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Jop Briët1⋆, Fernando Mário de Oliveira Filho2⋆⋆ and Frank Vallentin3⋆ ⋆ ⋆

1 Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 SJ Amsterdam,
The Netherlands. j.briet@cwi.nl,

2 Department of Econometrics ad OR, Tilburg University, 5000 LE Tilburg, The
Netherlands. f.m.de.oliveira.filho@cwi.nl

3 Delft Institute of Applied Mathematics, Technical University of Delft, P.O. Box
5031, 2600 GA Delft, The Netherlands. f.vallentin@tudelft.nl

Abstract. Given a positive integer n and a positive semidefinite matrix
A = (Aij) ∈ R

m×m, the positive semidefinite Grothendieck problem with
rank-n-constraint (SDPn) is

maximize

m
∑

i=1

m
∑

j=1

Aij xi · xj , where x1, . . . , xm ∈ Sn−1.

In this paper we design a randomized polynomial-time approximation
algorithm for SDPn achieving an approximation ratio of

γ(n) =
2

n

(

Γ ((n+ 1)/2)

Γ (n/2)

)2

= 1−Θ(1/n).

We show that under the assumption of the unique games conjecture the
achieved approximation ratio is optimal: There is no polynomial-time
algorithm which approximates SDPn with a ratio greater than γ(n).
We improve the approximation ratio of the best known polynomial-time
algorithm for SDP1 from 2/π to 2/(πγ(m)) = 2/π + Θ(1/m), and we
show a tighter approximation ratio for SDPn when A is the Laplacian
matrix of a graph with nonnegative edge weights.
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1 Introduction

Given a positive integer n and a positive semidefinite matrix A = (Aij) ∈ R
m×m,

the positive semidefinite Grothendieck problem with rank-n-constraint is defined
as

SDPn(A) = max

{ m
∑

i=1

m
∑

j=1

Aij xi · xj : x1, . . . , xm ∈ Sn−1

}

,

where Sn−1 = {x ∈ R
n : x · x = 1} is the unit sphere. Note that the inner

product matrix of the vectors x1, . . . , xm has rank n. This problem was intro-
duced by Briët, Buhrman, and Toner [5] in the context of quantum nonlocality
where they applied it to nonlocal XOR games. The case n = 1 is the classical
positive semidefinite Grothendieck problem where x1, . . . , xm ∈ {−1,+1}. It was
introduced by Grothendieck [7] in the study of norms of tensor products of Ba-
nach spaces. It is an NP-hard problem: If A is the Laplacian matrix of a graph
then SDP1(A) coincides with the value of a maximum cut of the graph. The
maximum cut problem (MAX CUT) is one of Karp’s 21 NP-complete problems.
Over the last years, there has been a lot of work on algorithmic applications,
interpretations, and generalizations of the Grothendieck problem and the com-
panion Grothendieck inequalities. For instance, Nesterov [18] showed that it
has applications to finding and analyzing semidefinite relaxations of nonconvex
quadratic optimization problems. Ben-Tal and Nemirovski [4] showed that it
has applications to quadratic Lyapunov stability synthesis in system and control
theory. Alon and Naor [3] showed that it has applications to constructing Sze-
merédi partitions of graphs and to estimating the cut norm of matrices. Linial
and Shraibman [15] showed that it has applications to finding lower bounds in
communication complexity. Khot and Naor [12], [13] showed that it has appli-
cations to kernel clustering. For other applications, see also Alon, Makarychev,
Makarychev, and Naor [2], and Raghavendra and Steurer [20].

One can reformulate the positive semidefinite Grothendieck problem with
rank-n-constraint as a semidefinite program with an additional rank constraint:

maximize

m
∑

i=1

m
∑

j=1

AijXij

subject to X = (Xij) ∈ R
m×m is positive semidefinite,

Xii = 1, for i = 1, . . . ,m,

X has rank at most n.

When n is a constant that does not depend on the matrix size m there is no
polynomial-time algorithm known which solves SDPn. It is also not known if
the problem SDPn is NP-hard when n ≥ 2. On the other hand the semidefinite
relaxation of SDPn(A) defined by

SDP∞(A) = max

{ m
∑

i=1

m
∑

j=1

Aij ui · uj : u1, . . . , um ∈ S∞

}



can be computed in polynomial time to any desired precision by using, e.g., the
ellipsoid method. Here S∞ denotes the unit sphere of the Hilbert space l2(R)
of square summable sequences, which contains R

n as the subspace of the first
n components. Clearly, it would suffice to use unit vectors in R

m for solving
SDP∞(A) when A ∈ R

m×m, but using S∞ will simplify many formulations
in this paper. Rietz [21] (in the context of the Grothendieck inequality) and
Nesterov [18] (in the context of approximation algorithms for NP-hard problems)
showed that SDP1 and SDP∞ are always within a factor of at most 2/π from
each other. That is, for all positive semidefinite matrices A ∈ R

m×m we have

1 ≥
SDP1(A)

SDP∞(A)
≥

2

π
. (1)

By exhibiting an explicit series of positive semidefinite matrices, Grothen-
dieck [7] (see also Alon and Naor [3, Section 5.2]) showed that one cannot im-
prove the constant 2/π to 2/π+ ε for any positive ε which is independent of m.
Nesterov [18] gave a randomized polynomial-time approximation algorithm for
SDP1 with approximation ratio 2/π which can be derandomized using the tech-
niques presented by Mahajan and Ramesh [16]. This algorithm is optimal in the
following sense: Khot and Naor [12] showed that under the assumption of the
unique games conjecture (UGC) there is no polynomial-time algorithm which
approximates SDP1 to within a ratio of 2/π + ε for any positive ε independent
of m. The unique games conjecture was introduced by Khot [10] and by now
many tight UGC hardness results are known, see e.g. Khot, Kindler, Mossel,
and O’Donnell [11] for the maximum cut problem, Khot and Regev [14] for the
minimum vertex cover problem, and Raghavendra [19] for general constrained
satisfaction problems. The aim of this paper is to provide a corresponding anal-
ysis for SDPn.

Our results

In Section 2 we start by reviewing our methodological contributions: Our main
contribution is the analysis of a rounding scheme which can deal with rank-n-
constraints in semidefinite programs. For this we use the Wishart distribution
from multivariate statistics (see e.g. Muirhead [17]). We believe this analysis is of
independent interest and will turn out to be useful in different contexts, e.g. for
approximating low dimensional geometric embeddings. Our second contribution
is that we improve the constant in inequality (1) slightly by considering functions
of positive type for the unit sphere Sm−1 and applying a characterization of
Schoenberg [22]. This slight improvement is the key for our UGC hardness result
of approximating SDPn given in Theorem 3. We analyze our rounding scheme
in Section 3.

Theorem 1. For all positive semidefinite matrices A ∈ R
m×m we have

1 ≥
SDPn(A)

SDP∞(A)
≥ γ(n) =

2

n

(

Γ ((n+ 1)/2)

Γ (n/2)

)2

= 1−Θ(1/n),



and there is a randomized polynomial-time approximation algorithm for SDPn

achieving this ratio.

The first three values of γ(n) are:

γ(1) = 2/π = 0.63661 . . .

γ(2) = π/4 = 0.78539 . . .

γ(3) = 8/(3π) = 0.84882 . . .

In Section 4 we show that one can improve inequality (1) slightly:

Theorem 2. For all positive semidefinite matrices A ∈ R
m×m we have

1 ≥
SDP1(A)

SDP∞(A)
≥

2

πγ(m)
=

m

π

(

Γ (m/2)

Γ ((m+ 1)/2)

)2

=
2

π
+Θ

(

1

m

)

,

and there is a polynomial-time approximation algorithm for SDP1 achieving this
ratio.

With this, the current complexity status of the problem SDP1 is similar to the
one of the minimum vertex cover problem. Karakostas [9] showed that one can
approximate the minimum vertex cover problem for a graph having vertex set
V with an approximation ratio of 2−Θ(1/

√

log |V |) in polynomial time. On the
other hand, Khot and Regev [14] showed, assuming the unique games conjecture,
that there is no polynomial-time algorithm which approximates the minimum
vertex cover problem with an approximation factor of 2 − ε for any positive ε
which is independent of |V |. In Section 5 we show that the approximation ratio
γ(n) given in Theorem 1 is optimal for SDPn under the assumption of the unique
games conjecture. By using the arguments of the proof of Theorem 2 and by the
UGC hardness of approximating SDP1 due to Khot and Naor [12] we get the
following tight UGC hardness result for approximating SDPn.

Theorem 3. Under the assumption of the unique games conjecture there is no
polynomial-time algorithm which approximates SDPn with an approximation ra-
tio greater than γ(n) + ε for any positive ε which is independent of the matrix
size m.

In Section 6 we show that a better approximation ratio can be achieved when
the matrix A is the Laplacian matrix of a graph with nonnegative edge weights.

2 Rounding schemes and functions of positive type

In this section we discuss our rounding scheme which rounds an optimal solution
of SDP∞ to a feasible solution of SDPn. In the case n = 1 our rounding scheme
is equivalent to the classical scheme of Goemans and Williamson [6]. To analyze
the rounding scheme we use functions of positive type for unit spheres. The
randomized polynomial-time approximation algorithm which we use in the proofs
of the theorems is the following three-step process. The last two steps are our
rounding scheme.



1. Solve SDP∞(A), obtaining vectors u1, . . . , um ∈ Sm−1.
2. Choose X = (Xij) ∈ R

n×m so that every matrix entry Xij is distributed
independently according to the standard normal distribution with mean 0
and variance 1, that is, Xij ∼ N(0, 1).

3. Set xi = Xui/‖Xui‖ ∈ Sn−1 with i = 1, . . . ,m.

The quality of the feasible solution x1, . . . , xm for SDPn is measured by the
expectation

E

[ m
∑

i=1

m
∑

j=1

Aij xi · xj

]

=

m
∑

i=1

m
∑

j=1

AijE

[

Xui

‖Xui‖
·

Xuj

‖Xuj‖

]

,

which we analyze in more detail.
For vectors u, v ∈ S∞ we define

En(u, v) = E

[

Xu

‖Xu‖
·

Xv

‖Xv‖

]

, (2)

where X = (Xij) is a matrix with n rows and infinitely many columns whose
entries are distributed independently according to the the standard normal dis-
tribution. Of course, if u, v ∈ Sm−1, then it suffices to work with finite matrices
X ∈ R

n×m.
The first important property of the expectation En is that it is invari-

ant under O(∞), i.e. for every m it is invariant under the orthogonal group
O(m) = {T ∈ R

m×m : TTT = Im}, where Im denotes the identity matrix. More
specifically, for every m and every pair of vectors u, v ∈ Sm−1 we have

En(Tu, T v) = En(u, v) for all T ∈ O(m).

If n = 1, then

E1(u, v) = E[sign(ξ · u) sign(ξ · v)],

where ξ ∈ R
m is chosen at random from the m-dimensional standard normal

distribution. By Grothendieck’s identity (see e.g. [8, Lemma 10.2])

E[sign(ξ · u) sign(ξ · v)] =
2

π
arcsinu · v.

Hence, the expectation E1 only depends on the inner product t = u · v. For
general n, the O(∞) invariance implies that this is true also for En.

The second important property of the expectation En (now interpreted as
a function of the inner product) is that it is a function of positive type for
S∞, i.e. it is of positive type for any unit sphere Sm−1, independent of the
dimension m. In general, a continuous function f : [−1, 1] → R is called a
function of positive type for Sm−1 if the matrix (f(vi · vj))1≤i,j≤N is positive
semidefinite for every positive integer N and every choice of vectors v1, . . . , vN ∈
Sm−1. The expectation En is of positive type for S∞ because one can write it



as a sum of squares. Schoenberg [22] characterized the continuous functions
f : [−1, 1] → R which are of positive type for S∞: They are of the form

f(t) =

∞
∑

i=0

fit
i,

with nonnegative fi and
∑∞

i=0 fi < ∞. In the case n = 1 we have the series
expansion

E1(t) =
2

π
arcsin t =

2

π

∞
∑

i=0

(2i)!

22i(i!)2(2i+ 1)
t2i+1.

In Section 3 we treat the cases n ≥ 2.
Suppose we develop the expectation En(t) into the series En(t) =

∑∞
i=0 fit

i.
Then because of Schoenberg’s characterization the function t 7→ En(t)−f1t is of
positive type for S∞ as well. This together with the inequality

∑

i,j XijYij ≥ 0,

which holds for all positive semidefinite matrices X,Y ∈ R
m×m, implies

SDPn(A) ≥
m
∑

i=1

m
∑

j=1

AijEn(ui, uj) ≥ f1

m
∑

i=1

m
∑

j=1

Aij ui · uj = f1 SDP∞(A). (3)

When n = 1 the series expansion of E1 gives f1 = 2/π and the above argument
is essentially the one of Nesterov [18]. To improve on this (and in this way to
improve the constant 2/π in inequality (1)) one can refine the analysis by working
with functions of positive type which depend on the dimension m. In Section 4
we show that t 7→ 2/π(arcsin t− t/γ(m)) is a function of positive type for Sm−1.
For the cases n ≥ 2 we show in Section 3 that f1 = γ(n).

3 Analysis of the approximation algorithm

In this section we show that the expectation En defined in (2) is a function of
positive type for S∞ and that in the series expansion En(t) =

∑∞
i=0 fit

i one
has f1 = γ(n). These two facts combined with the discussion in Section 2 imply
Theorem 1. Let u, v ∈ Sm−1 be unit vectors and let X = (Xij) ∈ R

n×m be
a random matrix whose entries are independently sampled from the standard
normal distribution. Because of the invariance under the orthogonal group, for
computing En(u, v) we may assume that u and v are of the form

u = (cos θ, sin θ, 0, . . . , 0)T

v = (cos θ,− sin θ, 0, . . . , 0)T.

Then by the double-angle formula cos 2θ = t with t = u · v.
We have

Xu =







X11 X12

...
...

Xn1 Xn2







(

cos θ
sin θ

)

, Xv =







X11 X12

...
...

Xn1 Xn2







(

cos θ
− sin θ

)

.



Hence,
Xu

‖Xu‖
·

Xv

‖Xv‖
=

xTY y
√

(xTY x)(yTY y)
,

where x = (cos θ, sin θ)T, y = (cos θ,− sin θ)T, and Y ∈ R
2×2 is the Gram matrix

of the two vectors (X11, . . . , Xn1)
T, (X12, . . . , Xn2)

T ∈ R
n. By definition, Y is

distributed according to the Wishart distribution from multivariate statistics.
This distribution is defined as follows (see e.g. Muirhead [17]). Let p and q be
positive integers so that p ≥ q. The (standard) Wishart distribution Wq(p) is the
probability distribution of random matrices Y = XTX ∈ R

q×q, where the entries
of the matrix X = (Xij) ∈ R

p×q are independently chosen from the standard
normal distribution Xij ∼ N(0, 1). The density function of Y ∼ Wq(p) is

1

2pq/2Γq(p/2)
e−Tr(Y )/2(det Y )(p−q−1)/2,

where Γq is the multivariate gamma function, defined as

Γq(x) = πq(q−1)/4

q
∏

i=1

Γ
(

x−
i− 1

2

)

.

We denote the cone of positive semidefinite matrices of size q× q by Sq
≥0. In

our case p = n and q = 2. We can write En(t) as

En(t) =
1

2nΓ2(n/2)

∫

S2

≥0

xTY y
√

(xTY x)(yTY y)
e−Tr(Y )/2(detY )(n−3)/2dY,

where t = cos 2θ, and x as well as y depend on θ. The parameterization of the
cone S2

≥0 given by

S2
≥0 =

{

Y =

(

a
2 + α cosφ α sinφ
α sinφ a

2 − α cosφ

)

: φ ∈ [0, 2π], α ∈ [0, a/2], a ∈ R≥0

}

allows us to write the integral in a more explicit form. With this parametrization
we have

Tr(Y ) = a, det(Y ) =
a2

4
− α2, dY = α dφdαda,

and

xTY y =
at

2
+ α cosφ,

xTY x =
a

2
+ α(t cosφ+ 2 sin θ cos θ sinφ),

yTY y =
a

2
+ α(t cosφ− 2 sin θ cos θ sinφ).

So,

En(t) =
1

2nΓ2(n/2)

∫ ∞

0

∫ a/2

0

∫ 2π

0

at
2 + α cosφ

√

(a2 + αt cosφ)2 − α2(1− t2)(sinφ)2

· e−a/2

(

a2

4
− α2

)(n−3)/2

α dφdαda.



Substituting α = (a/2)r and integrating over a yields

En(t) =
Γ (n)

2n−1Γ2(n/2)

∫ 1

0

∫ 2π

0

(t+ r cosφ)r(1 − r2)(n−3)/2

√

(1 + rt cosφ)2 − r2(1− t2)(sinφ)2
dφdr.

Using Legendre’s duplication formula (see [1, Theorem 1.5.1]) Γ (2x)Γ (1/2) =
22x−1Γ (x)Γ (x + 1/2) one can simplify

Γ (n)

2n−1Γ2(n/2)
=

n− 1

2π
.

Recall from (3) that the approximation ratio is given by the coefficient f1 in the
series expansion En(t) =

∑∞
i=0 fit

i. Now we compute f1:

f1 =
∂En

∂t
(0)

=
n− 1

2π

∫ 1

0

∫ 2π

0

r(1 − r2)(n−1)/2

(1 − r2(sinφ)2)3/2
dφdr.

Using Euler’s integral representation of the hypergeometric function [1, Theorem
2.2.1] and by substitution we get

f1 =
n− 1

2π

∫ 2π

0

Γ (1)Γ ((n+ 1)/2)

2Γ ((n+ 3)/2)
2F1

(

3/2, 1
(n+ 3)/2

; sin2 φ

)

dφ

=
n− 1

4π

Γ ((n+ 1)/2)

Γ ((n+ 3)/2)
4

∫ 1

0
2F1

(

3/2, 1
(n+ 3)/2

; t2
)

(1− t2)−1/2dt

=
n− 1

π

Γ ((n+ 1)/2)

Γ ((n+ 3)/2)

1

2

∫ 1

0
2F1

(

3/2, 1
(n+ 3)/2

; t

)

(1 − t)−1/2t−1/2dt.

This simplies futher by Euler’s generalized integral [1, (2.2.2)], and Gauss’s sum-
mation formula [1, Theorem 2.2.2]

f1 =
n− 1

2π

Γ ((n+ 1)/2)

Γ ((n+ 3)/2)

Γ (1/2)Γ (1/2)

Γ (1)
3F2

(

3/2, 1, 1/2
(n+ 3)/2, 1

; 1

)

=
n− 1

2

Γ ((n+ 1)/2)

Γ ((n+ 3)/2)
2F1

(

3/2, 1/2
(n+ 3)/2

; 1

)

=
n− 1

2

Γ ((n+ 1)/2)

Γ ((n+ 3)/2)

Γ ((n+ 3)/2)Γ ((n− 1)/2)

Γ (n/2)Γ ((n+ 2)/2)

=
2

n

(

Γ ((n+ 1)/2)

Γ (n/2)

)2

.

4 Improved analysis

Nesterov’s proof of inequality (1) relies on the fact that the function t 7→
2/π(arcsin t − t) is of positive type for S∞. Now we determine the largest



value c(m) so that the function t 7→ 2/π(arcsin t − c(m)t) is of positive type
for Sm−1. By this we improve the approximation ratio of the algorithm given
in Section 2 for SDP1 from 2/π to (2/π)c(m). The following lemma showing
c(m) = 1/γ(m) implies Theorem 2.

Lemma 1. The function

t 7→
2

π

(

arcsin t−
t

γ(m)

)

is of positive type for Sm−1.

Proof. We equip the space of all continuous functions f : [−1, 1] → R with the
inner product

(f, g)α =

∫ 1

−1

f(t)g(t)(1 − t2)αdt,

where α = (m − 3)/2. With this inner product the Jacobi polynomials satisfy
the orthogonality relation

(P
(α,α)
i , P

(α,α)
j )α = 0, if i 6= j,

where P
(α,α)
i is the Jacobi polynomial of degree i with parameters (α, α), see e.g.

Andrews, Askey, and Roy [1]. Schoenberg [22] showed that a continuous function
f : [−1, 1] → R is of positive type for Sm−1 if and only if it is of the form

f(t) =
∞
∑

i=0

fiP
(α,α)
i (t),

with nonnegative coefficients fi such that
∑∞

i=0 fi < ∞.
Now we interpret arcsin as a function of positive type for Sm−1 where m

is fixed. By the orthogonality relation and because of Schoenberg’s result the
function arcsin t− c(m)t is of positive type for Sm−1 if and only if

(arcsin t− c(m)t, P
(α,α)
i )α ≥ 0, for all i = 0, 1, 2, . . . .

We have P
(α,α)
1 (t) = (α + 1)t. By the orthogonality relation and because the

arcsin function is of positive type we get, for i 6= 1,

(arcsin t− c(m)t, P
(α,α)
i )α = (arcsin t, P

(α,α)
i )α ≥ 0.

This implies that the maximum c(m) such that arcsin t − c(m)t is of positive
type for Sm−1 is given by c(m) = (arcsin t, t)α/(t, t)α.

The numerator of c(m) equals

(arcsin t, t)α =

∫ 1

−1

arcsin(t)t(1 − t2)αdt

=

∫ π/2

−π/2

θ sin θ(cos θ)2α+1dθ

=
Γ (1/2)Γ (a+ 3/2)

(2α+ 2)Γ (α+ 2)
.



The denominator of c(m) equals

(t, t)α =

∫ 1

−1

t2(1− t2)αdt =
Γ (3/2)Γ (α+ 1)

Γ (α+ 5/2)
,

where we used the beta integral (see e.g. Andrews, Askey, and Roy [1, (1.1.21)])

∫ 1

0

t2x−1(1− t2)y−1dr =

∫ π/2

0

(sin θ)2x−1(cos θ)2y−1dθ =
Γ (x)Γ (y)

2Γ (x+ y)
,

Now, by using the functional equation xΓ (x) = Γ (x + 1), the desired equality
c(m) = 1/γ(m) follows. ⊓⊔

5 Hardness of approximation

Proof (of Theorem 3). Suppose that ρ is the largest approximation ratio a poly-
nomial-time algorithm can achieve for SDPn. Let u1, . . . , um ∈ Sn−1 be an ap-
proximate solution to SDPn(A) coming from such a polynomial-time algorithm.
Then,

m
∑

i=1

m
∑

j=1

Aij ui · uj ≥ ρ SDPn(A).

Applying the rounding scheme to u1, . . . , um ∈ Sn−1 gives x1, . . . , xm ∈ {−1,+1}
with

E

[ m
∑

i=1

m
∑

j=1

Aij xixj

]

=
2

π

m
∑

i=1

m
∑

j=1

Aij arcsinui · uj

≥
2ρ

πγ(n)
SDPn(A),

where we used that the matrix A and the matrix
(

2

π

(

arcsinui · uj −
ui · uj

γ(n)

))

1≤i,j≤m

are both positive semidefinite. The last statement follows from Lemma 1 applied
to the vectors u1, . . . , um lying in Sn−1. Since SDPn(A) ≥ SDP1(A), this is a
polynomial-time approximation algorithm for SDP1 with approximation ratio
at least (2ρ)/(πγ(n)). The UGC hardness result of Khot and Naor now implies
that ρ ≤ γ(n). ⊓⊔

6 The case of Laplacian matrices

In this section we show that one can improve the approximation ratio of the al-
gorithm if the positive semidefinite matrix A = (Aij) ∈ R

m×m has the following



special structure:

Aij ≤ 0, if i 6= j,
n
∑

i=1

Aij = 0, for every j = 1, . . . , n.

This happens for instance when A is the Laplacian matrix of a weighted graph
with nonnegative edge weights. A by now standard argument due to Goemans
and Williamson [6] shows that the algorithm has the approximation ratio

v(n) = min

{

1− En(t)

1− t
: t ∈ [−1, 1]

}

.

To see this, we write out the expected value of the approximation and use
the properties of A:

E

[

n
∑

i,j=1

Aijxi · xj

]

=

n
∑

i,j=1

AijEn(ui · uj)

=
∑

i6=j

(−Aij)

(

1− Ek(ui · uj)

1− ui · uj

)

(1 − ui · uj)

≥ v(n)

n
∑

i,j=1

Aijui · uj

= v(n) SDP∞(A).

The case n = 1 corresponds to the MAX CUT approximation algorithm of
Goemans and Williamson [6]. For this we have

v(1) = 0.8785 . . . , minimum attained at t0 = −0.689 . . . .

We computed the values v(2) and v(3) numerically and got

v(2) = 0.9349 . . . , minimum attained at t0 = −0.617 . . . ,

v(3) = 0.9563 . . . , minimum attained at t0 = −0.584 . . . .
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