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Abstract. Using recent developments on the theory of locally decodable codes, we
prove that the critical size for Szemerédi’s theorem with random differences is bounded

from above by N1− 2
k
+o(1) for length-k progressions. This improves the previous best

bounds of N
1− 1

⌈k/2⌉+o(1)
for all odd k.

1. Introduction

Szemerédi [18] proved that dense sets of integers contain arbitrarily long arithmetic
progressions, a result which has become a hallmark of additive combinatorics. Multiple
proofs of this result were found over the years, using ideas from combinatorics, ergodic
theory and Fourier analysis over finite abelian groups.

Furstenberg’s ergodic theoretic proof [12] opened the floodgates to a series of powerful
generalizations. In particular, it led to versions of Szemerédi’s theorem where the al-
lowed common differences for the arithmetic progressions are restricted to very sparse
sets. We say that a set D ⊆ [N ] is ℓ-intersective if any positive-density set A ⊆ [N ] con-
tains an (ℓ+1)-term arithmetic progression with common difference in D. For example,
a special case of a result of Bergelson and Leibman [3] shows that the perfect squares
are ℓ-intersective for every ℓ, and a special case of a result of Wooley and Ziegler [21]
shows that the prime numbers minus one are as well.

The existence of such sparse intersective sets motivated the problem of showing whether,
in fact, random sparse sets are typically intersective. The task of making this quantita-
tive falls within the scope of research on threshold phenomena. We say that a property
of subsets of [N ], given by a family F ⊆ 2[N ], is monotone if A ∈ F and A ⊆ B ⊆ [N ]
imply B ∈ F . The critical size m∗ = m∗(N) of a property is the least m such that a uni-
formly random m-element subset of [N ] has the property with probability at least 1/2.
(This value exists if F is non-empty and monotone, as this probability then increases
monotonically with m). A famous result of Bollobás and Thomason [4] asserts that
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every monotone property has a threshold function; this is to say that the probability

p(m) = Pr
A∈([N ]

m )[A ∈ F ]

spikes from o(1) to 1 − o(1) when m increases from o(m∗) to ω(m∗).1 In general, it is
notoriously hard to determine the critical size of a monotone property.

This problem is also wide open for the property of being ℓ-intersective, which is clearly
monotone, and for which we denote the critical size by m∗

ℓ (N). Bourgain [5] showed
that the critical size for 1-intersective sets is given by m∗

1(N) ≍ logN ; at present, this is
the only case where precise bounds are known. It has been conjectured [10] that logN
is the correct bound for all fixed ℓ, and indeed no better lower bounds are known for
ℓ ≥ 2. It was shown by Frantzikinakis, Lesigne and Wierdl [11] and independently by
Christ [9] that

(1) m∗
2(N) ≪ N

1
2
+o(1).

The same upper bound was later shown to hold for m∗
3(N) by the first author, Dvir and

Gopi [7]. More generally, they showed that

(2) m∗
ℓ (N) ≪ N

1− 1
⌈(ℓ+1)/2⌉+o(1)

,

which improved on prior known bounds for all ℓ ≥ 3. The appearance of the ceiling
function in these bounds is due to a reduction for even ℓ to the case ℓ+1. The reason for
this reduction originates from work on locally decodable error correcting codes [14]. It
was shown in [7] that lower bounds on the block length of (ℓ+1)-query locally decodable
codes (LDCs) imply upper bounds on m∗

ℓ . The bounds (2) then followed directly from
the best known LDC bounds; see [8] for a direct proof of (2), however.

For the same reason, a recent breakthrough of Alrabiah et al. [1] on 3-query LDCs
immediately implies an improvement of (1) to

m∗
2(N) ≪ N

1
3
+o(1).

For technical reasons, their techniques do not directly generalize to improve the bounds
for q-query LDCs with q ≥ 4. Here, we use the ideas of [1] to directly prove upper
bounds on m∗

ℓ . Due to the additional arithmetic structure in our problem, it is possible
to simplify the exposition and, more importantly, apply the techniques to improve the
previous best known bounds for all even ℓ ≥ 2.

Theorem 1.1. For every integer ℓ ≥ 2, we have that

m∗
ℓ (N) ≪ N1− 2

ℓ+1
+o(1).

1Our (standard) asymptotic notation is defined as follows. Given a parameter n which grows without
bounds and a function f : R+ → R+, we write: g(n) = o(f(n)) to mean g(n)/f(n) → 0; g(n) = ω(f(n))
to mean g(n)/f(n) → ∞; g(n) ≪ f(n) to mean that g(n) ≤ Cf(n) holds for some constant C > 0 and
all n; and g(n) ≍ f(n) to mean both g(n) ≪ f(n) and f(n) ≪ g(n).
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The arguments presented here in fact work in greater generality, and hold for any finite
additive group G whose size is coprime to ℓ! (so as not to incur in divisibility issues
when considering (ℓ+ 1)-tem arithmetic progressions).

Let G be a finite additive group, ℓ ≥ 1 be an integer and ε ∈ (0, 1). We say that a
set S ⊆ G is (ℓ, ε)-intersective if every subset A ⊆ G of size |A| ≥ ε|G| contains an
(ℓ+1)-term arithmetic progression with common difference in D. We denote the critical
size for the property of being (ℓ, ε)-intersective in G by m∗

ℓ,ε(G). Our main result is the
following:

Theorem 1.2. For every ℓ ≥ 2 and ε ∈ (0, 1), there exists C(ℓ, ε) > 0 such that

m∗
ℓ,ε(G) ≤ C(ℓ, ε)(log |G|)2ℓ+3|G|1−

2
ℓ+1

for every additive group G whose size is coprime to ℓ!.

Note that Theorem 1.1 follows easily from this last result by embedding [N ] into a group
of the form Z/pZ, where p is a prime between (ℓ + 1)N and 2(ℓ + 1)N . We omit the
standard details.

2. Preliminaries

Our arguments will rely heavily on the analysis of high-dimensional matrices. Here we
recall the matrix inequalities which will be needed.

If M ∈ Rd×d is a matrix, we define its operator norms

∥M∥2 = max
{
uTMv : ∥u∥2 = ∥v∥2 = 1

}
∥M∥∞→1 = max

{
uTMv : ∥u∥∞ = ∥v∥∞ = 1

}
∥M∥1→1 = max

{
uTMv : ∥u∥∞ = ∥v∥1 = 1

}
.

We will make use of the following simple inequalities:

∥M∥∞→1 ≤ d∥M∥2, ∥M∥∞→1 ≤
d∑

i=1

∥M(i, ·)∥1

and, when M is symmetric,

∥M∥2 ≤ ∥M∥1→1.

We will also use the following noncommutative version of Khintchine’s inequality, which
can be extracted from a result of Tomczak-Jaegermann [19]:

Theorem 2.1. Let n, d ≥ 1 be integers, and let A1, . . . , An be any sequence of d × d
real matrices. Then

Eσ∈{−1,1}n

∥∥∥∥ n∑
i=1

σiAi

∥∥∥∥
2

≤ 10
√

log d

( n∑
i=1

∥Ai∥22
)1/2

.
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Furthermore, we will need a well-known concentration inequality for polynomials due
to Kim and Vu [15], which requires the introduction of some extra notation. Let H =
(V,E) be a hypergraph, where we allow for repeated edges (so E may be a multiset),
and let f : {0, 1}V → R be the polynomial given by

(3) f(x) =
∑
e∈E

∏
v∈e

xv.

For a set A ⊆ V , define

fA(x) =
∑

e∈E:A⊆e

∏
v∈e\A

xv,

where the monomial corresponding to the empty set is defined to be 1. For p ∈ (0, 1),
we say that X is a p-Bernoulli random variable on {0, 1}V , denoted X ∼ Bern(p)V , if
its coordinates are all independent and each equals 1 with probability p (and equals 0
with probability 1− p). For each i ∈ {0, 1, . . . , |V |}, define

µi = max
A∈(Vi )

EX∼Bern(p)V fA(X).

Note that µ0 is just the expectation of f(X). Define also the quantities

µ = max
i∈{0,1,...,|V |}

µi and µ′ = max
i∈{1,2,...,|V |}

µi.

The polynomial concentration inequality of Kim and Vu is given as follows:

Theorem 2.2. For every k ∈ N, there exist constants C,C ′ > 0 such that the following
holds. Let H = (V,E) be an n-vertex hypergraph whose edges have size at most k, and
let f be given by (3). Then, for any λ > 1, we have

Pr
[
|f(X)− µ0| > Cλk− 1

2

√
µµ′] ≤ C ′ exp

(
− λ+ (k − 1) log n

)
.

To suit our needs, we will use a slight variant of this result, which follows easily from it
and the following basic proposition.

Proposition 2.3. Let f : {0, 1}n → R+ be a monotone increasing function and p ∈
(16n , 1). Then, for any integer 0 ≤ t ≤ pn/2,

E
S∈([n]

t )
f(1S) ≤

1

2
EX∼Bern(p)nf(X).
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Proof: By direct calculation,

EX∼Bern(p)nf(X) =
n∑

i=0

pi(1− p)n−i
∑

S∈([n]
i )

f(1S)

=

n∑
i=0

(
n

i

)
pi(1− p)n−i E

S∈([n]
i )
f(1S)

≥
∑
i≥t

(
n

i

)
pi(1− p)n−i E

S∈([n]
t )
f(1S)

≥ 1

2
E
S∈([n]

t )
f(1S),

where in the third line we used monotonicity of f and the fourth line follows from the
Chernoff bound. □

Corollary 2.4. For every k ∈ N, there exist constants C,C ′ > 0 such that the following
holds. Let H = (V,E) be an k-uniform hypergraph on n vertices, let f be given as in (3)
and let p ∈ (16n , 1). Then, for any integer 0 ≤ t ≤ pn/2, we have

PrS∈(Vt )
[
f(1S) ≥ C(log n)k−

1
2µ] ≤ C ′

n4
.

Proof: For a sufficiently large constant C = C(k) > 0, let g : {0, 1}n → {0, 1} be the
indicator function

g(1S) = 1
[
f(1S) ≥ C(log n)k−

1
2µ].

Since f is monotone, so is g. Setting λ = (3+k) log n, it follows from Theorem 2.2 that

EX∼Bern(p)n g(X) ≤ C ′

n4
.

The result now follows from Proposition 2.3. □

3. The main argument

Fix an integer k ≥ 3 and a positive parameter ε > 0. Let G be an additive group
with N elements, where N is coprime to (k− 1)! and is assumed to be sufficiently large
relative to k and ε for our arguments to hold.

For convenience, instead of considering random intersective sets, we will consider ran-
dom intersective sequences, where a sequence in Gm is ℓ-intersective if the set of its
distinct elements is. Clearly, the probability that a uniformly random m-element se-
quence is ℓ-intersective is a most the probability that a uniform m-element set is. Since
we are interested in proving upper bounds on the critical size, it suffices to bound the
minimal m such that a random sequence in Gm is ℓ-intersective with probability at
least 1/2.
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Given a sequence of differences D = (d1, . . . , dm) ∈ Gm and some set A ⊆ G, let ΛD(A)
be the normalized count of k-APs with common difference in D which are contained
in A:

ΛD(A) = Ei∈[m]Ex∈G

k−1∏
ℓ=0

A(x+ ℓdi).

Similarly, we denote by ΛG(A) the proportion of all k-APs which are contained in A:

ΛG(A) = Ed∈GEx∈G

k−1∏
ℓ=0

A(x+ ℓd).

By a suitable generalization of Szemerédi’s theorem, we know that

(4) ΛG(A) ≫k,ε 1 for all A ⊆ G with |A| ≥ ε|G|.
This can be proven, for instance, by using the hypergraph removal lemma of Gowers [13]
and Nagle, Rödl, Schacht and Skokan [17, 16]. It can also be obtained via a standard av-
eraging argument (originally due to Varnavides [20]) applied to a version of Szemerédi’s
theorem valid for the specific group G in consideration (though the bound obtained
might then depend on the structure of G).

Now suppose m ∈ [N ] is an integer for which

(5) PrD∈Gm

(
∃A ⊆ G : |A| ≥ ε|G|, ΛD(A) = 0

)
≥ 1/2.

Noting that ED′∈GmΛD′(A) = ΛG(A), by combining inequalities (5) and (4) we conclude
that

ED∈Gm max
A⊆G: |A|≥εN

∣∣ΛD(A)− ED′∈GmΛD′(A)
∣∣ ≫k,ε 1.

We next apply a simple symmetrization argument given in [8, page 8690] to write this
in a more convenient form:

Lemma 1 (Symmetrization). Let c > 0, and suppose that

ED∈Gm max
A⊆G: |A|≥ε|G|

∣∣ΛD(A)− ED′∈GmΛD′(A)
∣∣ ≥ c.

Then

ED∈GmEσ∈{−1,1}m max
A⊆G: |A|≥ε|G|

∣∣∣∣Ei∈[m]Ex∈G σi

k−1∏
ℓ=0

A(x+ ℓdi)

∣∣∣∣ ≥ c

2
.

The appearance of the expectation over signs σ ∈ {−1, 1}m is crucial to our arguments.
By an easy multilinearity argument, we can replace the set A ⊆ G (which can be seen as
a vector in {0, 1}G) by a vector Z ∈ {−1, 1}G. In combination with (5) and Lemma 1,
this gives

(6) ED∈GmEσ∈{−1,1}m max
Z∈{−1,1}G

∣∣∣∣Ei∈[m]Ex∈G σi

k−1∏
ℓ=0

Z(x+ ℓdi)

∣∣∣∣ ≫k,ε 1.
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The change from {0, 1}G to {−1, 1}G is a convenient technicality so we can ignore terms
which get squared in a product.

This last inequality (6) is what we need to prove the result for even values of k using
the arguments we will outline below. For odd values of k, however, this inequality is
unsuited due to the odd number of factor inside the product. The main idea from [1]
to deal with this case is to apply a “Cauchy-Schwarz trick” to obtain a better suited
inequality:

Lemma 2 (Cauchy-Schwarz trick). Let c > 0, and suppose m ≥ 2/c2 is an integer for
which

ED∈GmEσ∈{−1,1}m max
Z∈{−1,1}G

∣∣∣∣Ei∈[m]Ex∈G σi

k−1∏
ℓ=0

Z(x+ ℓdi)

∣∣∣∣ ≥ c.

Then there exists a partition [m] = L ∪̇R such that

ED∈GmEσ∈{−1,1}L
τ∈{−1,1}R

max
Z∈{−1,1}G

∑
i∈L
j∈R

∑
x∈G

σiτj

k−1∏
ℓ=1

Z(x+ ℓdi)Z(x+ ℓdj) ≥
c2m2N

8
.

Proof: By Cauchy-Schwarz, for any Z ∈ {−1, 1}G we have

∣∣∣∣Ei∈[m]Ex∈G σi

k−1∏
ℓ=0

Z(x+ ℓdi)

∣∣∣∣2 = ∣∣∣∣Ex∈G Z(x) ·
(
Ei∈[m]σi

k−1∏
ℓ=1

Z(x+ ℓdi)

)∣∣∣∣2

≤
(
Ex∈G Z(x)2

)
Ex∈G

(
Ei∈[m]σi

k−1∏
ℓ=1

Z(x+ ℓdi)

)2

= Ex∈GEi,j∈[m] σiσj

k−1∏
ℓ=1

Z(x+ ℓdi)Z(x+ ℓdj).

Applying Cauchy-Schwarz again, we conclude from our assumption that

c2 ≤ ED∈GmEσ∈{−1,1}m max
Z∈{−1,1}G

∣∣∣∣Ei∈[m]Ex∈G σi

k−1∏
ℓ=0

Z(x+ ℓdi)

∣∣∣∣2

≤ ED∈GmEσ∈{−1,1}m max
Z∈{−1,1}G

Ex∈GEi,j∈[m] σiσj

k−1∏
ℓ=1

Z(x+ ℓdi)Z(x+ ℓdj).
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Now consider a uniformly random partition [m] = L ∪̇R, so that for any i, j ∈ [m] with
i ̸= j we have PrL,R(i ∈ L, j ∈ R) = 1/4; then

Ei,j∈[m] σiσj

k−1∏
ℓ=1

Z(x+ ℓdi)Z(x+ ℓdj)

=
1

m2

m∑
i,j=1
i ̸=j

σiσj

k−1∏
ℓ=1

Z(x+ ℓdi)Z(x+ ℓdj) +
1

m2

m∑
i=1

σ2
i

k−1∏
ℓ=1

Z(x+ ℓdi)
2

=
4

m2
EL,R

∑
i∈L,j∈R

σiσj

k−1∏
ℓ=1

Z(x+ ℓdi)Z(x+ ℓdj) +
1

m
.

It follows that

c2 ≤ 1

m
+

4

m2
EL,RED∈GmEσ∈{−1,1}m max

Z∈{−1,1}G
Ex∈G

∑
i∈L,j∈R

σiσj

k−1∏
ℓ=1

Z(x+ℓdi)Z(x+ℓdj).

Using that m ≥ 2/c2, we conclude there exists a choice of partition [m] = L ∪̇R satis-
fying the conclusion of the lemma. □

From now on we assume that k is odd, and write k = 2r + 1.2 For i, j ∈ [m], denote
Pi(x) = {x + di, x + 2di, . . . , x + 2rdi} and Pij(x) = Pi(x) ∪ Pj(x), where we hide
the dependence on the difference set D for ease of notation. From inequality (6) and
Lemma 2 we conclude that

(7) ED∈GmEσ∈{−1,1}L
τ∈{−1,1}R

max
Z∈{−1,1}G

∑
i∈L
j∈R

∑
x∈G

σiτj
∏

y∈Pij(x)

Z(y) ≫k,ε m
2N,

where (L,R) is a suitable partition of the index set [m] and we assume (without loss of
generality) that m is sufficiently large depending on ε and k.

From inequality (7) it follows that we can fix a “good” set D ∈ Gm satisfying

(8) Eσ∈{−1,1}L
τ∈{−1,1}R

max
Z∈{−1,1}G

∑
i∈L
j∈R

σiτj
∑
x∈G

∏
y∈Pij(x)

Z(y) ≫k,ε m
2N

and for which we have the technical conditions∣∣{i ∈ L, j ∈ R : |Pij(0)| ≠ 4r
}∣∣ ≪k m2/N and(9)

max
x ̸=0

m∑
i=1

2r∑
ℓ=−2r

1{ℓdi = x} ≪k logN,(10)

2The even case is similar but simpler. We focus on the odd case here because this is where we get
new bounds.
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which are needed to bound the probability of certain bad events later on. Indeed, for
ℓ, ℓ′ ∈ [k − 1] and independent uniform di, dj ∈ G, we have that Pr[ℓdi = ℓ′dj ] = 1/N .
Hence, the expectation of the left-hand side of (9) (taken with respect to independent
di, dj for i ∈ L and j ∈ R) is at most Ok(m

2/N). It then follows from Markov’s
inequality that (9) holds with probability at least 3/4. It follows from the Chernoff
bound and a union bound that (10) also holds with probability at least 3/4. Finally,
since the maxima in the expectation of (8) are bounded by m2N , it follows that also
this condition holds with probability at least 3/4. Hence, with positive probability, all
the conditions hold.

The next key idea is to construct matrices Mij for which the quantity

(11) Eσ∈{−1,1}L
τ∈{−1,1}R

∥∥∥∥ ∑
i∈L,j∈R

σiτjMij

∥∥∥∥
∞→1

is related to the expression on the left-hand side of inequality (8). The reason for doing
so is that this allows us to use strong matrix concentration inequalities, which can be
used to obtain a good upper bound on the expectation (11); this in turn translates
to an upper bound on m as a function of N , which is our goal. Such uses of matrix
inequalities go back to work of Ben-Aroya, Regev and de Wolf [2], in turn inspired by
work of Kerenidis and de Wolf [14] (see also [6]).

The matrices we will construct are indexed by sets of a given size s, where (with hind-

sight) we choose s = ⌊N1−2/k⌋. For i ∈ L, j ∈ R, define the matrix Mij ∈ R(
G
s)×(

G
s)

by

Mij(S, T ) =
∑
x∈G

1
{
|S ∩ Pi(x)| = |S ∩ Pj(x)| = r, S△T = Pij(x)

}

if |Pij(0)| = 4r, and Mij(S, T ) = 0 if |Pij(0)| ̸= 4r; note that, despite the asymmetry
in their definition, these matrices are in fact symmetric. We will next deduce from
inequality (8) a lower bound on the expectation (11).

For a vector Z ∈ {−1, 1}G, denote by Z⊙s ∈ {−1, 1}(
G
s) the “lifted” vector given by

Z⊙s(S) =
∏
y∈S

Z(y) for all S ∈
(
G

s

)
.
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If |Pij(0)| = 4r, then for all Z ∈ {−1, 1}G we have∑
S,T∈(Gs)

Mij(S, T )Z
⊙s(S)Z⊙s(T ) =

∑
S,T∈(Gs)

Mij(S, T )
∏

y∈S△T

Z(y)

=
∑
x∈G

∑
S∈(Gs)

1
{
|S ∩ Pi(x)| = |S ∩ Pj(x)| = r

} ∏
y∈Pij(x)

Z(y)

=

(
2r

r

)2(N − 4r

s− 2r

)∑
x∈G

∏
y∈Pij(x)

Z(y),(12)

since there are
(
2r
r

)2(N−4r
s−2r

)
ways of choosing a set S ∈

(
G
s

)
satisfying |S ∩ Pi(x)| =

|S ∩Pj(x)| = r and, once such a set S is chosen, there is only one set T ∈
(
G
s

)
for which

S△T = Pij(x). It follows that

Eσ∈{−1,1}L
τ∈{−1,1}R

∥∥∥∥ ∑
i∈L,j∈R

σiτjMij

∥∥∥∥
∞→1

≥ Eσ∈{−1,1}L
τ∈{−1,1}R

max
Z∈{−1,1}G

∑
S,T∈(Gs)

∑
i∈L,j∈R

σiτjMij(S, T )Z
⊙s(S)Z⊙s(T )

= Eσ∈{−1,1}L
τ∈{−1,1}R

max
Z∈{−1,1}G

(
2r

r

)2(N − 4r

s− 2r

) ∑
i∈L,j∈R

|Pij(0)|=4r

σiτj
∑
x∈G

∏
y∈Pij(x)

Z(y);

combining this with inequalities (8) and (9), we conclude the lower bound

(13) Eσ∈{−1,1}L
τ∈{−1,1}R

∥∥∥∥ ∑
i∈L,j∈R

σiτjMij

∥∥∥∥
∞→1

≫k,ε

(
N − 4r

s− 2r

)
m2N.

Now we need to compute an upper bound for the expectation above. The main idea
here is to use the non-commutative version of Khintchine’s inequality given in Theo-
rem 2.1. Intuitively, this inequality shows that the sum in the last expression incurs
many cancellations due to the presence of the random signs σi, and thus the expectation
on the left-hand side of (13) is much smaller than one might expect.

To apply Theorem 2.1, it is better to collect the matrices Mij into groups and use only
one half of the random signs σi (another idea from [1]). For i ∈ L, τ ∈ {−1, 1}R, we
define the matrix

M τ
i =

∑
j∈R

τjMij .

We will then provide an upper bound for the expression

max
τ∈{−1,1}R

Eσ∈{−1,1}L

∥∥∥∥∑
i∈L

σiM
τ
i

∥∥∥∥
∞→1
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which is itself an upper bound for the expectation in (13).

Towards this goal, we will prune the matrices M τ
i by removing remove all rows and

columns whose ℓ1-weight significantly exceeds the average. By symmetry and non-
negativity of these matrices, the ℓ1-weight of a row or column indexed by a set S ∈

(
G
s

)
is bounded by∑

T∈(Gs)

∣∣∣∣∑
j∈R

τjMij(S, T )

∣∣∣∣ ≤ ∑
T∈(Gs)

∑
j∈R

Mij(S, T )

=
∑
j∈R

|Pij(0)|=4r

∑
x∈G

1
{
|S ∩ Pi(x)| = |S ∩ Pj(x)| = r

}
.

To show that pruning makes little difference to the final bounds, we show that only
a small proportion of the rows and columns have large ℓ1-weight. To this end, let U
be a uniformly distributed

(
G
s

)
-valued random variable and, for each i ∈ L, define the

random variable corresponding to the last expression above,

Xi :=
∑
j∈R

|Pij(0)|=4r

∑
x∈G

1
{
|U ∩ Pi(x)| = |U ∩ Pj(x)| = r

}
.

The calculation done in (12), with Z the all-ones vector, shows that

E[Xi] =
1(
N
s

) ∑
j∈R

|Pij(0)|=4r

(
2r

r

)2(N − 4r

s− 2r

)
N ≪k

m

N1−2/k
(14)

where we used our chosen value for s in the inequality. The following lemma gives an
upper-tail estimate on Xi, provided m is sufficiently large.

Lemma 3. Suppose that m ≥ N1−2/k. Then, for every i ∈ L, we have that

Pr
[
Xi ≥ (logN)k

m

N1−2/k

]
≤ 1

N4
.

Proof: Fix an i ∈ L. Consider the hypergraph Hi on vertex set G and with edge set

E(Hi) =
⊎
j∈R

|Pij(0)|=4r

⊎
x∈G

(
Pi(x)

r

)
×
(
Pj(x)

r

)
,

and let f : RG → R be the polynomial associated with Hi as in (3),

f(t) =
∑

e∈E(Hi)

∏
v∈e

tv.

Note that Xi = f(1U ), where U is uniformly distributed over
(
G
s

)
and 1U ∈ RG denotes

its (random) indicator vector.
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For each 0 ≤ ℓ ≤ 2r, we wish to bound the quantity

µℓ := max
A∈(Gℓ )

Et∼Bern(s/N)GfA(t).

(Recall the notation introduced in Section 2.) By (14), we have that µ0 ≪k mN−(1−2/k).

For a set A ∈
(
G
ℓ

)
, define its degree in Hi by

deg(A) = |{e ∈ E(Hi) : e ⊇ A}|,

where we count multiplicities of repeated edges. Note that for any B ⊆ A, we have that
deg(A) ≤ deg(B). Then,

µℓ = max
A∈(Gℓ )

( s

N

)2r−ℓ
deg(A).

For any v ∈ G, we have that deg(v) ≪k m, since v is contained in Ok(1) arithmetic
progressions of length k with a fixed common difference. It follows that for ℓ ∈ [r], we
have that

µℓ ≤
( s

N

)2r−ℓ
max
v∈G

deg(v) ≪k mN−2r/(2r+1) =
m

N1−1/k
.

Let A ⊆ G be a set of size ℓ ∈ {r + 1, . . . , 2r} and

e ∈
(
Pi(x)

r

)
×
(
Pj(x)

r

)
be an edge of E(Hi) that contains A. By the Pigeonhole principle, A contains an
element a ∈ Pi(x) and an element b ∈ Pj(x). Knowing a limits x to a set of size at
most 2r. Moreover, it follows from (10) that for each x, there are at most Ok(logN)
possible values of j ∈ R such that b ∈ Pj(x). Therefore,

µℓ ≪k

( s

N

)2r−ℓ
logN ≤ logN.

Using our assumption on m, it follows that for each ℓ ∈ {0, . . . , 2r}, we have that

µℓ ≪k mN−(1−2/k) logN . The result now follows directly from Corollary 2.4. □

Lemma 3 shows that for each matrix M τ
i , at most an N−4 fraction of all rows and

columns have ℓ1-weight exceeding (logN)kmN−(1−2/k). Now define M̃ τ
i as the ‘pruned’

matrix obtained fromM τ
i by zeroing out all such heavy rows and columns. Note that M̃ τ

i
is symmetric, and so

∥M̃ τ
i ∥2 ≤ ∥M̃ τ

i ∥1→1 = max
S∈(Gs)

∥M̃ τ
i (S, ·)∥1 ≤ (logN)k

m

N1−2/k
;

this bound on the operator norm is what makes the pruned matrices more convenient
for us to work with.
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We first show that replacing the original matrices by their pruned versions has negligible
effect on our bounds. Indeed, from the definition of Xi we see that its maximum value
is bounded by mN , and so∥∥M τ

i − M̃ τ
i

∥∥
∞→1

≤
∑

S∈(Gs)

∥∥M τ
i (S, ·)− M̃ τ

i (S, ·)
∥∥
1

≤ 2

(
N

s

)
· E

[
Xi 1

{
Xi ≥ (logN)kmN−(1−2/k)

}]
≤ 2

(
N

s

)
·mNPr

[
Xi ≥ (logN)kmN−(1−2/k)

]
.

(The multiplication by 2 in the second inequality happens because we must take into
account both heavy rows and heavy columns.) By Lemma 3 we conclude that

(15)
∥∥M τ

i − M̃ τ
i

∥∥
∞→1

≤ 2m

N3

(
N

s

)
for all i ∈ L, τ ∈ {0, 1}R.

Next we apply the concentration inequality from Theorem 2.1 to the pruned matri-

ces M̃ τ
i ; we obtain

Eσ∈{−1,1}L

∥∥∥∥∑
i∈L

σiM̃
τ
i

∥∥∥∥
∞→1

≤
(
N

s

)
Eσ∈{−1,1}L

∥∥∥∥∑
i∈L

σiM̃
τ
i

∥∥∥∥
2

≤
(
N

s

)√
log

(
N

s

)(∑
i∈L

∥M̃ τ
i ∥22

)1/2

≤
(
N

s

)√
log

(
N

s

)(∑
i∈L

∥M̃ τ
i ∥21→1

)1/2

≤
(
N

s

)√
s logN ·m1/2(logN)k

m

N1−2/k
.

By the triangle inequality and our previous bounds, we conclude that

Eσ∈{−1,1}L

∥∥∥∥∑
i∈L

σiM
τ
i

∥∥∥∥
∞→1

≤ Eσ∈{−1,1}L

∥∥∥∥∑
i∈L

σiM̃
τ
i

∥∥∥∥
∞→1

+
∑
i∈L

∥∥M τ
i − M̃ τ

i

∥∥
∞→1

≤
(
N

s

)√
s logN ·m1/2(logN)k

m

N1−2/k
+

2m2

N3

(
N

s

)
.

Combining this with inequality (13) gives(
N − 4r

s− 2r

)
m2N ≪k,ε

(
N

s

)√
ms logN(logN)k

m

N1−2/k
.

Rearranging and using that
(
N
s

)
/
(
N−4r
s−2r

)
≪k (N/s)2r = N2−2/k, we conclude that

m ≪k,ε s(logN)2k+1 = N1−2/k(logN)2k+1.
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As we started with the assumption (5), this shows thatm∗
k−1,ε(G) ≪k,ε N

1−2/k(logN)2k+1

as wished.
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[18] E. Szemerédi. “On sets of integers containing no k elements in arithmetic progres-
sion”. In: Acta Arith. 27 (1975), pp. 199–245. issn: 0065-1036. doi: 10.4064/aa-
27-1-199-245.

[19] Nicole Tomczak-Jaegermann. “The moduli of smoothness and convexity and the
Rademacher averages of trace classes Sp(1 ≤ p < ∞)”. In: Studia Math. 50 (1974),
pp. 163–182. issn: 0039-3223.

[20] P. Varnavides. “Note on a theorem of Roth”. In: J. London Math. Soc. 30 (1955),
pp. 325–326. issn: 0024-6107. doi: 10.1112/jlms/s1-30.3.325. url: https:
//doi.org/10.1112/jlms/s1-30.3.325.

[21] Trevor D. Wooley and Tamar D. Ziegler. “Multiple recurrence and convergence
along the primes”. In: Amer. J. Math. 134.6 (2012), pp. 1705–1732. issn: 0002-
9327. doi: 10.1353/ajm.2012.0048.

CWI & QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands

Email address: j.briet@cwi.nl

CWI & QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands

Email address: davi.silva@cwi.nl

https://doi.org/10.1016/j.jcss.2004.04.007
https://doi.org/10.1007/s004930070014
https://doi.org/10.1002/rsa.20117
https://doi.org/10.1002/rsa.20117
https://doi.org/10.1002/rsa.20117
https://doi.org/10.1002/rsa.20017
https://doi.org/10.1002/rsa.20017
https://doi.org/10.4064/aa-27-1-199-245
https://doi.org/10.4064/aa-27-1-199-245
https://doi.org/10.1112/jlms/s1-30.3.325
https://doi.org/10.1112/jlms/s1-30.3.325
https://doi.org/10.1112/jlms/s1-30.3.325
https://doi.org/10.1353/ajm.2012.0048

	1. Introduction
	2. Preliminaries
	3. The main argument
	References

