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Abstract

We bound separations between the entangled and classical values for several classes of
nonlocal t-player games. Our motivating question is whether there is a family of t-player XOR
games for which the entangled bias is 1 but for which the classical bias goes down to 0, for
fixed t. Answering this question would have important consequences in the study of multi-
party communication complexity, as a positive answer would imply an unbounded separation
between randomized communication complexity with and without entanglement. Our con-
tribution to answering the question is identifying several general classes of games for which
the classical bias can not go to zero when the entangled bias stays above a constant thresh-
old. This rules out the possibility of using these games to answer our motivating question. A
previously studied set of XOR games, known not to give a positive answer to the question,
are those for which there is a quantum strategy that attains value 1 using a so-called Schmidt
state. We generalize this class to mod-m games and show that their classical value is always at
least 1

m + m−1
m t1−t. Secondly, for free XOR games, in which the input distribution is of product

form, we show β(G) ≥ β∗(G)2t
where β(G) and β∗(G) are the classical and entangled biases of

the game respectively. We also introduce so-called line games, an example of which is a slight
modification of the Magic Square game, and show that they can not give a positive answer to
the question either. Finally we look at two-player unique games and show that if the entangled
value is 1− ε then the classical value is at least 1−O(

√
ε logk) where k is the number of out-

puts in the game. Our proofs use semidefinite-programming techniques, the Gowers inverse
theorem and hypergraph norms.
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1 Introduction

The study of multiplayer games has been extremely fruitful in theoretical computer science across
diverse areas including the study of complexity classes [BOGKW88], hardness of approximation
[Kho02], and communication complexity [KLL+15]. They are also a great framework in which to
study Bell inequalities [Bel64] and analyze the nonlocal properties of entanglement. A particularly
simple kind of multiplayer game is an XOR game. An XOR game G = ( f ,π) between t-players
is defined by a function f : X1 × X2 × · · · × Xt → {0,1} and a probability distribution π over
X1 × · · · × Xt. An input (x1, . . . , xt) ∈ X1 × · · · × Xt is chosen by a referee according to π, who
then gives xi to player i. Without communicating, player i then outputs a bit ai ∈ {0,1} with the
collective goal of the players being that a1 ⊕ · · · ⊕ at = f (x1, . . . , xt). In a classical XOR game, the
players’ strategies are deterministic. In an XOR game with entanglement, players are allowed to
share a quantum state and make measurements on this state to inform their outputs.

As players can always win an XOR game with probability at least 1
2 , it is common to study the

bias of an XOR game, the probability of winning minus the probability of losing. We use β(G) to
denote the largest bias achievable by a classical protocol for the game G, and β∗(G) to denote the
best bias achievable by a protocol using shared entanglement for the game G.

Our motivating question in this paper is:

Question 1.1. Is there a family of t-player XOR games (Gn)n∈N such that β∗(Gn) = 1 and β(Gn)→
0 as n→∞?

This question has important implications for multi-party communication complexity. For a
function f : X1 × · · ·Xt → {0,1}, let R( f ) denote the t-party randomized communication com-
plexity of f (in the number-in-the-hand model), and let R∗( f ) denote the t-party randomized
communication complexity of f where the parties are allowed to share entanglement. A positive
answer to Question 1.1 gives a family of functions ( fn)n∈N with R∗( fn) = O(1) and R( fn) = ω(1),
i.e. an unbounded separation between these two communication models.

In the reverse direction, a family of functions ( fn)n∈N with R∗( fn) = O(1) and R( fn) = ω(1)
gives a family of games Gn = ( fn,πn) with β∗(Gn) ≥ c for some constant c and β(Gn)→ 0 as n→
∞. Thus there is a very close connection between Question 1.1 and the existence of an unbounded
separation between randomized communication complexity with and without entanglement.

For the two-player case, it is known that the answer to Question 1.1 is negative. It was observed
by Tsirelson [Tsi87] that Grothendieck’s inequality [Gro53], a fundamental result from Banach
space theory, is equivalent to the assertion that β∗(G) ≤ KG · β(G), where KG ≤ 1.78 . . . [Kri77,
BMMN11] is Grothendieck’s constant.

Linial and Shraibman [LS09] and Shi and Zhu [SZ08] realized that the XOR bias of a game
( f ,π) can be used to lower bound the communication complexity of f , both in the randomized
setting and the setting with entanglement. Together with Grothendieck’s inequality they used this
to show that R( f ) = O(22R∗( f )) for any partial two-party function f . Thus in the two-party case an
unbounded communication separation is not possible between the randomized model with and
without entanglement. Raz has given an example of a partial function f with R( f ) = 2Ω(R∗( f ))

[Raz99], thus the upper bound of Linial-Shraibman and Shi-Zhu is essentially optimal.
In the case of three or more parties, Question 1.1 and the corresponding question of an un-

bounded separation between the entangled and non-entangled communication complexity mod-
els remain open. A striking result of Peréz-Garcı́a et al. [PGWP+08] shows that there is no ana-
logue of Grothendieck’s inequality in the three-player setting. In particular, they showed that there
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exists an infinite family of three-player XOR games (Gn)n∈N with the property that the ratio of the
entangled and classical biases of Gn goes to infinity with n. This result was later quantitatively
improved by Briët and Vidick [BV13]. Both results rely crucially on non-constructive (probabilis-
tic) methods, and in both separating examples the entangled bias β∗(Gn) also goes to zero with
increasing n. These works leave open the question, posed explicitly in [BV13], of whether there
is such a family of games in which the entangled bias does not vanish with n, but instead stays
above a fixed positive threshold while the classical bias decays to zero. Crucially, having a sepa-
ration in XOR bias where β∗(Gn) remains constant is what is needed to also obtain an unbounded
separation between randomized communication complexity with and without entanglement.

Our contribution to answering Question 1.1 One approach to Question 1.1 is to look at different
classes of games and identify which ones could possibly lead to a positive answer.

Peréz-Garcı́a et al. [PGWP+08] show that in any XOR game where the entangled strategy uses
a GHZ state, there is a bounded gap between the classical and entangled bias: namely, the bias
with a GHZ state in a t-player XOR game G is at most KG(2

√
2)t−1β(G). This bound is essen-

tially tight as there are examples of t-player XOR games achieving a ratio between the GHZ state
bias and classical bias of π

2
t [Zuk93]. Briët et al. [BBLV13] later extended the Grothendieck- type

inequality of Peréz-Garcı́a et al. to a larger class of entangled states called Schmidt states (see
Equation 1). Thus any game where there is a perfect strategy where the players share a Schmidt
state cannot give a positive answer to Question 1.1.

Watts et al. [WHKN18] recently investigated Question 1.1 and found that a t-player XOR game
G that is symmetric, i.e. invariant under the renaming of players, and where β∗(G) = 1 always
has a perfect entangled strategy where the players share a GHZ state. Thus symmetric games also
cannot give a positive answer to Question 1.1.

We further study games that have a perfect strategy where players share a GHZ or Schmidt
state. We do this for a generalization of XOR games called mod m games. In a mod m game the
players output an integer between 0 and m − 1 and the goal is for the sum of the outputs mod
m to equal a target value determined by their inputs. We show that the classical advantage over
random guessing is at least m−1

m t1−t in any t player mod m game that can be won perfectly by
sharing a Schmidt state (see Theorem 1.2).

We show this by introducing angle games, a class of games that can be won perfectly sharing a
GHZ state and are the hardest of all such games. Thus a classical strategy in an angle game can be
used to lower bound the winning probability of any mod m game that has a perfect Schmidt state
strategy.

For small values of t we can directly analyze angle games to give bounds that are sometimes
tight. One interesting consequence of our result is the following. The Mermin game G is a three-
party XOR game where by sharing a GHZ state players can play perfectly, β∗(G) = 1, while clas-
sically β(G) = 1

2 . We show that this is the maximal possible separation of any 3-party XOR game
where β∗(G) = 1 via a GHZ state. In particular, this means that when one looks at the XOR
repetition of the Mermin game the classical bias does not go down at all.

We rule out other types of games that could positively answer Question 1.1 as well. A t-player
free XOR game G = ( f ,π) is a game where π is a product distribution. For such games we show
that β(G) ≥ β∗(G)2t

, and thus they cannot be used for a positive answer to Question 1.1.
Another class of XOR games we consider are line games, where the questions asked to the

players are related by a geometric property. An example of a line game is a slight modification
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of the Magic Square game [IKP+08]. We show that line games cannot give a positive answer to
Question 1.1 either.

Finally, we look at extensions of Question 1.1 beyond XOR games to more general classes of
games like unique games [Kho02], which have been deeply studied because of their application
in hardness of approximation. For unique games we show that in fact if there is strategy with
entanglement that can win a unique game perfectly, then there is a perfect classical strategy as
well. This can be compared with the result of Cleve et al. [CHTW04] that if a two-player game with
binary outputs has a perfect strategy with entanglement then it also has a perfect classical strategy.
More generally, we show that if the winning probability with entanglement is 1− ε in a unique
game with k outputs, then there is a classical strategy that wins with probability 1− C

√
ε logk.

In the next subsections, we discuss our results in more detail.

1.1 Perfect Schmidt strategies for MOD games

A MOD-m game is a generalization of XOR games to non-binary outputs. A nonlocal game is a
MOD-m game if the players are required to answer with integers from 0 to m− 1, and win if and
only if the sum of their answers modulo m equals the target value determined by their inputs. We
denote the optimal winning probability using classical strategies by ω(G), and we write ω∗(G)
for the entangled winning probability. Random play in such a game ensures that the players
can always win with probability at least 1

m . As with XOR games, in a MOD-m game one often
considers the bias given by the maximum amount by which the value can exceed 1

m , scaled to be
in the [0,1] range. The bias is β(G) = m

m−1 (ω(G)− 1
m ), and similar for the entangled version. This

generalizes the definition given for XOR games above.
Define a t-partite Schmidt state as a t-partite quantum state that can be written in the form

|ψ〉 =
d−1

∑
i=0

ci|e(1)i 〉|e
(2)
i 〉 · · · |e

(t)
i 〉, (1)

where ci > 0 and where the |e(j)
i 〉 (i = 0,1, ...,d− 1) are orthogonal vectors in the j-th system. For t =

2 any state can be written this way, something commonly known as the Schmidt decomposition.
Note that the well-known GHZ state is a Schmidt state where all the ci are equal to 1/

√
d. In

the context of nonlocal games, define a Schmidt strategy as a quantum strategy that uses (only) a
Schmidt state. We say a strategy is perfect if it achieves winning probability 1.

We consider t-player MOD-m games for which there is a perfect Schmidt strategy (“perfect
Schmidt games”) and for such games we give lower bounds on the classical winning probabili-
ties. One particular set of games with this property is described by Boyer [Boy04]. Their entangled
value is 1 but their classical value goes to 0 as the number of players goes to infinity. The authors
of [WHKN18] define a closely-related class of games called noPREF games. This set of games is
equal to the set of perfect Schmidt games when m = 2 and the distribution on the inputs is uni-
form. In [WHKN18] it is shown that checking whether a game is in this class can be done in
polynomial time. Furthermore, for symmetric t-player XOR games they show that a game has en-
tangled value 1 if and only if it falls in this class of perfect Schmidt games. They also provide an
explicit non-symmetric XOR game with entangled value 1 that is not in this class. We introduce a
t-player MOD-m game called the uniform angle game, denoted UAGt,m (defined in Section 3.1, Def-
inition 3.6) for which there is a perfect Schmidt strategy and show a lower bound on the classical
winning probability.
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Theorem 1.2. Any t-player MOD-m game G with perfect Schmidt strategy satisfies ω(G) ≥ ω(UAGt,m).
Furthermore we have β(UAGt,m) ≥ t1−t.

For t = 3,m = 2 (3-player XOR games) we have ω(UAG3,2) = 3/4. In Section 3 we provide
bounds on ω(UAGt,m) for other values of t,m.

Let the inputs to a game come from a set X = X1 × X2 × ...× Xt where Xi is the set of inputs
for the i-th player. We say a game is total when all elements of X have a non-zero probability of
being asked (sometimes also called having full support), similar to total functions in the setting of
communication complexity. On the other hand, we say that a game has a promise on the inputs
when it is not total. For the class of perfect Schmidt games we show that total games are trivial.

Lemma 1.3. When a t-player MOD-m game G with perfect Schmidt strategy is total then ω(G) = 1.

1.2 Free XOR games

In this subsection we identify two types of games, namely free games and line games, for which
either the ratio of the entangled and classical biases is small, or the entangled bias itself is small.
Thus these games will not be able to give a positive answer to Question 1.1. Free games are a
general and natural class of games in which the players’ questions are independently distributed.
Line games appear to be less studied (see below for their definition), but turn out to be relevant in
the context of parallel repetition (also see below). The main idea behind these results is that a large
entangled bias implies that the games are in a sense far from random. This is quantified by the
magnitude of certain norms of the game tensors. The particular norms of interest here are related
to norms used in Gowers’ celebrated hypergraph- and Fourier-analytic proofs of Szemerédi’s The-
orem. A crucial fact of these norms is that they are large if and only if there is “correlation with
structure”, the opposite of what one would expect from randomness. We show that this structure
can be turned into good classical strategies, thus establishing a relationship between the entangled
and classical biases.

Theorem 1.4 (Polynomial bias relation for free XOR games). For integer t ≥ 2 and any free t-player
XOR game with entangled bias β, the classical bias is at least β2t

.

This result may be considered as an analogue of a well-known result on quantum query algo-
rithms for total functions. It is shown in [BBC+01] that the bounded-error quantum and classical
query complexities of total functions are polynomially related.

1.3 Line games

Line games are not free, but have a simple geometric structure. For a finite field F of characteristic
at least t and positive integer n, a t-player line game is given by a map τ : Fn → {0,1}. In the
game, the referee independently samples two uniformly random points x,y ∈ Fn and sends the
point x + (i − 1)y to the ith player. The players win the game if and only if the XOR of their
answers equals τ(y). In other words, the players’ questions correspond to consecutive points (or
an arithmetic progression) on a random affine line through Fn and the winning criterion depends
only on the direction of the line. Refer to this as a line games over Fn.

A small example of a line game can be obtained from a slight modification of the three-player
Magic Square game, which was analyzed in [IKP+08]. The line game is played over the plane F2

3
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and the predicate is zero only on the horizontal lines (with y ∈ {(1,0), (2,0)}. In the Magic Square
game, the referee restricts only to horizontal and vertical lines.1

Theorem 1.5. For any ε ∈ (0,1], integer t ≥ 2 and finite field F of characteristic at least t, there exists
a δ(ε, t,F) ∈ (0,1] such that the following holds. For any positive integer n and any t-player line game
over Fn with entangled bias ε, the classical bias is at least δ(ε, t,F).

Note that in the above result, the value of the classical bias is independent of the dimension n
of the vector space determining the players’ question sets.

While it is not relevant to Question 1.1, the proof techniques used for Theorem 1.5 allow us
to prove a parallel repetition theorem for a class of games that include line games. It is known
that the value of free games and so-called anchored games decays exponentially under parallel
repetition. Dinur et al. [DHVY16] identified a general criterion of multi-player games to behave
like this, encompassing free and anchored games. They showed that it is sufficient for a certain
graph that can be obtained from a game to be expanding, a well-known pseudorandom property
that gives a measure of graph connectivity. Line games do not belong to this class, as their graphs
are not even connected. However, we show that if a map τ : Fn → {0,1}n is pseudorandom in
a different sense, then a line game defined by τ has exponential decaying value under parallel
repetition. More generally, we show that this is the case for a family of XOR games over an
arbitrary finite abelian group Γ. These games are given by a positive integer m, a family of affine
linear maps ψ0, . . . ,ψt : Γm → Γ such that no two are multiples of each other, and a “game map”
ρ : Γ→ {0,1}. In the game, the referee samples a uniform random element x from Γm and sends
the group element ψi(x) to the ith player. The winning criterion is given by ρ(ψ0(x)). The relevant
notion of pseudoranomness is quantified by the Gowers t-uniformity norm of the map (−1)ρ :
x 7→ (−1)ρ(x), denoted ‖(−1)ρ‖Ut .

Lemma 1.6. Let m, t be positive integers and let Γ be a finite abelian group. Let ψ0, . . . ,ψt : Γm → Γ be
affine linear maps such that no two are multiples of each other and let ρ : Γ→ {0,1}. Let G be the t-player
XOR game given by the system {ψ0, . . . ,ψt,ρ}. Then, for every positive integer k,

ω(Gk) ≤
(1 + ‖(−1)ρ‖Ut

2

)k
.

1.4 Unique games

We know that the answer to Question 1.1 is negative in the two-player case, but we can generalize
the question by dropping the XOR restriction. The set of XOR games is part of a larger class of
games called unique games for which we investigate the relation between classical and entangled
values. A two-player nonlocal game is a unique game if for every pair of questions, for every
possible answer of the first player there is exactly one answer of the second player that lets them
win, and vice versa. Stated differently, for every question there is a matching between the answers
of the two players such that only the matching pairs of answers let the player win.

The Unique Games Conjecture (UGC) of Khot [Kho02] states that for any ε,δ > 0, for any
k > k(ε,δ), it is NP-hard to distinguish instances of unique games with winning probability at least
1− ε from those with winning probability at most δ, where k is the number of possible answers.
This conjecture has important consequences because it implies several hardness of approximation

1Though this is not the typical description of the game, it is easily seen to be equivalent.
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results. For example, for the Max-Cut problem, Khot et al. [KKMO07] showed that the UGC im-
plies that obtaining an approximation ratio better than ≈ 0.878 is NP-hard. Other results include
inapproximability for Vertex Cover [KR08] and graph coloring problems [DMR09].

Our results relate the quantum and classical winning probabilities in the regime of near-perfect
play and are based on a result in [CMM06].

Theorem 1.7. Let ε ≥ 0. There is an efficient algorithm that, given any two-player unique game with
entangled value 1− ε, outputs a classical strategy with winning probability at least 1− C

√
ε logk, where

C is a constant independent of the game.

Note that for ε = 0 this means a perfect quantum strategy implies a perfect classical strategy.
Furthermore, the above result only beats a trivial strategy when ε =O(1/logk).

Work in a similar direction includes [KRT08]. They show that entangled version of the UGC
is false, by providing an efficient algorithm that gives an explicit quantum strategy with winning
probability at least 1− 6ε when the true entangled value is 1− ε. In the classical case, [CMM06]
gives an algorithm that outputs a classical strategy with winning probability 1−O(

√
ε logk) when

the true classical value is 1− ε. We extend this result by showing that this classical strategy also
does the job when, not the classical, but the entangled value is 1− ε.

2 Techniques

This section provides an overview of the proof techniques that we employed. We give sketches of
the main ideas which are worked out in full detail in later sections.

2.1 Reduction to angle games.

To prove Theorem 1.2 we introduce a new set of t-player MOD-m games that we call angle games.
We define a particular angle game called the uniform angle game, denoted by UAGt,m and show
that it is the hardest of these games. In an angle game, players receive complex phases eiφ (an-
gles) satisfying a promise, and the winning answer depends only on the product of the inputs
eiφ1 · eiφ2 · · · eiφt . We prove the theorem by extracting from any perfect Schmidt strategy a set of
complex phases that satisfy such a promise, and thereby reducing any such game to the UAGt,m
game. Let us sketch how this is accomplished. Assume that a perfect Schmidt strategy exists,

and let {P(j,xj)

1 , ..., P
(j,xj)
m } be the projective measurement done by player j on input xj so that P

(j,xj)

i

corresponds to output i. Now define unitaries U(j,xj) = ∑i ωi
mP

(j,xj)

i , where ωm = e2πi/m is an m-th
root of unity. Since the strategy is perfect we have for every input (x1, ..., xt) that

ω
M(x1,...,xt)
m = 〈ψ|U(1,x1) ⊗U(2,x2) ⊗ ...⊗U(t,xt)|ψ〉.

Using the definition of a Schmidt state, we show that this equality implies that these unitaries must
be of a simple form and their entries satisfy the promise of an angle game. We prove Theorem 1.2
and Lemma 1.3 in Section 3, where we also provide classical strategies for the uniform angle game
and show that these are tight in the case of 3-player XOR games.
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2.2 Norming hypergraphs and quasirandomness.

Our main tool for proving Theorem 1.4 is a relation between the entangled and classical biases and
a norm on the set of game tensors. For t-tensors, this norm is given in terms of a certain t-partite
t-uniform hypergraph H. Recall that such a hypergraph consists of t finite and pairwise disjoint
vertex sets V1, . . . ,Vt and a collection of t-tuples E(H) ⊆ V1 × · · · × Vt, referred to as the edge set
of H. For a t-tensor T ∈Rn1×···×nt , the norm has the following form:

‖T‖H =
(

Eφi :Vi→[ni ]

[
∏

(v1,...,vt)∈E(H)

T
(
φ1(v1), . . . ,φt(vt)

)]) 1
|E(H)|

, (2)

where the expectation taken with respect to the uniform distribution over all t-tuples of mappings
φi from Vi to [ni]. Expressions such as (2) play an important role in the context of graph homomor-
phisms [BCL+06]. If T is the adjacency matrix of a bipartite graph with left and right node sets [n1]
and [n2] respectively, then each product in (2) is 1 if and only if the maps φ1 and φ2 preserve edges.

Criteria for H under which (2) defines a norm or a semi-norm were determined by Hatami [Hat10,
Hat09] and Conlon and Lee [CL17]. Famous examples of graph norms include the Schatten-p
norms for even p ≥ 4 (in which case H is a p-cycle) and a well-known family of hypergraph norms
are the Gowers octahedral norms. The latter were introduced for the purpose of quantifying a no-
tion of quasirandomness of hypergraphs as an important part of Gowers’ graph-theoretic proof of
Szemerédi’s theorem on arithmetic progressions. Having large Gowers norm turns out to imply
correlation with structure, as opposed to quasirandomness. This is true also for the norm relevant
for our setting. In particular, it turns out that the structure with which a game tensor correlates
can be turned into a classical strategy for the game. As such, a large norm of the game tensor
implies a large classical bias of the game itself. At the same time, we show that the entangled bias
is bounded from above by the norm of the game tensor, provided the game is free. Putting these
observations together gives the proof of Theorem 1.4, which we give in Section 4.

The particular hypergraph norm relevant in our setting was introduced in [CHPS12] and can
be obtained recursively as follows. Starting with a t-partite t-uniform hypergraph H with vertex
set V1 ∪ · · · ∪ Vt, write dbi(H) for the t-partite t-uniform hypergraph obtained by making two
vertex-disjoint copies of H and gluing them together so that the vertices in the two copies of Vi are
identified. We obtain our hypergraph by starting with a single edge e = (v1, . . . ,vt) (and vertex sets
of size 1), and applying this operation to all parts, forming the hypergraph db1(db2(. . .dbt(e)))
with vertex sets of size 2t−1 and 2t edges. The fact that this hypergraph defines a norm via (2) was
proved in [CL17].

2.3 Line games and Gowers uniformity norms.

The proof of Theorem 1.5 is based on two fundamental results from additive combinatorics: the
generalized von Neuman inequality and the Gowers Inverse Theorem. The former easily shows
that the classical bias of a line game is bounded from above by the Gowers t-uniformity norm
of the game map. We show that in fact the same upper bound holds for the entangled bias as
well. A large entangled bias thus implies a large uniformity norm for the game map. Analo-
gous to the above-mentioned octahedral norms for tensors, uniformity norms were introduced to
quantify a notion of pseudorandomness for bounded maps over abelian groups as an important
step in Gowers’ other proof of Szemerédi’s Theorem, based on higher-order Fourier analysis. The

8



highly non-trivial Gowers Inverse Theorem of Tao and Ziegler [TZ12] establishes that high uni-
formity norm again implies correlation with structure. Although structure in this context means
something quite different than for tensors, we show that it still implies a lower bound on the clas-
sical bias. The above observations together prove Theorem 1.5, details of which can be found in
Section 5.

2.4 Semidefinite programming relaxation.

The proof of Theorem 1.7 is a small modification of a proof in [CMM06]. They consider a semidef-
inite programming (SDP) relaxation of the optimization problem for the classical value and then
give two algorithms for rounding the result of the SDP to a classical strategy. In the SDP relax-
ation the objective is to optimize Ex,y ∑k

i=1〈u
(x)
i | v(y)

πxy(i)
〉 where u(x)

i ,v(y)j ∈ Rd are vectors corre-
sponding to questions x,y and answers i, j. Furthermore, πxy is the matching of correct answers
on questions x,y. A classical strategy would correspond to the case where the vectors are inte-
gers instead, such that for each x exactly one u(x)

i is equal to 1 and all other u(x)
i are equal to

zero and similar for the v(y)j . A quantum strategy also gives rise to a set of vectors, but satis-
fying different constraints [KRT08]. One of the constraints of the SDP considered in [CMM06]
is 0 ≤ 〈ui | vπxy(i)〉 ≤ |ui|2 which is valid for classical strategies, but in general not for quantum
strategies. For our proof, we consider the same SDP but with this constraint dropped. In that case
it is also a relaxation for the entangled case and with a few changes one of the rounding algorithms
in [CMM06] is also valid when the constraint is dropped. Note that the result only beats a trivial
strategy when ε = O(1/logk) whereas the other rounding algorithm in [CMM06] is non-trivial
for any ε. However this other algorithm is more dependent on the extra constraint and it is not
clear if it can be dropped there as well.

To get some intuition for the rounding algorithm, we sketch a solution for ε = 0 here. In this
case one can show that for each question pair x,y the set of vectors |u(x)

i 〉 (i = 1, ...,k) known by the

first player is the same set of vectors as the set |v(y)i 〉 (i = 1, ...,k) known to the second player. In

particular, the vector |u(x)
i 〉 is the same as the matching vector |v(y)

πxy(i)
〉 of the other player. Using

shared randomness they can sample a random vector |g〉 and compute the overlaps ξ
(x)
i = 〈g|u(x)

i 〉
and ξ

(y)
i = 〈g|v(y)i 〉 respectively. As they have the same vectors, the players will have the same

values for answers in the matching: ξ
(x)
i = ξ

(y)
πxy(i)

. Now both players simply output the answer

i for which |ξ(x)
i | (and |ξ(y)i | for the other player) has the largest value. With probability one this

will yield correct answers. For ε > 0 the sets of vectors will not be exactly equal and therefore
the values ξ

(x)
i ,ξ(y)

πxy(i)
will be close but not exactly equal. The discrepancy in these values will be

bigger for vectors |u(x)
i 〉with a small norm. In Section 6 we provide the rounding algorithm in full

detail and show how this issue is solved.
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3 Perfect quantum Schmidt strategies for MOD games

We start by defining a set of games that turn out to characterize the games we are interested in.

Definition 3.1 (Angle game). Define an angle game as a t-player MOD-m game where player j gets an
angle eiφj as input, with the promise that eiφ1 · ... · eiφt = ω

M(φ1,...,φt)
m where M(φ1, ...,φt) ∈ {0,1, ...,m− 1}

and ωm = ei2π/m. The players win if and only if the sum of their outputs modulo m is equal to M(φ1, ...,φt).

Note that an angle game is completely defined by t, m and a probability distribution over
angle tuples. Furthermore, t-player Boyer games [Boy04] with parameters (D, M) are angle games
where the (discrete) probability distribution is uniform over all angles of the form ei2πx/(MD) with
x = 0,1, ..., D− 1 whose product is an M-th root of unity. The promise ∑ xj ≡ 0 mod D as stated
in the Boyer games translates to ∏ ei2πxj/(MD) = ωl

M in the angle game, where l = ∑ xj/D.

Lemma 3.2. Any angle game has entangled value 1 which can be obtained using a shared GHZ state.

Proof. Consider the following quantum strategy using a GHZ state of dimension m. Every player
applies the local diagonal unitary Ujj = ei j·φ on input eiφ. Then every player applies an inverse

Fourier transform F†
ij =

1√
m ω
−i·j
m and then measures in the computational basis and outputs the

result. With probability 1 the sum of their outputs is equal to l.

Lemma 3.3. Any t-player MOD-m game with a perfect Schmidt strategy can be reduced to an angle game.

Proof. Let {P(j,xj)

1 , ..., P
(j,xj)
m } be the projective measurement done by player j on input xj so that

P
(j,xj)

i corresponds to output i. This set of projectors is pairwise orthogonal and sums to identity.

Now define unitaries U(j,xj) = ∑i ωi
mP

(j,xj)

i . Since the strategy is perfect we have for every input
(x1, ..., xt) that

ω
M(x1,...,xt)
m = 〈ψ|U(1,x1) ⊗U(2,x2) ⊗ ...⊗U(t,xt)|ψ〉

= ∑
i,j

cicj〈e(1)i |U
(1,x1)|e(1)j 〉 〈e

(2)
i |U

(2,x2)|e(2)j 〉 · · · 〈e
(t)
i |U

(t,xt)|e(t)j 〉

= ∑
i,j

cicjU
(1,x1)
ij U(2,x2)

ij · · ·U(t,xt)
ij . (3)

where we entered the definition of a Schmidt state as given in Section 1.1 and we shortened
U(t,xt)

ij := 〈e(t)i |U(t,xt)|e(t)j 〉. Now apply Cauchy-Schwarz to obtain

∣∣∣∣∣∑i,j cicjU
(1,x1)
ij U(2,x2)

ij · · ·U(t,xt)
ij

∣∣∣∣∣ ≤
(

∑
i,j

c2
i

∣∣∣U(1,x1)
ij

∣∣∣2) 1
2
(

∑
i,j

c2
j

∣∣∣U(2,x2)
ij · · ·U(t,xt)

ij

∣∣∣2) 1
2

≤ 1

(
∑
i,j

c2
j

∣∣∣U(2,x2)
ij

∣∣∣2) 1
2

= 1.

Here we used that the U(j,xj) are unitary and therefore their rows and columns are unit vectors.
When |〈a,b〉| = ‖a‖ · ‖b‖ then we have |a〉 = λ|b〉 for some λ ∈ C. Keeping in mind the complex
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conjugation in the inner product, there is a λ such that

λciU
(1,x1)
ij = cjU

(2,x2)
ij · · ·U(t,xt)

ij

where z denote the complex conjugate of z. Plugging this into (3) gives λ = ω
M(x1,...xt)
m . From the

above equation it follows that when U(t,xt)
ij is non-zero for t = 1 then it is non-zero for every t.

Instead of the first player we could have used any other player in the above derivation, so if any
U(t,xt)

ij is non-zero for some t then it is non-zero for all t. Let i, j be such that U(t,xt)
ij , 0, then we can

take the argument of the above equation to find

2π

m
M(x1, ..., xt) = arg(U(1,x1)

ij ) + arg(U(2,x2)
ij ) + · · ·+ arg(U(t,xt)

ij ).

On any input (x1, ..., xt), the players simply looks at the first non-zero element of their matrix U(t,xt)

and look at the argument φt := arg(U(t,xt)
ij ). These angles have the property that eiφ1 · ... · eiφt =

ω
M(x1,...,xt)
m . This reduces the game to an angle game.

Definition 3.4 (Connected inputs). For any game, define a graph where every input (a t-tuple) with
non-zero probability of being asked is a vertex. Two inputs are connected via an edge if they differ on only
one player and agree on the other t− 1 coordinates. We say the game has connected inputs if this graph is
connected.

Dinur et al. [DHVY16] consider the same graph which they call the (t− 1)-connection graph of
the game. Total games and free games have connected inputs. Games that do not have connected
imputs typically have a promise on the inputs.

Lemma 3.5. Any angle game with connected inputs has classical value 1.

Proof. Fix an input (eiα1 , ..., eiαt). Now define β1(eiφ1) = eiφ1 eiα2 eiα3 · · · eiαt and β j(eiφj) = eiφj e−iαj for
j ≥ 2. The product of the angles is left unchanged under these maps, β1(eiφ1)β2(eiφ2) · · ·βt(eiφt) =

eiφ1 · · · eiφt . We claim that every input is mapped to an m-th root of unity, i.e. β j(eiφj) = ω
lj
m. There-

fore player j can output lj and ∑j lj = M(eiφ1 , ..., eiφt) thus winning the game with probability 1.

First note that on the fixed input we have β1(eiα1) = ω
M(eiα1 ,...,eiαt )
m and β j(eiαj) = 1 for j ≥ 2. so the

claim holds on the fixed input. By the strong connectivity we can obtain another input to the game
by changing only the input for a single player. We now show that when the claim holds for one
input then it also holds when only one player’s value is changed. Using these single-player edits
we can eventually reach all inputs. Let (eiφ1 , ..., eiφj , ..., eiφt) and (eiφ1 , ..., eiφ′j , ..., eiφt) be two inputs
that only differ for player j. Now assume that the claim holds for the first input. We then have

ω
M(eiφ1 ,...,e

iφ′j ,...,eiφt )
m = β1(eiφ1) · · ·β j(e

iφ′j) · · ·βt(eiφt)

= β1(eiφ1) · · ·β j(eiφj) · · ·βt(eiφt) · β j(eiφj)−1β j(e
iφ′j)

= ω
M(eiφ1 ,...,eiφj ,...,eiφt )
m ω

−lj
m β j(e

iφ′j)

from which it follows that β j(e
iφ′j) = ω

l′j
m for some l′j.

Lemma 1.3 follows directly from Lemma 3.3 and Lemma 3.5.
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3.1 Classical strategies for angle games

Having characterized our class of games as angle games we proceed by presenting classical strate-
gies for these games. Our aim is to provide strategies that work for any probability distribution
on the set of inputs. In this section it will be convenient to write the angles as ei 2π

m φ so that φ runs
from 0 to m instead of 0 to 2π.

Definition 3.6. Define the probability distribution πUt on the set

Ut =
{
(ei 2π

m φ1 , ..., ei 2π
m φt) | φj ∈ [0,1) , ei 2π

m φ1 · · · ei 2π
m φt = ωl

m, l ∈ {0,1, ...,m− 1}
}

as follows: for 1 ≤ j ≤ t − 1, draw φj independently uniformly at random from [0,1). Then define φt

as the unique number in [0,1) that makes the product ei 2π
m φ1 · · · ei 2π

m φt an m-th root of unity. We define the
uniform angle game, denoted UAGt,m, as a t-player MOD-m angle game (Definition 3.1) where the input
distribution is πUt .

As stated before, in a t-player Boyer game [Boy04] with parameters (D, M) the (discrete) prob-
ability distrubtion is uniform over all angles of the form ei2πx/(MD) with x = 0,1, ..., D − 1 whose
product is an M-th root of unity. This is similar to the πUt distribution but where the angles
φj ∈ [0,1) are now discrete φj ∈ {0, 1

D , 2
D , ..., D−1

D }.
The distribution πUt is the hardest distribution as captured by the following claim.

Claim 3.7. Let G be a t-player MOD-m angle game with input distribution πG. Then ω(G) ≥ ω(UAGt,m).

Proof. Assume the players get an input (ei 2π
m φ1 , ..., ei 2π

m φt) with ei 2π
m φ1 · · · ei 2π

m φt = ωa
m from πG. Using

shared randomness, draw t − 1 independent random angles eiα1 , ..., eiαt−1 where each αi is uni-
form on [0,2π). Multiply the input ei 2π

m φj of player j by eiαj for j ≤ t − 1 and multiply ei 2π
m φt by

e−i(α1+...+αt−1) to preserve the product. The resulting distribution is uniform on the set{
(ei 2π

m φ1 , ..., ei 2π
m φt) | φj ∈ [0,m) , ei 2π

m φ1 · · · ei 2π
m φt = ωa

m

}
One can always write φj = lj + ϕj with lj ∈ {0,1, ...,m− 1} and 0≤ ϕj < 1. Note that (ei 2π

m ϕ1 , ..., ei 2π
m ϕt)

is distributed according to πUt so the players can play a strategy for UAGt,m to obtain answers
(a1, ..., at). On input ei 2π

m (lj+ϕj), player j outputs aj + lj. They are correct if and only if the answers
aj are correct for UAGt,m on input (ei 2π

m ϕ1 , ..., ei 2π
m ϕt). This proves the claim.

Claim 3.8. The uniform angle game satisfies ω(UAGt,m) ≥ 1
m + m−1

m t1−t.

Proof. The players get inputs from Ut as in Definition 3.6. On input φi, player i computes xi =
bt φic, so that xi ∈ {0, ..., t − 1}. We then have 1

t ∑t
i=1 xi ≤ ∑t

i=1 φi < 1 + 1
t ∑t

i=1 xi and since the
correct answer l is given by l = ∑t

i=1 φi, we see that l is uniquely determined by the sum of xi.
Now using shared randomness the players sample t− 1 random numbers from {0, ..., t− 1}. With
probability 1

tt−1 these numbers are exactly equal to x1, ..., xt−1. The last player assumes that the
random numbers are indeed x1, ..., xt−1 and outputs the correct l. The other players output 0 if
their xi matches the random sample and output a random number otherwise. This yields a bias of

1
tt−1 , or winning probability of 1

m + m−1
m t1−t.
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Figure 1: Probability that the correct answer of the angle game is l, conditioned on the last player
receiving input x, as defined in Equation (4).

Theorem 1.2 follows from Lemma 3.3, Claim 3.7 and Claim 3.8.
We proceed by describing a strategy for UAGt,m that improves on the bound of Claim 3.8. Let

(φ1, ...,φt) be drawn from πUt . Define Φ = φ1 + φ2 + ... + φt−1 then by definition of πUt , Φ is the
sum of t − 1 independent uniform [0,1) variables. Furthermore, the last input is φt = dΦe − Φ
and the correct answer l is defined by l ≡ dΦe mod m. The distribution of Φ is known as the
Irwin-Hall distribution [Irw27, Hal27]:

P(Φ ≤ x) =
1

(t− 1)!

bxc

∑
j=0

(−1)j
(

t− 1
j

)
(x− j)t−1.

We consider a set of strategies that we call the semi-trivial strategies, in which the first t− 1 players
always output 0. The last player then plays optimally when given the input x. We conjecture that
this strategy is optimal for the uniform angle game. In the semi-trivial strategy, the last player
chooses the l that maximizes

P(correct answer is l | last input is x) = P(dΦe ≡ l mod m | φt = x). (4)

This probability is plotted as a function of x in Figure 1. The figure shows that for a 4-player
MOD-3 game (left plot) the optimal choice for the last player is to ignore the input x and always
output 2. Interestingly, this is the pattern we observe for any value of m for any even number
of players (checked up to m = 10, t = 10): the value of l for which this probability is maximal is
independent of x. This means that these strategies (for t even) are locally optimal in the sense that
changing any single player’s strategy will not improve the winning probability. The right plot
of the figure shows that for 5 players the optimal answer depends on whether x ≤ 1

2 or x > 1
2 .

This, too, is seems to be a general pattern for any m and any odd number of players (checked up
to m = 10, t = 11). The winning probabilities provided by these semi-trivial strategies are given
in Table 1 for m = 2 and m = 3. The semi-trivial strategies are lower bounds for the winning
probability of every t-player angle game. We can find upper bounds by finding upper bounds
for particular angle games. The table provides some upper bounds obtained from brute-force
searching through all strategies for Boyer games.
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t (# players) 2 3 4 5 6 7 8 9
MOD 2
lower bound 1 3/4 2/3 29/48 17/30 781/1440 166/315 8341/16128

1 0.75 0.6667 0.6042 0.5667 0.5424 0.5270 0.5172
upper bound 1 3/4 43/64 155/256 583/1024 35/64 273/512 1056/1048

1 0.75 0.6719 0.6055 0.5693 0.5469 0.5332 0.5200
MOD 3
lower bound 1 3/4 2/3 115/192 11/20 785/1536 403/840 260451/573440

1 0.75 0.6667 0.5990 0.5500 0.5111 0.4798 0.4542
upper bound 1 61/81 163/243 17/27 47/81 131/243 41/81 349/729

1 0.7531 0.6708 0.6296 0.5802 0.5391 0.5062 0.4787

Table 1: Lower and upper bounds for the winning probabilities of the UAGt,m games (Defini-
tion 3.6). The lower bounds are the semi-trivial strategies described in the text. The upper bounds
were found by iterating through all strategies for t-player Boyer games with values of D up to
D = 9 when computation time allowed it.

For the case of 3-player XOR games, the upper bound ω(UAG3,2) = 3/4 is tight. For the 4-
player case we have ω(UAG4,2) ≥ 2/3 and it seems that searching through Boyer games gives
increasingly better bounds, approaching 2/3 as the input size D is increased. However, one can
show that for any finite D the lower bound of 2/3 will not be reached, because when D = 2m there
is a strategy that achieves a winning probability of 2

3 + 4−m

3 . The corresponding strategy is that
the first 3 players output 0 and the fourth player outputs 1 when their input is 0 or 1 and outputs
0 when their input is 2, ..., D − 1. This strategy is optimal for D = 2,4,8. One can show that for
values of D that are not a power of 2, i.e. D = D′2m the game reduces to one with D = 2m.

4 Free XOR games

In this section we will define free XOR games and give the definition of hypergraph norms (only
for real-valued functions on discrete domains). For more details on hypergraph norms we refer
to [Hat09]. We will then relate the hypergraph norm, with respect to a certain hypergraph, of the
game tensor to the quantum bias of free XOR games. Our main tool is a Cauchy-Schwarz type of
inequality for operators, that is why we will state it here.

Proposition 4.1. Let Ai, Bi ∈ End(Cn) for i = 1, . . . ,k. Then

‖ ∑
i∈[k]

AiBi‖ ≤ ‖ ∑
i∈[k]

Ai A∗i ‖1/2 ‖ ∑
i∈[k]

B∗i Bi‖1/2,

where all the norms are operator norms.

Proof. Write

A =


A1 A2 · · · Ak
0 0 · · · 0
...

...
...

...
0 0 · · · 0

and B =


B1 0 · · · 0
B2 0 · · · 0
...

...
...

...
Bk 0 · · · 0

 .
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Then we use the fact that

AB =


∑i∈[k] AiBi 0 · · · 0

0 0 · · · 0
...

...
...

...
0 0 · · · 0

 ,

together with the properties

‖C⊗ Eij‖ = ‖C‖,
‖C‖2 = ‖C∗C‖ = ‖CC∗‖,

to conclude

‖ ∑
i∈[k]

AiBi‖ = ‖ ∑
i∈[k]

AiBi ⊗ E11‖ = ‖AB‖ ≤ ‖A‖‖B‖

= ‖AA∗‖1/2‖B∗B‖1/2 = ‖ ∑
i∈[k]

Ai A∗i ‖1/2‖ ∑
i∈[k]

B∗i Bi‖1/2.

A t-player free XOR game G is given by finite non-empty sets X1, . . . , Xt, a product distribution
over X := X1 × · · · × Xt and a game tensor

T : X→ {±1}. (5)

The classical bias of the free XOR game G, which we denote by β(G) is given by

β(G) := max
ai : Xi→{±1}

| E
(x1,...,xt)∈X

T(x1, . . . , xt)
t

∏
i=1

ai(xi)|.

The quantum bias of the free XOR game G, which we denote by β∗(G) is given by the expression

β∗(G) := max
N∈N,Ai : Xi→Obs±(CN)

‖ E
(x1,...,xt)∈X

T(x1, . . . , xt)
t

∏
i=1

Ai(xi)‖op, (6)

the maximization is taken over ±-observable valued functions Ai such that [Ai, Aj] = 0 for i , j,
this corresponds to a quantum strategy of the players. The expectation is taken over the given
distribution.

Before we go into the detail of the proof of Theorem 1.4 for any number of players, we first
sketch the core idea of the proof for two players, for which we do not yet need to resort to hy-
pergraphs. For a two-player game G with game tensor T, the commuting-operator strategies A, B
yield a bias of

η = ‖ E
(x,y)∈X×Y

T(x,y)A(x)B(y)‖.
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where the norm is the operator norm. Using Proposition 4.1 we peel off the operator B(y)

η =
∥∥∥ E

y∈Y

(
E

x∈X
T(x,y)A(x)

)
B(y)

∥∥∥. (independent questions)

≤
∥∥∥ E

y∈Y

(
E

x∈X
T(x,y)A(x)

)(
E

x′∈X
T(x′,y)A(x′)

)∗∥∥∥1/2 ∥∥∥ E
y∈Y

B(y)B(y)∗
∥∥∥1/2

≤
∥∥∥ E

y∈Y
E

x,x′∈X
T(x,y)T(x′,y)A(x)A(x′)∗

∥∥∥1/2
. (using ‖B(y)‖ ≤ 1)

Now we apply the inequality again on the sum over (x, x′) to get rid of the A operator.

η ≤
∥∥∥ E

x,x′∈X

(
E

y∈Y
T(x,y)T(x′,y)

)
A(x)A(x′)∗

∥∥∥1/2

≤
∣∣∣ E

x,x′

(
E
y

T(x,y)T(x′,y)
)(

E
y′

T(x,y′)T(x′,y′)
)∣∣∣ 1

4
∥∥∥ E

x,x′

(
A(x)A(x′)∗

)(
A(x)A(x′)∗

)∗∥∥∥ 1
4

≤
∣∣∣ E

x,x′∈X
E

y,y′∈Y
T(x,y)T(x′,y)T(x,y′)T(x′,y′)

∣∣∣1/4
. (using ‖A(x)‖ ≤ 1)

We proceed by rewriting the last expression

η4 ≤
∣∣∣ E
(x′,y′)∈X×Y

T(x′,y′) E
(x,y)∈X×Y

T(x,y)T(x′,y)T(x,y′)
∣∣∣

≤ E
(x′,y′)∈X×Y

∣∣∣ E
(x,y)∈X×Y

T(x,y)T(x′,y)T(x,y′)
∣∣∣. (triangle inequality)

By the pigeonhole principle there must be choices of x′,y′ such that

η4 ≤
∣∣∣ E
(x,y)∈X×Y

T(x,y)T(x′,y)T(x,y′)
∣∣∣,

which is the expression for the bias of the classical strategies a(x) = T(x,y′) and b(y) = T(x′,y),
proving Theorem 1.4 for t = 2 players. For t ≥ 3 we can apply the same idea, peeling off the oper-
ators one by one, but the final expression is more involved. We will now develop the techniques
to deal with this. In particular, we need the notion of hypergraph norms. For our purposes, we
only consider t-uniform hypergraphs which are also t-partite.

Definition 4.2. For t ≥ 2, let V1, . . . ,Vt be finite non-empty sets and V := V1 × · · · ×Vt. Given a subset
E ⊂ V, we say that the pair H = (V1 ∪ · · · ∪ Vt, E) is a t-partite t-uniform hypergraph with vertex set
V1 ∪ · · · ∪Vt and edge set E.

Definition 4.3. Let t ≥ 2 and X1, . . . , Xt be finite non-empty sets and suppose a product distribution on
X := X1 × · · · × Xt is given to us. Let T : X→ R be a function and H = (V1 ∪ · · · ∪Vt, E) be a t-partite
t-uniform hypergraph. We define a non-negative function ‖ · ‖H on the function T by

‖T‖H :=

∣∣∣∣∣ E
φi : Vi→Xi

∏
(v1,...,vt)∈E

T(φ1(v1), . . . ,φt(vt))

∣∣∣∣∣
1
|E|

. (7)

The expectation is taken with respect to the following distribution: a particular map φi : Vi → Xi occurs
with probability ∏v∈Vi

pi(φi(v)) where pi is the probability distribution on Xi.
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The particular hypergraph which arises naturally when we study the quantum bias of free
XOR games is constructed as follows. Starting with a t-partite t-uniform hypergraph H, write
dbi(H) for the t-partite t-uniform hypergraph obtained by making two vertex-disjoint copies of
H and gluing them together so that the vertices in the two copies of Vi are identified. To construct
our hypergraph, we start with the hypergraph given by a single edge e = (v1, . . . ,vt) and vertex
sets of size 1 and apply the doubling operation to all parts, i.e. db1(db2(. . .dbt(e))). We denote
this hypergraph by H(t). A more useful way to define H(t) is as follows. We will do this first
for t = 2 and explain how to do it for any t afterwards. We use 2-bit strings to identify vertices.
We start with the hypergraph with a single edge (x00,y00) ∈ V1 × V2. As we will start using the
doubling operator, we make copies of the vertex sets. We can use a table to visualize it.

V1 V2

starting position x00 y00

db2 x01 y00

db1 x00 y10
x01 y10

The table may be read as follows; the rows are the edges of the hypergraph and columns are
the vertex sets. In this example we have that V1 = {x00, x01} and V2 = {y00,y10} and the edge
set consists of {(x00,y00), (x01,y00), (x00,y10), (x01,y10)}. The algorithm for constructing the table is
as follows: we start with the starting position row, which corresponds to the (hyper)graph with
a single edge (x00,y00), and as we apply the doubling operator db2, we add a new row (which
corresponds to making a vertex-disjoint copy) where we increase the 2nd bit in the subscript of x
but leave y alone (so we have a new copy of V1 but not of V2). After this first step we have a graph
with vertex sets V1 = {x00, x01} and V2 = {y00} and edge set {(x00,y00), (x01,y00)}. Next we apply
db1 and we get a new copy of V2, but leave V1 alone.
For arbitrary t ≥ 2; let vi

ω be a formal variable with i ∈ [t] and ω is a t-bit string. We define for
j ∈ [t] an operation on the formal variable by

∆j(vi
ω) := vi

ω1,...,ωj+1,...,ωt
for j , i

∆i(vi
ω) := vi

ω.

where we add modulo 2. The table then looks like

V1 V2 . . . Vt
starting position v1

0t v2
0t . . . vt

0t

dbt ∆t(v1
0t) ∆t(v2

0t) . . . ∆t(vt
0t)

dbt−1 ∆t−1(v1
0t) ∆t−1(v2

0t) . . . ∆t−1(vt
0t)

∆t−1(∆t(v1
0t)) ∆t−1(∆t(v2

0t)) . . . ∆t−1(∆t(vt
0t))

. . . . . . . . . . . . . . .

At step k, the algorithm takes all the rows of the previous steps together and applies ∆t−k+1 on
each of the formal variables in the rows. We also write dbi(e) for the row where we apply ∆i
on each variable of the row e. We see in this way that, for example, the edge set of H(t) has
cardinality 2t and the number of vertices in each Vi is 2t−1. In the following proposition we list
some properties of H(t) which we prove using this description. We will be using the terms row
and edge interchangeably as they mean the same in this context.
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Proposition 4.4. The hypergraph H(t) has the following properties: (1) it is t-partite and t-uniform, (2) it
is 2-regular and (3) for all vertices v the following holds: let e, e′ be the unique edges such that v ∈ e, v ∈ e′

and e , e′. For w ∈ e \ {v}, denote by e, e′′ the unique edges such that w ∈ e, w ∈ e′′ and e , e′′. Then
e′ ∩ e′′ = ∅.

Proof. (1) follows directly from the algorithm described above using the table. We can prove (2) as
follows. Suppose in column Vi we have a vertex in some row/edge which we denote by vi

ω, here
ω is a t-bit string. First we note that applying dbj with j , i will change ω as it will flip the j-th
bit. There are two cases; either we have already applied dbi in which case vi

ω appears in exactly
one more row above the current row, or we have not applied dbi yet in which case there is no vi

ω

in an earlier row. It will appear exactly once in a later row since applying dbi will not change ω.
For (3), choose again some vertex vi

ω in Vi and denote by e the row which appears first in the table
containing vi

ω. The other row/edge which contains vi
ω is e′ := dbi(e). Now, let vj

τ be a vertex in Vj

with j , i and vj
τ ∈ e, i.e. it is in the same row as vi

ω. There are two cases; either j > i in which case
e = dbj(e′′) where e′′ is the other (unique) edge containing vj

τ. Or j < i and the other edge which

contains vj
τ is e′′ := dbj(e). In any case, a moments thought shows that e′ ∩ e′′ = ∅.

The next ingredient is the following lemma.

Lemma 4.5. For a t-player free XOR game G with game tensor T, we have that

β∗(G) ≤ ‖T‖H(t).

Proof. For convenience, we write the hypergraph in a slightly different way. Write φi : Vi→ Xi and
we define an operation ∆j on such maps in the same way as above, i.e.

(∆jφi)(vi
ω) = φi(∆jvi

ω) for j , i

(∆iφi)(vi
ω) = φi(vi

ω).

Also, using the same symbol, we define on functions T : X1 × · · · × Xt→ C

∆jT(φ1(v1
ω1), . . . ,φt(vt

ωt)) := T(φ1(v1
ω1), . . . ,φt(vt

ωt))T∗((∆jφ1)(v1
ω1), . . . , (∆jφt)(vt

ωt)),

one could think of this operation as a kind of multiplicative derivative. If T were an operator-
valued map, we still define it in this way. It is then not hard to see that

∆1 . . . ∆tT(φ1(v1
0t), . . . ,φt(vt

0t)) = ∏
(v1

ω1 ,...,vt
ωt )∈E(H(t))

T(φ1(ω
1), . . . ,φt(ω

t)),

using the table as a description of H(t). So we can write

‖T‖H(t) = |E∆1 . . . ∆tT(φ1(v1
0t), . . . ,φt(vt

0t))|1/|E|,

where the expectation is taken over all maps φi : Vi → Xi with the particular distribution given in
Definition 4.3.
Now let us look at the bias of a two player game G with game tensor T and strategies A, B

η = ‖ E
(x,y)∈X×Y

T(x,y)A(x)B(y)‖op.
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We will do the example of two players to clarify the idea and will prove it in general afterwards.
First we use Proposition 4.1, the Cauchy-Schwarz inequality, to peel off strategy B

η = ‖ E
y∈Y

(
E

x∈X
T(x,y)A(x)

)
B(y)‖op

≤ ‖E
y

(
E
x

T(x,y)A(x)
)(

E
x

T(x,y)A(x)
)∗‖1/2

op ‖E
y

B(y)∗B(y)‖1/2
op

≤ ‖ E
y,x,x′

T(x,y)T(x′,y)A(x)A(x′)∗‖1/2
op .

In the second inequality we used that operator norm of strategies are smaller or equal to 1. We
will use the Cauchy-Schwarz inequality one more time, now to peel off strategy A

η ≤ ‖ E
x,x′

(E
y

T(x,y)T(x′,y))A(x)A(x′)∗‖1/2
op

≤ ‖ E
x,x′

(E
y

T(x,y)T(x′,y))(E
y

T(x,y)T(x′,y))∗‖1/4
op ‖ E

x,x′
(A(x)A(x′)∗)∗A(x)A(x′)∗‖1/4

op

≤ | E
x,x′,y,y′

T(x,y)T(x′,y)T(x,y′)T(x′,y′)|1/4.

Now, to see that this last expression is equal to ‖T‖H(2), we write the expectation in a a different
way. Instead of writing Ex,x′ we write Eφ : V→X where V = {v0,v1} is a vertex set, so that x = φ(v0)
and x′ = φ(v1). Similarly, instead of Ey,y′ we write Eψ : W→Y where W = {w0,w1} and we view
H(2) to be on this vertex sets. Then, we evaluate T on the edges of H(2), so

| E
x,x′,y,y′

T(x,y)T(x′,y)T(x,y′)T(x′,y′)|1/4 = | E
φ : V→X,ψ : W→Y

∏
(v,w)∈E(H(2))

T(φ(v),ψ(w))|1/4.

In general, for t players, the proof is as follows

η :=‖E T(φ1(v1
0t), . . . ,φt(vt

0t))

(
∏

i∈[t−1]
Ai(φi(vi

0t))

)
At(φt(vt

0t))‖op

≤ ‖E T(φ1(v1
0t), . . . ,φt(vt

0t))T(φ1(v1
0t−11), . . . ,φt(vt

0t)) ∏
i∈[t−1]

Ai(φi(vi
0t))Ai(φi(vi

0t−11))
∗‖1/2

op

= ‖E∆tT(φ1(v1
0t), . . . ,φt(vt

0t)) ∏
i∈[t−1]

∆t Ai(φi(vi
0t))‖1/2

op .

Now assume that we have applied the Cauchy-Schwarz inequality 1 < n < t times to peel off the
last n operators and we have obtained the expression

η ≤ ‖E∆t−n+1 · · ·∆tT(φ1(v1
0t), . . . ,φt(vt

0t)) ∏
i∈[t−n]

∆t−n+1 · · ·∆t Ai(φi(vi
0t))‖1/2n

op .

Now apply Cauchy-Schwarz inequality to remove the operator ∆t−n+1 · · ·∆t At−n(φi(vi
0t)) so that

we obtain

η ≤ ‖E∆t−n · · ·∆tT(φ1(v1
0t), . . . ,φt(vt

0t)) ∏
i∈[t−n−1]

∆t−n · · ·∆t Ai(φi(vi
0t))‖1/2n+1

op .

This completes the induction. Putting n = t− 1 we have the inequality

η ≤ |E∆1 · · ·∆tT(φ1(v1
0t), . . . ,φt(vt

0t))|1/2t
.
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We are now ready to give a proof of Theorem 1.4

Proof of Theorem 1.4. We assume β∗(G) > η. Lemma 4.5 immediately implies ‖T‖H(t) > η. To
construct a classical strategy, we choose an edge e∗ = (v∗1 , . . . ,v∗t ) ∈ E(H(t)). Any choice of edge
works for our argument. H(t) is 2-regular (by Proposition 4.4), so denote by e∗i the unique edge
different from e∗ such that v∗i ∈ e∗i . Write e∗i = (v(i)1 , . . . ,v∗i , . . . ,v(i)t ) and V ′i := Vi \ {v∗i }. Using
Proposition 4.4 we see that v∗j < e∗i whenever i , j. Then

η2t
< | E

φi : Vi→Xi
∏

(v1,...,vt)∈E
T(φ1(v1), . . . ,φt(vt))|

= | E
φi : V′i→Xi

[ ∏
(v1,...,vt)∈E\{e∗,e∗1 ,...,e∗t }

T(φ1(v1), . . . ,φt(vt))

E
φ∗i : {v∗i }→Xi

T(φ∗1(v
∗
1), . . . ,φt(v∗t ))T(φ

∗
1(v
∗
1), . . . ,φt(v

(1)
t )) · · ·T(φ1(v

(t)
1 ), . . . ,φ∗t (v

∗
t ))]|

≤ E
φi : V′i→Xi

| E
φ∗i : {v∗i }→Xi

T(φ∗1(v
∗
1), . . . ,φ∗t (v

∗
t ))T(φ

∗
1(v
∗
1), . . . ,φt(v

(1)
t ))

· · ·T(φ1(v
(t)
1 ), . . . ,φ∗t (v

∗
t ))|.

Let us explain the second and third line in detail. Write Vi = V ′i ∪ {v∗i }. Any map φi : Vi→ Xi can
be given by two maps φ′i : V ′i → Xi and φ∗i : {v∗i } → Xi by defining φi(v) to be φ′i(v) when v ∈ V ′i
and otherwise equal to φ∗i (v). It can then be seen that

E
φi : Vi→Xi

(some expression) = E
φ′i : V′i→Xi

[ E
φ∗i : {v∗i }→Xi

(some expression)].

After this we use the triangle inequality. Using the pigeonhole principle we see that there exists
specific choices of maps φi : V ′i → Xi such that

| E
φ∗i : {v∗i }→Xi

T(φ∗1(v
∗
1), . . . ,φ∗t (v

∗
t ))T(φ

∗
1(v
∗
1), . . . ,φt(v

(1)
t )) · · ·T(φ1(v

(t)
1 ), . . . ,φ∗t (v

∗
t ))| > η2t

.

The expectation over t-tuples of maps φ∗i : {v∗i } → Xi is the same as the expectation over t-tuples
x∗i ∈ Xi and by defining

ai(x∗i ) := T(φ1(v
(i)
1 ), . . . , x∗i , . . . ,φt(v

(i)
t ))

we see that

| E
x∗1 ,...,x∗k

T(x∗1 , . . . , x∗k )
k

∏
i=1

ai(x∗i )| > η2t
,

in other words, the classical bias is at least η2t
.

5 Linear forms game

Before we will go in to the details of the proof of Theorem 1.5, we briefly discuss some concepts
from higher order Fourier analysis. The reference for this subsection is [Tao12].
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5.1 Preliminaries

Let G be a finite abelian group and f : G→ C a complex-valued function on G. First we define the
multiplicative derivative ∆h for any h ∈ G for such functions

∆h f (x) := f (x + h) f (x).

We define for any s ≥ 1 the Gowers norm ‖ · ‖Us(G)

‖ f ‖Us(G) := ( E
h1,...,hs,x∈G

∆h1 · · ·∆hs f (x))1/2s
. (8)

For s = 1 we get the absolute value of the mean of the function

‖ f ‖U1(G) := ( E
h,x∈G

∆h f (x))1/2 = | E
x∈G

f (x)|,

so technically it is not a norm, but for s > 1 it is indeed a norm. By the recursion

‖ f ‖2s+1

Us+1(G) = E
h∈G
‖∆h f ‖2s

Us(G)

one sees that the expectation in Equation 8 is a non-negative real.
Now let ψ0, . . . ,ψt : Gd → G be affine linear forms, i.e. maps of the form ψi(g1, . . . , gm) = ci +

∑m
j=1 cijgj wher ci ∈ G and cij ∈Z.

Definition 5.1. Let {ψ0, . . . ,ψt} be a system of affine linear forms. We say that the system has Cauchy-
Schwarz complexity at most s if for any 0 ≤ i ≤ t one can partition {ψ0, . . . ,ψt} \ {ψi} into s + 1 classes
(empty classes are allowed) such that ψi does not lie in the affine linear span (over Q) of the forms in any of
these classes. The Cauchy-Schwarz complexity of the system is defined to be the least such s or ∞ if no such
s exists.

If ψ : Gd→ G is an affine linear form, we denote by ψ̇ : Qd→Q the map induced by its integer
coefficients. The characteristic of G is defined to be least order of all non-identity elements. Here
is an equivalent formulation of Cauchy-Schwarz complexity in terms of change of variables.

Proposition 5.2. Let {ψ0, . . . ,ψt} be a system of affine linear forms Gd → G. Suppose that the charac-
teristic of G is sufficiently large depending on the coefficients of ψ0, . . . ,ψt. Then the system has Cauchy-
Schwarz complexity at most s if and only if for every 0 ≤ i ≤ t one can find a linear change of vari-
ables ~x = Li(y1, . . . ,ys+1,z1, . . . ,zd) on Qd such that the form ψ̇i(Li(y1, . . . ,ys+1,z1, . . . ,zd)) has non-zero
y1, . . . ,ys+1 coefficients, but all other forms ψ̇j(Li(y1, . . . ,ys+1,z1, . . . ,zd)) with j , i have at least one van-
ishing y1, . . . ,ys+1 coefficient.

We need also the notion of non-classical polynomials, as this is important in the inverse Gowers
theorem.

Definition 5.3. Let V be a finite dimensional vector space over a finite field of characteristic p, G an
abelian group and let P : V → G be a map. We denote by dh the additive derivative, i.e. dhP(x) :=
P(x + h)− P(x). We say that P is a non-classical polynomial of degree ≤ s if one has

dh1 . . . dhs+1 P(x) = 0,

for all h1, . . . , hs+1 ∈ V. We adopt the convention that the zero polynomial has degree −∞. We denote the
set of non-classical polynomial of degree ≤ s by Poly≤s(V→ G).
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The abelian group G will usually be T := R/Z. In this case we have the following proposition,
see [TZ12].

Proposition 5.4. Let P ∈ Poly≤s(V → T). Then there exists α ∈ T such that P takes values in the coset

α + 1

p
b s−1

p−1 c+1
Z/Z of the (pb

s−1
p−1 c+1)th roots of unity, where p is the characteristic of the ground field of V.

A consequence of the above proposition is that low degree polynomials, in comparison with
the characteristic p, are polynomials in the classical sense (up to constants), i.e. P̃ : V → Fp. We
will now recall Gowers inverse theorem for vector spaces over finite fields.

Theorem 5.5. (Gowers inverse) Let V := Fn
p be a finite dimensional vector space over Fp. Let f : V→ C

be a function bounded in magnitude by 1 and also let ε > 0. If ‖ f ‖Us+1 ≥ ε, then there exists a non-classical
polynomial P : V→ T of degree at most s and a constant δ(ε, p, s) > 0 such that

| E
x∈V

f (x)e(P(x))| ≥ δ(ε, p, s).

Here e : T→ C : θ 7→ e2πiθ .

5.2 Results

We will now continue with line games. Line games, as discussed in the introduction, fall inside a
larger class of games which we will describe first. For this, let Γ be a finite abelian group, let m ≥ 1
an integer and we also have t + 1 affine linear forms ψ0, . . . ,ψt : Γm→ Γ, i.e.

ψi(g1, . . . , gm) = ci +
m

∑
j=1

cijgj

where (g1, . . . , gm) ∈ Γm, ci ∈ Γ and cij ∈Z.

Definition 5.6. A t-player linear forms game is given by the above data together with a game map ρ : Γ→
{0,1} as follows. The referee samples a uniform random point g from Γm and sends ψi(g) to player i
(players are numbered from 1 to t). The winning criterion is given by ρ(ψ0(g)).

Let G be such a game. The classical bias is given by

β(G) = max
ai : Γ→{±1}

| E
g∈Γm

(−1)ρ(ψ0(g))
t

∏
i=1

ai(ψi(g))|.

The quantum bias is

β∗(G) = max
N≥1,Ai : Γ→Obs±1(CN)

‖ E
g∈Γm

(−1)ρ(ψ0(g))
t

∏
i=1

Ai(ψi(g))‖op.

Here Obs±1(CN) is the set of ±1-valued observables on CN .

Remark. It seems ad hoc that we consider such games, but these types of expressions are well studied in
the context of counting linear patterns in finite abelian groups. We refer to [Tao12].
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The main technical theorem of this section is the following, from which we will deduce all
other results.

Theorem 5.7. Let G be a game as above. If the Cauchy-Schwarz complexity of {ψ0, . . . ,ψt} is at most s,
we then have the inequality

β∗(G) ≤ ‖(−1)ρ‖Us+1(Γ). (9)

To prove this theorem, we need the following lemma.

Lemma 5.8 (Second Cauchy-Schwarz-Gowers inequality for operators). Let f : Γ→ C be a function,
Ai : Γm → End(CN) for i ∈ [m] such that ‖Ai(g)‖op ≤ 1 for any g ∈ Γm, Ai is independent of the i-th
coordinate of g and [Ai(g), Aj(h)] = 0, [Ai(g)∗, Aj(h)] = 0 for all i , j and g, h ∈ Γm. Then we have

‖ E
(g1,...,gm)∈Γm

f (a1g1 + · · ·+ amgm)
m

∏
i=1

Ai(g1, . . . , gm)‖op ≤ ‖ f ‖Um(Γ),

where ai are non-zero integers such that the characteristic of Γ exceeds all of them.

Proof. We will prove this by induction. For m = 1 we have

‖ E
g∈Γ

f (ag)A(g)‖op ≤ | E
g∈Γ

f (ag)| = | E
g∈Γ

f (g)| = ‖ f ‖U1(Γ).

Here we used that A is independent of g. Assume we have proven the statement up to some
integer m ≥ 1. Then

η := ‖ E
(g1,...,gm+1)∈Γm+1

f (a1g1 + · · ·+ am+1gm+1)
m+1

∏
i=1

Ai(g1, . . . , gm+1)‖op

= ‖ E
(g2,...,gm+1)∈Γm

A1(g2, . . . , gm+1) E
g1∈Γ

f (a1g1 + · · ·+ am+1gm+1)
m+1

∏
i=2

Ai(g1, . . . , gm+1)‖op,

we have done nothing, just rearranged and used the fact that A1 is independent of g1. Now write
F(g2, . . . , gm+1) := Eg1∈Γ f (a1g1 + · · ·+ am+1gm+1)∏m+1

i=2 Ai(g1, . . . , gm+1) so that

η = ‖ E
(g2,...,gm+1)∈Γm

A1(g2, . . . , gm+1)F(g2, . . . , gm+1)‖op

≤ ‖ E
(g2,...,gm+1)∈Γm

F(g2, . . . , gm+1)F(g2, . . . , gm+1)
∗‖1/2

op .
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Here we used Proposition 4.1 and we used the fact that ‖A1(g)‖op ≤ 1 for any g ∈ Γm+1. Then

η ≤ ‖ E
g1,g′1,g2,...,gm+1

f (a1g1 + · · ·+ am+1gm+1) f (a1g′1 + · · ·+ am+1gm+1)
∗

×
m+1

∏
i=2

Ai(g1, . . . , gm+1)Ai(g′1, . . . , gm+1)
∗‖1/2

op

≤ ( E
g1,h1
‖ E
(g2,...,gm+1)∈Γm

∆h1 f (a1g1 + · · ·+ am+1gm+1)

×
m+1

∏
i=2

Ai(g1 + h1, . . . , gm+1)Ai(g1, . . . , gm+1)
∗‖op)

1/2

≤ ( E
g1,h1

( E
h2,...,hm+1,z∈Γ

∆hm+1 . . . ∆h1 f (a1g1 + z))1/2m
)1/2

≤ ( E
g1,h1

( E
h2,...,hm+1,z∈Γ

∆hm+1 . . . ∆h1 f (a1g1 + z)))1/2m+1

= ( E
h1,h2,...,hm+1,z∈Γ

∆hm+1 . . . ∆h1 f (z))1/2m+1
= ‖ f ‖Um+1(Γ).

In the third line we used triangle inequality to get the expectation in g1, h1 outside the norm. In
the fifth line we used the induction hypothesis to upper bound the expression in the previous line
with the Gowers norm. We then use in the sixth line Jensens inequality.

Proposition 5.9 (Generalized von Neumann inequality). Let f : Γ→ C be a function, {ψ0, . . . ,ψt} a
system of affine linear forms of Cauchy-Schwarz complexity s, Ai : Γm → End(CN) for i ∈ [t] such that
‖Ai(g)‖op ≤ 1 for any g ∈ Γm and [Ai(g), Aj(h)] = 0, [Ai(g)∗, Aj(h)] = 0 for all i , j and g, h ∈ Γm.
Also assume the characteristic of Γ is sufficiently large depending on the coefficients of the affine linear
forms. Then we have the inequality

‖ E
g∈Γm

f (ψ0(g))
t

∏
i=1

Ai(ψi(g))‖op ≤ ‖ f ‖Us+1(Γ).

Proof. The system of affine linear forms has Cauchy-Schwarz complexity s so we can partition the
forms {ψ1, . . . ,ψt} into s + 1 classes A1, . . . ,As+1 such that ψ0 is not an affine linear combination
of any forms in any class Ai for any i (over Q). So one can find a linear change of variables using
Proposition 5.2

(g1, . . . , gm) 7→ (h1, . . . , hm) + y1v1 + · · ·+ ys+1vs+1

with the property that ψ0(yjvj) = ajyj where aj is a non-zero integer and vj ∈ Zm, but if ψi ∈ Aj,
then ψi(yjvj) = 0, this is where we need the large characteristic hypothesis. Now we define

Ãk(g1, . . . , gm) := ∏
j∈Ak

Aj(ψj(g1, . . . , gm)).

Note that Ãi is independent of its i-th coordinate and has operator norm smaller than 1. We then
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have

‖ E
g∈Γm

f (ψ0(g1, . . . , gm))
t

∏
i=1

Ai(ψi(g1, . . . , gm))‖op

= ‖ E
g∈Γm

f (ψ0(g1, . . . , gm))
s+1

∏
i=1

Ãi(g1, . . . , gm)‖op

= ‖ E
h∈Γm

E
y1,...,ys+1∈Γ

f (ψ0(h) + a1y1 + · · ·+ as+1ys+1)
s+1

∏
i=1

Ãi(h,y1, . . . ,ys+1)‖op

≤ E
h∈Γm
‖ f ‖Us+1(Γ) = ‖ f ‖Us+1(Γ).

In the third line we used the linear change of variables just described. Then we used the triangle
inequality together with Lemma 5.8 where we need the large characteristic hypothesis.

Remark. If f takes values in {±1} and Ai are ±1-valued observables, then the inequality says that the
quantum bias of such games is upperbounded by the Gowers norm of the game tensor f .

Proposition 5.9 is in full generality, i.e. for any abelian group the inequality holds. However,
we will now restrict ourselves to the case where Γ = Fn

p, where p is prime and n ≥ 1 as it will make
many things easier. We can use Gowers inverse theorem for vector spaces over finite fields which
we recalled in the preliminaries section. We will also assume that p is sufficiently large, so that the
set of non-classical polynomials coincide with the set of (classical) polynomials. Let us start giving
the proof of Theorem 1.5. A t-player line game is given by a map τ : Fn

p→ {0,1} which stands for
the predicate together with a system of linear forms ψ0,ψi : (Fn

p)
2→ Fn

p which are given by

ψ0(x,y) = y and ψi(x,y) = x + (i− 1)y for i = 1, . . . , t.

Note that the Cauchy-Schwarz complexity of this system is at most t− 1. For the bias of the game,
it is more convenient to look at f := (−1)τ. We also need the following lemma, provided kindly
to us by Shravas Rao.

Lemma 5.10. Let P : Fn
p → Fp be a (classical) polynomial of degree d− 1 and p ≥ d. Then there exists d

polynomials Pi : Fn
p→ Fp, i = 0, . . . ,d− 1, such that

P(y) =
d−1

∑
i=0

Pi(x + iy).

Proof. The polynomial P can be represented as

P(x1, . . . , xn) =
d−1

∑
i=0

Ti(x, . . . , x), x = (x1, . . . , xn),

where each Ti : (Fn
p)

i → Fp is an i-linear form. We will show that for each linear form Ti we can
find α0, . . . ,αd−1 such that

Ti(y, . . . ,y) =
d−1

∑
j=0

αjTi(x + jy, . . . , x + jy) (10)
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and this will be enough to construct P0, . . . , Pd−1. By linearity, we can rewrite the right hand side
as follows,

d−1

∑
j=0

∑
s∈{0,1}i

αjTi((1− s1)x + s1 jy, . . . , (1− si)x + si jy)

=
d−1

∑
j=0

∑
s∈{0,1}i

αj j|s|Ti((1− s1)x + s1y, . . . , (1− si)x + siy),

where |s| denotes the Hamming weight of s. Then 10 holds, if for 0≤ k < i

d−1

∑
j=0

αj jk = 0 and
d−1

∑
j=0

αj ji = 1.

As d ≤ p the d× d Vandermonde matrix associated with the sequence 1, j, . . . , ji is invertible, hence
there exist unique α0, . . . ,αd−1 satisfying the above equations which concludes the proof.

The following lemma will help us later in converting complex strategies into ±1-strategies.

Lemma 5.11. For any z ∈ C

z =
π

2
E
|w|=1

[sgn(zw) |z| w],

where w ∈ {z ∈ C : |z| = 1} is taken uniformly at random.

Proof. Write z = reiψ. Then

E
|w|=1

[sgn(zw)|z|w] =
r

2π

∫ 2π

0
sgn(e−i(φ−ψ))eiφdφ

=
r

2π

∫ 2π

0
sgn(e−iχ)eiχ+iψdχ

=
z

2π

∫ 2π

0
sgn(e−iχ)eiχdχ

=
2z
π

.

Proof of Theorem 1.5. By Proposition 5.9 and the hypothesis that the game has entangled value ε > 0
implies that ‖ f ‖Ut > ε. Then by Gowers inverse Theorem 5.5 and assumption that p > t there
exists a constant δ = δ(ε, p, t) > 0 and a (classical) polynomial of degree at most t− 1 such that

| E
x∈Fn

p

f (x)e(P(x))| > δ.

We now want to convert this presence of structure into a classical strategy. First by Lemma 5.10
we can find t polynomials Pi for i = 1, . . . , t such that

P(y) =
t

∑
i=1

Pi(x + (i− 1)y).
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This implies

| E
x,y∈Fn

p

f (ψ0(x,y))e(P(ψ0(x,y)))| = | E
x,y∈Fn

p

f (ψ0(x,y))
t

∏
i=1

e(Pi(ψi(x,y)))| > δ.

The polynomials are not classical strategies yet, we can turn it into ±1-strategy using Lemma 5.11
at a loss of a factor 2t/πt.

5.3 Parallel repetition

Let f : Γ → {1,−1} be a function, representing the predicate. We want to consider k-fold XOR
parallel repetition. The predicate for this is f k : Γk→ {1,−1} defined by

f k(g1, . . . , gk) :=
k

∏
i=1

f (gi).

Lemma 5.12. We have that

‖ f k‖Us+1(Γk) = ‖ f ‖k
Us+1(Γ).

Proof. This follows immediately from the definition of Gowers norm.

Let {ψ0, . . . ,ψt} be linear forms Γm → Γ which together with f define the game G. The linear
forms corresponding with k-fold XOR parallel repetition are denoted by {ψk

0, . . . ,ψk
t } which are

maps (Γm)k→ Γk and are given by

ψk
i (g1, . . . , gk) := (ψi(g1), . . . ,ψi(gk)), where gi ∈ Γm.

Note that if {ψ0, . . . ,ψt} has Cauchy-Schwarz complexity at most s, then the Cauchy-Schwarz com-
plexity of {ψk

0, . . . ,ψk
t } is also at most s. Denote by G⊕k the k-fold XOR parallel repetition, then we

have as an immediate consequence of Proposition 5.9 together with Lemma 5.12 the following
upper bound

β∗(G⊕k) ≤ ‖ f ‖k
Us+1(Γ).

If G is an XOR game, denote by Gk the k-fold parallel repetition. If S is a strategy (classical or
quantum) for a game G, denote by ω(G,S) the winning probability using strategy S. Also denote
by ε(G,S) := 2ω(G,S) − 1 the bias of this strategy. To prove Lemma 1.6, we use the following
lemma, which is a straightforward generalization of the 2-player version in [CSUU08] (lemma 8
in that paper) to any number of players.

Lemma 5.13. Let G be an XOR game assume. Let S be any strategy for Gk. For each M ⊂ [k], we denote
by SM the following strategy for the XOR parallel repetition⊕i∈MG : (1) Run strategy S, yielding answers
a1

i , . . . , ak
i for player i = 1, . . . , t. (2) Player i outputs ∑j∈M aj

i mod 2. We then have

ω(Gk,S) =
1
2k ∑

M⊂[k]
ε(⊕i∈MG,SM).
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Proof of Lemma 1.6. Let S be the quantum strategy that achieves the maximum winning probability
of the game Gk. We then use Lemma 5.13,

ω∗(Gk) = ω(Gk,S) =
1
2k ∑

M⊂[k]
ε(⊕i∈MG,SM)

≤ 1
2k ∑

M⊂[k]
β∗(G⊕|M|) =

1
2k

k

∑
l=0

β∗(G⊕l)

(
k
l

)

≤ 1
2k

k

∑
l=0

(
k
l

)
‖ f ‖Us+1(Γ) =

(
1 + ‖ f ‖Us+1(Γ)

2

)k

.

6 Near-perfect strategies for 2-player unique games

In this section we prove Theorem 1.7. Consider a unique game where πxy is the matching between
the players’ answers on inputs x,y, so that when the first player answers i they win if the second
player answers j = πxy(i). Let us start by writing down an expression for the entangled winning

probability when the players use a shared state |ψ〉 and projectors Π(x)
i ,Π(y)

j for inputs x,y and
outputs i, j. For finite-dimensional systems we can always assume that a strategy is of such a
form. The winning probability is given by

E
x,y

k

∑
i=1

Pr(answer i,πxy(i) | input x,y) = E
x,y

k

∑
i=1
〈ψ|Π(x)

i ⊗Π(y)
πxy(i)
|ψ〉.

Now define vectors |u(x)
i 〉 = (Π(x)

i ⊗ Id)|ψ〉 and |v(y)j 〉 = (Id ⊗ Π(y)
j )|ψ〉, then we can write the

winning probability as

E
x,y

k

∑
i=1
〈u(x)

i |v
(y)
πxy(i)
〉 ≥ 1− ε (11)

where we use the assumption that there is a strategy with entangled value at least 1 − ε. The
vectors have the following properties:

∀x,y,∀i , j 〈u(x)
i |u

(x)
j 〉 = 〈v

(y)
i |v

(y)
j 〉 = 0 (orthogonal projectors)

∀x,y
k

∑
i=1
‖u(x)

i ‖
2 =

k

∑
i=1
‖v(y)i ‖

2 = 1 (projectors sum to identity)

∀x,y,∀i, j 〈u(x)
i |v

(y)
j 〉 ≥ 0 (projectors are Hermitian)

By using ‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2〈u|v〉 (for real-valued inner products) we can write (11) as

1
2

E
x,y

k

∑
i=1
‖u(x)

i − v(y)
πxy(i)
‖2 ≤ ε. (12)
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It is possible to maximize expression (11) (or equivalently minimize (12)) over vectors with the
given properties. This optimization problem is an SDP and can be solved in polynomial time but
will generally not yield a quantum strategy as not all such vectors can be attained by quantum
strategies. Our goal will be to extract from the vectors a classical strategy, something known as
rounding, such that its winning probability is high.

As stated in the introduction, one can get some intuition by considering the ε = 0 case. There (12)
yields |u(x)

i 〉 = |v
(y)
πxy(i)
〉 for each x,y and i. Using shared randomness the players sample a random

vector |g〉 and compute the overlaps ξ
(x)
i = 〈g|u(x)

i 〉 and ξ
(y)
i = 〈g|v(y)i 〉 respectively. The players

will have the same values ξ
(x)
i = ξ

(y)
πxy(i)

so both players can output the answer i for which their
overlap has the largest value.

For ε > 0 the sets of vectors will not be exactly equal and therefore the values ξ
(x)
i ,ξ(y)

πxy(i)
will

be close but not exactly equal. The discrepancy in these values will be bigger for vectors |u(x)
i 〉

with a small norm. In Section 2 of [CMM06] a rounding algorithm is provided that solves these
issues. Note that we write u(x)

i ,v(y)j for the vectors belonging to questions x,y and answers i, j
whereas in [CMM06] these vectors are instead denoted by ui,vj where u,v are the questions and
i, j the answers. The only difference between their SDP and the above one is that they have an
additional constraint 0≤ 〈u(x)

i |v
(y)
πxy(i)
〉 ≤ |u(x)

i |2 (constraint (5) in their paper). This constraint does
not necessarily hold in the quantum setting so we will drop it and adapt their proofs to work
without this constraint.

The following is Rounding Algorithm 2 from Section 4 of [CMM06], adapted to our notation.
Rounding algorithm
Input: A solution of the SDP with objective value 1− ε.
Output: A classical strategy: a(x) and b(y)
Define [x]r as the function that rounds x up or down depending on whether the fractional part of
x is greater or less than r. If r is uniform random on [0,1] then the expected value of [x]r is x.

1. Define |ũ(x)
i 〉 = |u

(x)
i 〉/‖u

(x)
i ‖ if ‖u(x)

i ‖ , 0, otherwise |ũ(x)
i 〉 = 0.

2. Pick r ∈ [0,1] uniformly at random.

3. Pick random independent Gaussian vectors |g1〉, ..., |g2k〉 with independent components dis-
tributed as N (0,1).

4. For each question x:

(a) Set s(x)
i =

[
2k · ‖u(x)

i ‖2
]

r
.

(b) For each i project s(x)
i vectors |g1〉, ..., |gs(x)

i
〉 to |ũ(x)

i 〉:

ξ
(x)
i,s = 〈gs|ũ(x)

i 〉, s = 1,2, ..., s(x)
i

(c) Select the ξ
(x)
i,s with the largest absolute value. Assign a(x) = i.

5. Repeat the previous step for each question y but with the vectors |v(y)j 〉 to obtain b(y).
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The intuition behind the algorithm is as follows. Similar to the ε = 0 case, the values ξ
(x)
i,s and

ξ
(y)
πxy(i),s

will be close. Vectors |u(x)
i 〉 and |u(x)

j 〉 for different answers i , j are orthogonal and their

corresponding values ξ
(x)
i,s and ξ

(x)
j,s are therefore independent. For vectors with small norm, the

values ξ
(x)
i,s and the matching ξ

(x)
πxy(i),s

will be less correlated. Therefore we sample more Gaussian
vectors for answers corresponding to a high norm (step 4a).

To prove Theorem 1.7 we have to show that the result of the above rounding algorithm is
a strategy with winning probability 1 − O(

√
ε logk). This is exactly the result of Theorem 4.5

of [CMM06] with the exception of the additional constraint mentioned before. This modification
requires a different proof of Lemma 4.2 and 4.3 in [CMM06] but leaves the remaining part of
their proof unchanged. We therefore only prove these Lemma’s and refer the reader to Section 4
of [CMM06] for the remainder of the proof.

We adopt their definitions

εxy =
1
2

k

∑
i=1
‖u(x)

i − v(y)
πxy(i)
‖2,

εi
xy =

1
2
‖ũ(x)

i − ṽ(y)
πxy(i)
‖2,

where ũ(x)
i and ṽ(y)i were defined in step 1 of the rounding algorithm. Note that Ex,y εxy ≤ ε.

Lemma 6.1 (Originally Lemma 4.2). The probability that the rounding algorithm gives a correct assign-
ment to the questions x,y is 1−O(

√
εxy logk).

Proof. If εxy ≥ 1/128 then the statement follows trivially since this can be hidden in the big-O.
Therefore assume εxy ≤ 1/128. Define

M =
{
(i, s) : i ∈ [k] , s ≤min(s(x)

i , s(y)
πxy(i)

)
}

,

Mc =
{
(i, s) : i ∈ [k] , min(s(x)

i , s(y)
πxy(i)

) < s ≤max(s(x)
i , s(y)

πxy(i)
)
}

.

The set M contains the pairs (i, s) for which both ξ
(x)
i,s and ξ

(y)
πxy(i),s

are defined and the set Mc

contains the pairs for which only one of these is defined.
We need the following two lemmas to continue.

Lemma 6.2. When εxy ≤ 1/128 then Er[|Mc|] ≤ 4k
√

2εxy and |M| ≥ k/2.

This was originally Lemma 4.3 and it stated Er[|Mc|] ≤ 4kεxy.

Proof. The expected value of |s(x)
i − s(y)

πxy(i)
| is given by

E
r

∣∣∣[2k · ‖u(x)
i ‖

2
]

r
−
[
2k · ‖v(y)

πxy(i)
‖2
]

r

∣∣∣ = 2k
∣∣∣‖u(x)

i ‖
2 − ‖v(y)

πxy(i)
‖2
∣∣∣ .

By the triangle inequality∣∣∣‖u(x)
i ‖

2 − ‖v(y)
πxy(i)
‖2
∣∣∣ = ∣∣∣‖u(x)

i ‖ − ‖v
(y)
πxy(i)
‖
∣∣∣(‖u(x)

i ‖+ ‖v
(y)
πxy(i)
‖
)

≤ ‖u(x)
i − v(y)

πxy(i)
‖
(
‖u(x)

i ‖+ ‖v
(y)
πxy(i)
‖
)

,
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and by using Cauchy-Schwarz twice we have

k

∑
i=1
‖u(x)

i − v(y)
πxy(i)
‖
(
‖u(x)

i ‖+ ‖v
(y)
πxy(i)
‖
)
≤

√√√√ k

∑
i=1
‖u(x)

i − v(y)
πxy(i)
‖2

√√√√ k

∑
i=1

(
‖u(x)

i ‖+ ‖v
(y)
πxy(i)
‖
)2

=
√

2εxy

√√√√ k

∑
i=1

(
‖u(x)

i ‖2 + ‖v(y)
πxy(i)
‖2 + 2‖u(x)

i ‖‖v
(y)
πxy(i)
‖
)

≤
√

2εxy
√

1 + 1 + 2 = 2
√

2εxy.

The proof follows from |Mc| = ∑k
i=1 |s

(x)
i − s(y)

πxy(i)
|. For the second part of the lemma, observe that

min(s(x)
i , s(y)

πxy(i)
) ≥ 2k min(‖u(x)

i ‖
2,‖v(y)

πxy(i)
‖2)− 1

≥ 2k
(
‖u(x)

i ‖
2 −

∣∣∣‖u(x)
i ‖

2 − ‖v(y)
πxy(i)
‖2
∣∣∣)− 1.

Therefore we have

|M| =
k

∑
i=1

min(s(x)
i , s(y)

πxy(i)
) ≥

k

∑
i=1

(
2k ‖u(x)

i ‖
2 − 2k

∣∣∣‖u(x)
i ‖

2 − ‖v(y)
πxy(i)
‖2
∣∣∣− 1

)
≥ 2k− 4k

√
2εxy − k ≥ k/2,

where we used εxy ≤ 1/128.

Lemma 6.3. The following inequality holds

E
r

[
1
|M| ∑

(i,s)∈M
εi

xy

]
≤ 4εxy

Proof. This is Lemma 4.4 in [CMM06].

We now continue the proof of Lemma 6.1. First consider a fixed value of r (picked in step 2 of
the rounding algorithm. Consider the sequences ξ

(x)
i,s and ξ

(y)
πxy(i),s

where the indices (i, s) run over
all (i, s) ∈ M. We apply Theorem 4.1 of [CMM06] to these sequences and get that the probability
that the largest absolute value in the first sequence has the same index as the largest absolute value
in the second sequence is

1−O

√log |M| · 1
|M| ∑

(i,s)∈M
εi

xy

 .

By Jensen’s inequality we have

E
r

1−O

√log |M| · 1
|M| ∑

(i,s)∈M
εi

xy

 ≥ 1−O

√√√√E
r

[
log |M| · 1

|M| ∑
(i,s)∈M

εi
xy

]
≥ 1−O

(√
εxy logk

)
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where the second inequality follows from |M| ≤ 3k and Lemma 6.3. In the rounding algorithm, the
largest ξ

(x)
i,s is picked not only among the (i, s) ∈ M but also (i, s) ∈ Mc. However, the probability

that the index for the largest value is in Mc is at most

E
r

[
|Mc|
|M|

]
≤

4k
√

2εxy

k/2
= 8
√

2εxy,

by Lemma 6.2. Therefore by the union bound, the probability that the answers match is at least

1−O(
√

εxy logk)− 8
√

2εxy = 1−O(
√

εxy logk),

which finishes the proof.

With these modified lemmas, Theorem 4.5 of [CMM06] shows that the rounding algorithm
gives a classical strategy that wins the game with probability 1−O(

√
ε logk).
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