⊆ G is a
subset, i = (0, 1, 2) and fi = 1A for each i ∈ [3], then φ(y) is the fraction
of three-term arithmetic progressions in A with common difference y.

For applications in additive combinatorics and higher-order Fourier
analysis, it is desirable to understand to what extent dual functions
can be approximated by simpler functions. If k = 2, it follows from
the Fourier inversion formula that one has the simple decomposition in
terms of the characters:

(1) φ(y) =
∑
χ∈Ĝ

αχχ
(
(i2 − i1)y

)
,

where ‖α‖`1 ≤ 1. Similar decompositions exist for higher-order dual
functions thanks to deep “inverse theorems” for the Gowers uniformity
norms. Inverse theorems roughly show that if f has large Uk-norm,
then f correlates with a function ψ : G → D akin to a polynomial
of degree at most k − 1. Here the “linear” ψ are precisely the char-
acters. What exactly the “higher-order characters” are depends on
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the group G. For finite vector spaces Fnp with p ≥ k, they are the
polynomial phase functions

ψ(x) = e2πiP (x)/p,

where P ∈ Fp[x1, . . . , xn] is a polynomial of degree at most k−1 [TZ10].
When p < k, one has to consider the larger class of non-classical poly-
nomials [TZ12]. For the cyclic group ZN , they are the (k − 1)-step
nilsequences (of bounded complexity) [GTZ12]. Combined with the
Hahn-Banach theorem, these inverse theorems imply that the decom-
position (1) generalizes for larger k in terms of higher-order characters
of degree at most k − 1 up-to small L1-error [Gow10]. More precisely,
in the finite-field setting, this amounts to the following:

Proposition 1.1. Let p ≥ k+ 1 be a prime and let G = Fnp . Then, for

any ε > 0 and i ∈ Zk≥0, there is an M = M(ε, k, p) > 0 such that any
dual function φ ∈ ∆i can be decomposed as

(2) φ =
r∑
i=1

αiψi + τ,

where α1, . . . , αr ∈ C satisfy |α1| + · · · + |αr| ≤ M , ψ1, . . . , ψr are
polynomial phases of degree at most k − 1 and ‖τ‖L1 ≤ ε.

While facts like this (in particular over ZN) can be useful in higher-
order Fourier analysis [Gow10], for other applications in additive com-
binatorics it is preferable to have more precise control over the error
function τ in (2). A natural finite-field analog of a question raised
by Frantzikinakis in [Fra16, Problem 1] (see also [Alt20]) asks if this
error function can be bounded everywhere, that is, if Proposition 1.1
still holds with ‖τ‖L∞ ≤ ε. The apparent expectation of a positive
answer to Frantzikinakis’s question motivated conjectures on a poorly-
understood probabilistic variant of Szemerédi’s theorem on arithmetic
progressions (cf. Section 1.1). Our main result, however, shows that in
the finite-field setting, the answer is negative.

Theorem 1.2. For infinitely many primes p, there is a k = k(p) ∈ N
and an integer vector i ∈ Zk≥0 such that (2) cannot hold with ‖τ‖L∞ ≤ ε.

Special cases of Theorem 1.2 show that for k = 3 and p = 2t − 1
a Mersenne prime, the decomposition (2) requires polynomial phases
of degree at least t for fixed ε,M and ‖τ‖L∞ ≤ ε. The largest known
Mersenne prime as of January 2018 has t = 77, 232, 917 [GIM].
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1.1. Locally decodable codes and random Szemerédi. The ex-
amples behind Theorem 1.2 originate from constructions of special
types of error-correcting codes called locally decodable codes (LDCs).
These codes have the property that any single encoded message sym-
bol can be retrieved from a codeword with good probability by reading
only a tiny number of codeword symbols, even if the codeword is par-
tially corrupted. LDCs originated in complexity theory [BK95, AS98,
ALM+98] and cryptography [CGKS98] and were defined in the context
of channel coding in [KT00]. They have since found many other ap-
plications in computer science and mathematics, for instance in fault
tolerant distributed storage systems [GHSY12] and Banach space ge-
ometry [BNR12]. We refer to [Yek12, Gop18] for extensive surveys.

Despite their ubiquity, LDCs are poorly understood. Of particular
interest is the tradeoff between the codeword length N as a function of
message length k when the query complexity—the number of probed
codeword symbols—and alphabet size are constant. The Hadamard
code is a 2-query LDC of length N = 2O(k) and this length is optimal
in the 2-query regime [KdW04]. For q ≥ 3, the best-known lower
bounds show that any q-query LDC has at least polynomial length
k1+1/(dq/2e−1)−o(1) [KdW04, Woo07]. The family of Reed-Muller codes,
which generalize the Hadamard code, were for a long time the best-
known examples, giving q-query LDCs of length exp(O(k1/(q−1))).

In a breakthrough result, Yekhanin [Yek08] constructed an entirely
new family of vastly shorter LDCs. For each Mersenne prime p = 2t−1,
he gave a 3-query LDC of length N ≤ exp(O(k1/t)). The construction
uses a family of k homomorphisms from Fnp to the multiplicative sub-
group of F2t . The homomorphisms are constructed using a family of
matching vectors (ui, vi)i∈[k], which are pairs of orthogonal vectors in Fnp
such that the inner products 〈ui, vj〉 with i 6= j belong to a special sub-
set of F∗p. It is this construction that forms the basis for Theorem 1.2.

Subsequently, Efremenko [Efr12] constructed much larger matching
vector families over Znm for composite moduli m and used Yekhanin’s
framework to give the first 3-query LDCs of subexponential length
N ≤ exp(exp(O

√
log k/ log log k)). But huge gaps persist between the

best-known upper and lower bounds for constant-query LDCs.

In contrast with other combinatorial objects such as expander graphs,
the probabilistic method has so far not been successfully used to beat
the best explicit LDC constructions. In [BDG19], a probabilistic frame-
work was given that could in principle yield best-possible LDCs, al-
beit non-constructively. A special instance of this framework connects
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LDCs with a probabilistic version of Szemerédi’s theorem alluded to
above. The setup for this is as follows:

For a finite abelian group G of size N = |G|, let D ⊆ G be a random
subset where each element is present with probability ρ independently
of all others. For k ≥ 3 and ε ∈ (0, 1), let E be the event that every
subset A ⊆ G of size |A| ≥ ε|G| contains a proper k-term arithmetic
progression with common difference in D. If ρ = 1, then it follows
from the Density Hales–Jewett Theorem [FK91] that E holds with
probability 1 provided N is large enough in terms of k and ε. It is an
open problem to determine the smallest value of ρ — which we will
denote by ρk — such that Pr[E] ≥ 1

2
. This value will depend on ε

too, but we will suppress this in the notation and assume ε is a fixed
constant. It is also assumed that N is large enough so that ρk exists.

In [BDG19] it is shown that there exist k-query LDCs of message
length Ω(ρkN) and codeword length O(N). As such, Szemerédi’s the-
orem with random differences, in particular lower bounds on ρk, can
be used to show the existence of LDCs. Conversely, this connection
indirectly implies the best-known upper bounds on ρk for all k ≥ 3,
given by N−(1−o(1))/dk/2e [FLW12, BG18]. However, a conjecture of
Frantzikinakis, Lesigne and Wierdl [FLW16] states that over ZN we
have ρk �k N

−1 logN for all k, which would be best-possible. Truth of
this conjecture would imply that over this group, Szemerédi’s theorem
with random differences cannot give LDCs better than the Hadamard
code. For finite fields, Altman [Alt20] showed that this conjecture is
false. In particular, over Fnp for p odd, he proved that ρ3 � p−n n2;

generally, ρk � p−n nk−1 holds when p ≥ k + 1 [Bri20]. In turn, these
bounds are conjectured to be optimal for the finite-field setting, which
would imply that over finite fields, Szemerédi’s theorem with random
differences cannot give LDCs better than Reed-Muller codes.

These conjectures appear to be motivated mainly by the possibility of
an L∞-version of Proposition 1.1 (and analogous variants over ZN) with
dual functions based on 3-term progressions. Theorem 1.2 falls short
of obstructing this route to obtaining optimal bounds in the finite-field
setting for two reasons. First, our examples do not include “arithmetic-
progression dual functions,” those with i = (0, 1, . . . , (k − 1)); in fact
in the Appendix we show that our current framework cannot give such
examples. Second, even if we had such examples, they do not appear
to imply any new lower bounds on ρk. Nevertheless, we do not expect
arithmetic progressions to be exceptional patterns for which there are
no such examples.
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Remark 1.3. Ideas behind Theorem 1.2 recently inspired similar exam-
ples in the integer setting for 3-term progressions in joint work of the
first author and Green [BG20].

Acknowledgements. We thank Xuancheng Shao for introducing us
to the problem of estimating entropy numbers of dual functions and
for showing us Proposition 1.1, Daniel Altman, Ben Green and Nikos
Frantzikinakis for helpful discussions, Igor Shparlinski for pointing us
to the reference [Ste13], and an anonymous referee for pointing out an
error in a previous claim on a strengthening of the main result under
the assumption of the generalized Riemann hypothesis.

2. Preliminaries

We will identify the set of maps G→ C with CG. For a polynomial
P (x) =

∑t
ι=0 cιx

ι, define its support i(P ) to be the sequence of degrees
ι ∈ Z≥0 such that cι 6= 0, arranged in increasing order. The support
size is the length of i(P ). We will use some basic facts from the theory
of finite fields, for which we refer to [LN97]. The Minkowski sum of
two sets A,B ⊆ Cn is the set given by

A+B = {a+ b | a ∈ A, b ∈ B}.

We will use the following slight generalization of the notion of the
convex hull, where we allow for complex coefficients. For a compact
set A ⊆ Cn, define

ConvC(A) =
{∑
a∈A

αaa | αa ∈ C ∀a ∈ A,
∑
a∈A

|αa| ≤ 1
}
.

For a finite set A ⊆ Dn and ε,M ∈ (0,∞), define N (A, ε,M) to be the
smallest size of a finite set B ⊆MDn such that

A ⊆ ConvC(B) + εDn.

Then, for any a ∈ A, there is a b ∈ ConvC(B) such that ‖a− b‖`∞ ≤ ε
and so N (A, ε,M) is a restricted form of the covering number of A
relative to the `∞ distance. Note that for I ⊆ [n], the projection
of A to the set of coordinates I, given by AI = {(ai)i∈I | a ∈ A}, is
contained in ConvC(BI) + εDI . Since |B| ≥ |BI |, it follows that

(3) N (A, ε,M) ≥ N (AI , ε,M).

3. Covering numbers from hypercubes

We will use the following lemma, which shows that containment of a
high-dimensional hypercube implies a large restricted covering number.
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Lemma 3.1. Let c > 0, z ∈ C be a complex number such that <(z) ≤ 0
and let S ⊆ Ck be a finite set such that {c, z}k ⊆ S. Then, for any
ε ∈ (0, c

2
) and M > 0, we have that

log2

(
N (S, ε,M)

)
�c,ε,M k.

Proof: Let θ be a uniformly distributed {−1, 1}k-valued random vector.
For a compact set A ⊆ Ck, define

w(A) = Emax
a∈A
|〈a, θ〉|.

We use the following basic properties:

1. If A ⊆ B, then w(A) ≤ w(B).
2. For a finite set A ⊆ Ck, it holds that w(ConvC(A)) = w(A).
3. For A,B ⊆ Ck finite, it holds that w(A+B) ≤ w(A) + w(B).

It follows from the first property that

(4) w(S) ≥ w({c, z}k) ≥ ck

2
.

For the second inequality, observe that for fixed θ ∈ {−1, 1}k, we have

max
a∈{c,z}k

|〈a, θ〉| ≥
∣∣∣ ∑
i:θi=1

c−
∑

i:θi=−1

z
∣∣∣

≥
∣∣∣<( ∑

i:θi=1

c−
∑

i:θi=−1

z
)∣∣∣

≥ c|{i ∈ [k] | θi = 1}|.

Averaging over θ then gives the result.
Let B ⊆ MDk be a finite set such that S ⊆ ConvC(B) + εDk. Let

l = |B| and p = log2 l. By the second property of w, Jensen’s inequality
and the Khintchine inequality [MS86, Chapter 5],

w
(

ConvC(B)
)

= Emax
b∈B
|〈b, θ〉|

≤ E
(∑
b∈B

|〈b, θ〉|p
) 1

p

≤
(∑
b∈B

E|〈b, θ〉|p
) 1

p

� √p
(
|B|max{‖b‖p`2 | b ∈ B}

) 1
p

�M
√
k log l.
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We also have w(εDk) = εk. Since S ⊆ ConvC(B) + εDk, the second
and third properties of w and (4) then give

ck

2
≤ w(S) ≤ w(ConvC(B)) + εDk)�M

√
k log2 l + εk.

Rearranging the left- and right-hand sides now gives the claim. 2

4. Locating high-dimensional hypercubes

Here we show that for certain primes p and some integer vectors i,
the dual functions in ∆i over Fnp contain high-dimensional hypercubes.

Proposition 4.1. Let p, r be distinct primes, let t = ordp(r) and let
G = Fnp . Suppose there exists a polynomial P (x) ∈ Fr[x] that has a root
in F∗rt of order p and such that P (1) 6= 0. Then, there exists a z ∈ C
with <(z) ≤ 0 and a set D ⊆ G of size |D| �p n

t such that

{z, 1}D ⊆ ∆D
i(P ).

The proof of this proposition relies on the following result due to
Yekhanin, which is implicit in [Yek08] (and shown explicitly in [Rag07]).
We include a proof for completeness.

Theorem 4.2 (Yekhanin). Let p, r be distinct primes and t := ordp(r).
For integer m > p− 1, let

k =

(
m

p− 1

)
and n =

(
m+ p−1

t
− 1

p−1
t

)
.

Let

P (x) =
s∑
ι=0

cιx
ι ∈ Fr[x]

be a polynomial with a root γ ∈ F∗rt of order p. Then, for each i ∈ [k]
there exists a function fi : Fnp → Frt and vectors di, wi ∈ Fnp such that
for every x ∈ Fnp , we have

s∑
ι=0

cιfi(x+ ιdj) =

{
γ〈x,wi〉P (1) if i = j
0 otherwise.

Proof: For a (p−1)-element subset S ⊆ [m], define the vectors uS = 1S
and vS = 1[m] − uS in Fmp . Then, 〈uS, vT 〉 = 0 if and only if S = T .

Let l = p−1
t

. Then, for a ∈ F∗p, we have al ∈ {rq | q = 0, 1, . . . , p− 1}.
Consider the expansion of the polynomial Q(x) ∈ Fp[x1, . . . , xm]

given by

Q(x) = (x1 + · · ·+ xm)l =
∑
β∈Ml

cβx
β,
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where Ml := {β ∈ Zm≥0 |
∑m

i=1 βi = l} and xβ :=
∏m

i=1 x
βi
i . For

each subset S ⊆ [m] of size p − 1, define the vectors wS = (uβS)β∈Ml

and dS = (cβv
β
S)β∈Ml

. Since xβyβ = (x ◦ y)β, where ◦ denotes the
coordinate-wise product, we have that

〈wS, dT 〉 = Q(uS ◦ vT ) = 〈uS, vT 〉l.

By the above, this equals zero if S = T and a power of r otherwise.
Moreover, the vectors wS and dS have dimension |Ml| =

(
m+l−1

l

)
.

Define fS : Fnp → F∗rt by

fS(x) = γ〈x,wS〉.

Note that this a homomorphism, because γ has order p. Then,
s∑
ι=0

cιfS(x+ ιdS) = γ〈x,wS〉
s∑
ι=0

cιγ
ι〈dS ,wS〉

= γ〈x,wS〉
s∑
ι=0

cι

= γ〈x,wS〉P (1).

If S 6= T , then 〈dT , wS〉 = rq mod p for some integer q and therefore,

s∑
ι=0

cιfS(x+ ιdT ) = γ〈x,wS〉
s∑
ι=0

cιγ
ι〈dT ,wS〉

= γ〈x,wS〉
s∑
ι=0

cιγ
ιrq

= γ〈x,wS〉P (γ)r
q

= 0.

This completes the proof. 2

Proof of Proposition 4.1: Let P (x) ∈ Fr[x] be as in Proposition 4.1 and
let γ ∈ F∗rt be a p-th root of unity such that P (γ) = 0. Let fi : Fnp → F∗rt
and di, wi ∈ Fnp be as in Theorem 4.2. Let χ : Frt → C be a nontrivial
additive character such that the complex number

z := Ec∈Fpχ
(
γcP (1)

)
satisfies <(z) ≤ 0. To see that such a character exists, observe that by
orthogonality of the characters,

Eχ∈F̂rt
Ec∈Fpχ

(
γcP (1)

)
= Ec∈Fp

(
Eχ∈F̂rt

χ
(
γcP (1)

))
= 0.
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The existence of the desired character then follows by averaging. For
each a ∈ {0, 1}k and ι ∈ i(P ), define F ι

a : Fnp → C by

(5) F ι
a(x) = χ

(
cι

k∑
j=1

ajfj(x)
)
.

Based on these functions, we define the dual function φa : Fnp → D by

(6) φa(y) = Ex∈Fn
p

∏
ι∈i(P )

F ι
a(x+ ιy).

Then,

φa(di) = Ex∈Fn
p
χ
( k∑
j=1

aj
∑
ι∈i(P )

cιfj(x+ ιdi)
)

= Ex∈Fn
p
χ(aiγ

〈x,wi〉P (1))

= Ec∈Fpχ(aiγ
cP (1)).

The last expectation equals 1 if ai = 0 and z if ai = 1 and therefore,

{1, z}k ⊆ {(φ(d))d∈D | φ ∈ ∆i(P )}.

Since k ≥ (m
p

)p−1, n ≤ (2etm
p

)
p−1
t and t ≤ p− 1, we have k �p n

t. 2

5. Sparse polynomials over F2

The following lemma supplies infinitely many primes and polynomi-
als that can be used in Proposition 4.1 .

Lemma 5.1. For infinitely many primes p, there is an irreducible poly-
nomial P (x) ∈ F2[x] with support size at most t = ordp(2) and a root
in F∗2t of order p.

To prove Lemma 5.1, we use some basic theory of cyclotomic poly-
nomials (see for example [LN97, Chapter 2]). Let r be a prime and
n ∈ N not divisible by r. Recall that a primitive n-th root of unity
over Fr is a generator of the non-zero elements of the splitting field of
the polynomial xn − 1 over Fr. Then, for any such root of unity ζ, the
n-th cyclotomic polynomial is given by

Φn(x) =
∏

gcd(s,n)=1

(x− ζs),

where the product is over s ∈ {1, . . . , n} such that gcd(s, n) = 1.
The following lemma gives the properties of cyclotomic polynomials
we need.
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Lemma 5.2. Let r be a prime, n ∈ N not divisible by r. Then, the
coefficients of Φn(x) lie in Fr. Moreover, if n is a prime, then Φn(x)
factors into (n− 1)/ ordn(r) distinct monic irreducible polynomials all
of which have degree exactly ordn(r).

For an integer k ≥ 2, denote by p(k) the largest prime number that
divides k. We will use the following result of Stewart [Ste13].

Lemma 5.3 (Stewart). For all n large enough, we have

p(2n − 1) > n exp

(
log n

104 log log n

)
.

Proof of Lemma 5.1: By Lemma 5.3, for p = p(2n−1) and n sufficiently
large, we have ordp(2) ≤ n < (p−1)/2. Hence, there are infinitely many
primes p such that t := ordp(2) ≤ (p − 1)/2. For such a p, consider
the p-th cyclotomic polynomial Φp(x) over F2. By Lemma 5.2, Φp(x)
factors into (p− 1)/t distinct monic irreducible polynomials over F2 of
degree exactly t. Since over F2, there is only one polynomial of degree t
with support size t+1, there must be an irreducible factor with support
of size at most t. Let P (x) be such a factor. Then, since P (x)|Φp(x),
its roots lie in the set of p-th roots of unity in F2t . 2

Remark 5.4. For Mersenne primes p = 2t − 1, there are polynomials
over F2 with support size 3 that meet the conditions of Proposition 4.1.
Indeed, since in this case, any p-th root of unity ζ in F2t is a generator
of F∗2t and since 1+ζ 6= 0, there exists an s such that P (x) = 1+x+xs

satisfies P (1) = 1 and P (ζ) = 0.

6. Proof of Theorem 1.2

Let p, t, P (x) be as in Lemma 5.1, so that P has support size k ≤ t.
Let i = i(P ). Since P is irreducible, P (1) 6= 0 and so it satisfies the
conditions of Proposition 4.1. Fix ε ∈ (0, 1

2
) and M ∈ (0,∞). Suppose

that Proposition 1.1 held with ‖τ‖L∞ ≤ ε, which is to say that

∆i ⊆ ConvC
(
M · {polynomial phases of degree ≤ k − 1}

)
+ εDFn

p .

Then, since there are at most pO(nk−1) polynomial phase functions of
degree at most k − 1 (one for each n-variate polynomial of degree at
most k − 1), this implies that

(7) log2N (∆i, ε,M)�p n
k−1 �p n

t−1.

At the same time, Proposition 4.1, Lemma 3.1 and property (3) give

log2N (∆i, ε,M)�p,ε,M nt.

This contradicts (7) for large n and finishes the proof of Theorem 1.2.
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Appendix A. On the possible arithmetic patterns

Here we show that our construction cannot give examples for dual
functions corresponding to arithmetic progressions. Let p, r be primes
and t = ordp(r). Suppose that for some k, s ∈ N, there is a polynomial
P (x) ∈ Fr[x] of the form

P (x) =
k−1∑
ι=0

cιx
ιs

such that P (1) 6= 0 and P (x) has a root in F∗rt of order p. Then, the
functions defined as in (5) and (6) belong to the set of dual functions
corresponding to the progression i = (0, s, 2s, . . . , (k−1)s) and generate
in a hypercube of dimension at least nt. We show that k ≥ t+1, which
means that this does not contradict an L∞-version of Proposition 1.1.

First note that s cannot be a multiple of p, since for any γ ∈ F∗rt of
order p we would have γs = 1, which implies that P (γ) = P (1) 6= 0. It
follows that for any such γ, the element γs also has order p and does
not equal 1. Define the polynomial

Q(x) =
k−1∑
ι=0

cιx
ι ∈ Fr[x].

Then, this polynomial has a root α in F∗rt of order p (where α = γs),
satisfies Q(1) = P (1) 6= 0 and has degree k− 1. We claim that k− 1 ≥
ordp(r). If Q is reducible, then it has a factor of degree strictly less
than k−1 that has the same properties. So assume thatQ is irreducible.
Let K = Fr(α) be the simple algebraic extension of Fr obtained by
adjoining α. Then K is isomorphic to Frk−1 . Since α lies in Frk−1

and has order p, it follows that p | rk−1 − 1. But this implies that
k − 1 ≥ ordp(r) = t.
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12 JOP BRIËT AND FARROKH LABIB

[BG18] J. Briët and S. Gopi. Gaussian width bounds with applications to
arithmetic progressions in random settings. Int. Math. Res. Not., page
rny238, 2018. doi:10.1093/imrn/rny238.
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