GROTHENDIECK INEQUALITIES FOR SEMIDEFINITE
PROGRAMS WITH RANK CONSTRAINT

JOP BRIET, FERNANDO MARIO DE OLIVEIRA FILHO, AND FRANK VALLENTIN

ABSTRACT. Grothendieck inequalities are fundamental inequalities which are
frequently used in many areas of mathematics and computer science. They
can be interpreted as upper bounds for the integrality gap between two op-
timization problems: a difficult semidefinite program with rank-1 constraint
and its easy semidefinite relaxation where the rank constrained is dropped.
For instance, the integrality gap of the Goemans-Williamson approximation
algorithm for MAX CUT can be seen as a Grothendieck inequality. In this
paper we consider Grothendieck inequalities for ranks greater than 1 and we
give two applications: approximating ground states in the n-vector model in
statistical mechanics and XOR games in quantum information theory.

1. INTRODUCTION

Let G = (V, E) be a graph with finite vertex set V and edge set E C (‘2/) Let
A:V xV — R be a symmetric matrix whose rows and columns are indexed by the
vertex set of GG, and r be a positive integer. The graphical Grothendieck problem
with rank-r constraint is the following optimization problem:

SDP.(G,A) = max{ Z Au, ) f(u) - flv) + f: V=81 },

{uv}eE

where S*7! = {z € R" : -z = 1} is the (r — 1)-dimensional unit sphere. The
rank-r Grothendieck constant of the graph G is the smallest constant K(r,G) so
that for all symmetric matrices A: V x V — R the following inequality holds:

(1) SDP. (G, A) < K(r,G) SDP,(G, A).

Here S° denotes the unit sphere of the Hilbert space (?(R) of square summable
sequences, which contains R™ as the subspace of the first n components. It is easy
to see that K(r,G) > 1. In this paper, we prove new upper bounds for K (r, G).
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1.1. Some history. Inequality is called a Grothendieck inequality because it
first appeared in the work [22] of Grothendieck on the metric theory of tensor
products. More precisely, Grothendieck considered the case r = 1 for 2-chromatic
(bipartite) graphs, although in quite a different language. (A k-chromatic graph is
a graph whose chromatic number is k, i.e., one can color its vertices with k colors
so that adjacent vertices get different colors, but k—1 colors do not suffice for this.)
Grothendieck proved that in this case K (1, G) is upper bounded by a constant that
is independent of the size of G.

Later, Lindenstrauss and Pelezytiski [34] reformulated Grothendieck’s inequality
for bipartite graphs in a way that is very close to the formulation we gave above. The
graphical Grothendieck problem with rank-1 constraint was introduced by Alon,
Makarychev, Makarychev, and Naor [2]. Haagerup [23] considered the complex case
of Grothendieck’s inequality; his upper bound is also valid for the real case r = 2.
The higher rank case for bipartite graphs was introduced by Briét, Buhrman, and
Toner [I0].

1.2. Computational perspective. There has been a recent surge of interest
in Grothendieck inequalities by the computer science community. The problem
SDP,.(G, A) is a semidefinite maximization problem with rank-r constraint:

SDP,.(G, A) = max Z A(u,v) X (u,v) : X € Rgg;vv
{uv}eE X(u,u)=1forallu € V,

rank X < 7‘},

where ]RL/(TV is the set of matrices X : V x V' — R that are positive semidefinite.

On the one hand, SDP,.(G, A) is generally a difficult computational problem. For
instance, if r = 1 and G is the complete bipartite graph K, ,, on 2n nodes, and if A
is the Laplacian matrix of a graph G’ on n nodes, then computing SDP (K, ,,, 4)
is equivalent to computing the weight of a maximum cut of G’. The maximum cut
problem (MAX CUT) is one of Karp’s 21 NP-complete problems. On the other
hand, if we relax the rank-r constraint, then we deal with SDP (G, A), which is an
easy computational problem: Obviously, one has SDP (G, A) = SDP|y(G, A) and
computing SDPy|(G, A) amounts to solving a semidefinite programming problem
(see e.g. Vandenberghe, Boyd [50]). Therefore one may approximate it to any
fixed precision in polynomial time by using the ellipsoid method or interior point
algorithms.

In many cases the optimal constant K (r, G) is not known and so one is interested
in finding upper bounds for K(r,G). Usually, proving an upper bound amounts
to giving a randomized polynomial-time approximation algorithm for SDP,.(G, A).
In the case of the MAX CUT problem, Goemans and Williamson [2I] pioneered
an approach based on randomized rounding: Omne rounds an optimal solution
of SDP (G, A) to a feasible solution of SDP,.(G, A). The expected value of the
rounded solution is then related to the one of the original solution, and this gives
an upper bound for K (r,G). Using this basic idea, Goemans and Williamson [21]
showed that for any matrix A: V xV — R that is a Laplacian matrix of a weighted
graph with nonnegative edge weights one has

SDP oo (Kyny A) < (0.878...) ' SDP (K, 0, A).
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1.3. Applications and references. Grothendieck’s inequality is a fundamental
inequality in the theory of Banach spaces. Many books on the geometry of Banach
spaces contain a substantial treatment of the result. We refer for instance to the
books by Pisier [43], Jameson [25], and Garling [20].

During the last years, especially after Alon and Naor [3] pointed out the con-
nection between the inequality and approximation algorithms using semidefinite
programs, Grothendieck’s inequality has also become a unifying and fundamental
tool outside of functional analysis.

It has applications in optimization (Nesterov [4I], Nemirovski, Roos, Terlaky
[40], Megretski [36]), extremal combinatorics (Alon, Naor [3]), system theory (Ben-
Tal, Nemirovski [8]), machine learning (Charikar, Wirth [I3], Khot, Naor [26], 27]),
communication complexity (Linial, Shraibman [33]), quantum information the-
ory (Tsirel’son [49], Regev, Toner [40]), and computational complexity (Khot,
O’Donnell [29], Arora, Berger, Kindler, Safra, Hazan [5], Khot and Naor [28],
Raghavendra, Steurer [44]).

The references above mainly deal with the combinatorial rank r = 1 case, when
S% = {—1,+1}. For applications in quantum information (Briét, Buhrman, Toner
[10]) and in statistical mechanics (mentioned in Alon, Makarychev, Makarychev,
Naor [2], Kindler, Naor, Schechtman [30]) the more geometrical case when r > 1 is
of interest — this case is the subject of this paper.

In statistical mechanics, the problem of computing SDP, (G, A) is known as
finding ground-states of the n-vector model. Introduced by Stanley [48], the n-
vector modeﬂ describes the interaction of particles in a spin glass with ferromagnetic
and anti-ferromagnetic interactions.

Let G = (V, E) be the interaction graph where the vertices are particles and
where edges indicate which particles interact. The potential function A: VxV — R
is 0 if w and v are not adjacent, it is positive if there is ferromagnetic interaction
between u and v, and it is negative if there is anti-ferromagnetic interaction. The
particles possess a vector-valued spin f: V — S™~!. In the absence of an external
field, the total energy of the system is given by the Hamiltonian

H(f)=- Y Awv)fw)-f().

{uv}elE

The ground state of this model is a configuration of spins f: V — S"~! which mini-
mizes the total energy, so finding the ground state is the same as solving SDP,, (G, A).
Typically, the interaction graph has small chromatic number, e.g. the most common
case is when G is a finite subgraph of the integer lattice Z™ where the vertices are
the lattice points and where two vertices are connected if their Euclidean distance
is one. These graphs are bipartite since they can be partitioned into even and odd
vertices, corresponding to the parity of the sum of the coordinates.

We also briefly describe the connection to quantum information theory. In an
influential paper, Einstein, Podolsky, and Rosen [I7] pointed out an anomaly of
quantum mechanics that allows spatially separated parties to establish peculiar

IThe case n = 1 is known as the Ising model, the case n = 2 as the XY model, the case n = 3 as
the Heisenberg model, and the case n = co as the Berlin-Kac spherical model.
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correlations by each performing measurements on a private quantum system: en-
tanglement. Later, Bell [7] proved that local measurements on a pair of spatially
separated, entangled quantum systems, can give rise to joint probability distribu-
tions of measurement outcomes that violate certain inequalities (now called Bell
inequalities), satisfied by any classical distribution. Experimental results of As-
pect, Grangier, and Roger [6] give strong evidence that nature indeed allows distant
physical systems to be correlated in such non-classical ways.

XOR games, first formalized by Cleve, Hgyer, Toner, and Watrous [14], consti-
tute the simplest model in which entanglement can be studied quantitatively. In
an XOR game, two players, Alice and Bob, receive questions u and v (resp.) that
are picked by a referee according to some probability distribution 7(u,v) known
to everybody in advance. Without sharing their questions, the players have to
answer the referee with bits a and b (resp.), and win the game if and only if the
exclusive-OR of their answers a @ b equals the value of a Boolean function g(u,v);
the function g is also known in advance to all three parties.

In a quantum-mechanical setting, the players determine their answers by per-
forming measurements on their shares of a pair of entangled quantum systems. A
state of a pair of d-dimensional quantum systems is a trace-1 positive semidefinite
operator p € (CfOXdZ. The systems are entangled if p cannot be written as a con-
vex combination of tensor products of d-by-d positive semidefinite matrices. For
each question u, Alice has a two-outcome measurement defined by a pair of d-by-d
positive semidefinite matrices {A%, AL} that satisfies A2 + AL = I, where I is the
identity matrix. Bob has a similar pair {BY, Bl} for each question v. When the
players perform their measurements, the probability that they obtain bits ¢ and b
is given by Tr(A? @ BYp).

The case d = 1 corresponds to a classical setting. In this case, the maximum
winning probability equals (1 + SDP1(G, A))/2, where G is the complete bipar-
tite graph with Alice and Bob’s questions on opposite sides of the partition, and
Au,v) = (—=1)9) 7 (u,v)/2 for pairs {u,v} € E and A(u,v) = 0 everywhere else.

Tsirel’son [49] related the maximum winning probability w}(m,g) of the game
(7, g), when the players are restricted to measurements on d-dimensional quantum
systems, to the quantity SDP,.(G, A). In particular, he proved that

14 SDP10e4q (G,A) " 1+ SDPyy(G, A
L2g | S wd(ﬂ—vg) S 22d( )

The quantity SDP,.(G, A) thus gives bounds on the maximum winning probability
of XOR games when players are limited in the amount of entanglement they are
allowed to use. The rank-r Grothendieck constant K (r, G) of the bipartite graph G
described above gives a quantitative bound on the advantage that unbounded en-
tanglement gives over finite entanglement in XOR, games.

1.4. Our results and methods. The purpose of this paper is to prove explicit
upper bounds for K (r,G). We are especially interested in the case of small r and
graphs with small chromatic number, although our methods are not restricted to
this. Our main theorem, Theorem which will be stated shortly, can be used to
compute the bounds for K(r,G) shown in Table [I| below.

Theorem actually gives, for every r, a randomized polynomial-time approx-
imation algorithm for the optimization problem SDP,.(G, A). So in particular it
provides a randomized polynomial-time approximation algorithm for computing
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r bipartite G tripartite G
1 1.782213. .. 3.264251 . ..
2 1.404909. . . 2.621596 . ..
3 1.280812... 2.412700. ..
4 1.216786. . . 2.309224 . ..
5 1.177179. .. 2.247399. ..
6 1.150060. .. 2.206258. ..
7 1.130249. .. 2.176891 ...
8 1.115110... 2.154868 . ..
9 1.103150. .. 2.137736. ..
10 1.093456. . . 2.124024. ..

TABLE 1. Bounds on Grothendieck’s constant.

the ground states of the 3-vector model, also known as the Heisenberg model, in
the lattice Z® with approximation ratio 0.78... = (1.28...)~!. This result can be
regarded as one of the main contributions of this paper.

To prove the main theorem we use the framework of Krivine and Haagerup
which we explain below. Our main technical contributions are a matrix version of
Grothendieck’s identity (Lemma and a method to construct new unit vectors
which can also deal with nonbipartite graphs (Lemma .

The strategy of Haagerup and Krivine is based on the following embedding
lemma:

Lemma 1.1. Let G = (V, E) be a graph and choose Z = (Z;;) € R™*IV| at random
so that each entry is distributed independently according to the normal distribution
with mean 0 and variance 1, that is, Z;; ~ N(0,1).

Given f: V — SWVI=1 there is a function g: V. — SIVI=1 such that whenever u
and v are adjacent in G, then

Zo0) | 2o |y
1Zg(w)| |1Zg(v)] = B(r,G) f(u) - f(v)

for some constant 5(r,G) depending only on r and G.

In the statement above we are vague regarding the constant S(r,G). We will
soon define more precisely the constant B(r,G), and in Section |4 we will provide
a precise statement of this lemma (cf. Lemma there). Right now this precise
statement is not relevant to our discussion.

Now, the strategy of Haagerup and Krivine amounts to analyzing the follow-
ing four-step procedure that yields a randomized polynomial-time approximation
algorithm for SDP,.(G, A):

Algorithm A. Takes as input a finite graph G = (V, E) with at least one edge and
a symmetric matrix A: V x V — R, and returns a feasible solution h: V — S™1
of SDP,.(G, A).

(1) Solve SDP..(G, A), obtaining an optimal solution f: V — SIVI=1,
(2) Use f to construct g: V — SIVI=1 according to Lemma
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(3) Choose Z = (Z;;) € R™*IVI at random so that every matrix entry Z;; is
distributed independently according to the standard normal distribution
with mean 0 and variance 1, that is, Z;; ~ N(0,1).

(4) Define h: V — S"~! by setting h(u) = Zg(u)/||Zg(u)].

To analyze this procedure, we compute the expected value of the feasible solu-
tion h. Using Lemma (1.1 we obtain

SDPT(G,A)>E[ > A(u,v)h(u)~h(v)]
{u,v}€E
= A(u, v)E[Rh(u) - h(v)]
(2) {u%EE
=B(r,G) > A(u,v)f(u)- f(v)
{uv}eFE

= B(r,G)SDP (G, A),

and so we have K (r,G) < B(r,G) .

If we were to skip step (2) and apply step (4) to f directly, then the expecta-
tion E[A(u) - h(v)] would be a non-linear function of f(u) - f(v), which would make
it difficult to assess the quality of the feasible solution h. The purpose of step (2) is
to linearize this expectation, which allows us to estimate the quality of h in terms
of a linear function of SDP,.(G, A).

The constant S(r, G) in Lemma is defined in terms of the Taylor expansion
of the inverse of the function E,.: [-1,1] — [—1, 1] given by

Zx Zy }

Er-v)=FE|- 22 . 29
o(#-y) {ann 1Zy]

where z, y € S and Z = (Z;;) € R"** is chosen so that its entries are indepen-
dently distributed according to the normal distribution with mean 0 and variance 1.
The function FE, is well-defined since the expectation above is invariant under or-
thogonal transformations.

The function E; ! has the Taylor expansion

0o
Er_l (t) _ Z b2k+1t2k+17
k=0

with a positive radius of convergence around zero, as will be shown in Section
Our main theorem can be thus stated:

Theorem 1.2. The Grothendieck constant K (r,G) is at most 3(r, G)~! where the
number B(r,G) is defined by the equation

1

(3) Z bk 1| B(r, G = 19(57)_17

k=0

where bag11 are the coefficients of the Taylor expansion of E. 1 and where 9(Q) is
the theta number of the complement of the graph G. (In particular, there exists a

number satisfying (3).)
(For a definition of the Lovdsz theta number of a graph, see in Section )
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The Taylor expansion of E, is computed in Section [2] and the Taylor expansion
of E7!is treated in Section A precise version of Lemma is stated and proved
in Section following Krivine [32]. As we showed above, this lemma, together with
Algorithm A, then implies Theorem In Section [6] we discuss how we computed
Table We computed the entries numerically and we strongly believe that all
digits are correct even though we do not have a formal mathematical proof.

We finish this section with some remarks. When r = 1 and G is bipartite, The-
orem specializes to Krivine’s [32] bound for the original Grothendieck constant
Ko = limy, 00 K(1, K, ). For more than thirty years this was the best known
upper bound, and it was conjectured by many to be optimal. However, shortly
after our work appeared in preprint form, Braverman, Makarychev, Makarychev
and Naor [9] showed that Krivine’s bound can be slightly improved. In this light
we now believe that the upper bound in Theorem is not tight.

The best known lower bound on K¢ is 1.676956..., due to Davie [15] and
Reeds [45] (see also Khot and O’Donnell [29]).

When r = 2 and G is bipartite, Theorem specializes to Haagerup’s [23] upper
bound for the complex Grothendieck constant K§; this is currently the best known
upper bound for this constant.

Using different techniques, in [12] we proved for the asymptotic regime where r
is large that K(r,K,,) = 1+ ©(1/r) holds. A recent argument of Naor and
Regev [39] (which was used to show that specific variations of Algorithm A exist
whose approximation quality become arbitrary close to the Grothendieck constant)
implies that Theorem can also be used to prove an upper bound of 14+ O(1/r).

For graphs with large chromatic number Alon, Makarychev, Makarychev, and
Naor [2] give the best known bounds for K(1,G). They prove a logarithmic de-
pendence on the chromatic number of the graph (actually on the theta number of
the complement of G, cf. Section whereas our methods only give a linear depen-
dence. Although our main focus is on small chromatic numbers, for completeness
we extend the results of [2] for large chromatic numbers to r > 2 in Section

2. A MATRIX VERSION OF GROTHENDIECK’S IDENTITY

In the analysis of many approximation algorithms that use semidefinite pro-
gramming the following identity plays a central role: Let w, v be unit (column)
vectors in R™ and let Z € R ™ be a random (row) vector whose entries are dis-
tributed independently according to the standard normal distribution with mean 0
and variance 1. Then,

2
= — arcsin(u - v).

E[sign(Zu) sign(Zv)] =]E{ o ] ™

[Zull [|Zv]]

For instance, the celebrated algorithm of Goemans and Williamson [2I] for
approximating the MAX CUT problem is based on this. The identity is called
Grothendieck’s identity since it appeared for the first time in Grothendieck’s work
on the metric theory of tensor products [22] Proposition 4, p. 63] (see also Diestel,
Fourie, and Swart [L6]).

In this section we extend Grothendieck’s identity from vectors to matrices by
replacing the arcsine function by a hypergeometric function, defined as follows. For
any nonnegative integers p, ¢, real numbers a1, ag, ..., a, and strictly positive real
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numbers by, b, ..., by, there is a hypergeometric function

a1,02,...,0a = (a1)r(a2)k - (ap)k a*
F ) ) s Yp ,Z‘) — P —,
P ( bi,ba, ..., b kzzo (01)k (b2) - - (bg )i k!

where

(e =clc+1)(c+2)---(c+k—1)
denotes the rising factorial function. Conforming with the notation of Andrews,
Askey and Roy [4], if p = 0 we substitute the absent parameters a; by a horizontal

line: L
OF‘I(bl,bQ,...,bq;x)'

Lemma 2.1. Let u, v be unit vectors in R™ and let Z € R"™*"™ be a random ma-
trix whose entries are distributed independently according to the standard normal
distribution with mean O and variance 1. Then,

Zu  Zv I((r+1)/2)\° 1/2,1/2 )
a2 eSS s . F ’ (-
) =3 (e ) wen (e
L((r+1)/2)\* i (1/2)k(1/2)g (u- )+
(r/2) (r/2+ 1)k k! '
Before proving the lemma we review special cases known in the literature. If
r =1, then we get the original Grothendieck’s identity:

(4)

I 3N

k=0

E[sign(Zu) sign(Zv)] = % arcsin(u - v)

_ i(+(;) <“'3“>3+(;;j> <“'5“>5+...).

The case r = 2 is due to Haagerup [23]:
Zu Zv } 1

= .= | = — (Bu-v)—(1-(u-v)?*)K(u-v)
LlZUll 120]] o b )

S O N

where K and E are the complete elliptic integrals of the first and second kind.
Note that on page 201 of Haagerup [23] 7/2 has to be m/4. Briét, Oliveira, and
Vallentin [IT] computed, for every r, the zeroth coefficient of the series in , which
is the Taylor series of the expectation.

The following elegant proof of Grothendieck’s identity has become a classic: We
have sign(Zu)sign(Zv) = 1 if and only if the vectors w and v lie on the same
side of the hyperplane orthogonal to the vector Z € R'*™. Now we project this n-
dimensional situation to the plane spanned by u and v. Then the projected random
hyperplane becomes a random line. This random line is distributed according to the
uniform probability measure on the unit circle because Z is normally distributed.
Now one obtains the final result by measuring intervals on the unit circle: The
probability that « and v lie on the same side of the line is 1 — arccos(u - v) /7.

We do not have such a picture proof for our matrix version. Our proof is based
on the rotational invariance of the normal distribution and integration with respect
to spherical coordinates together with some identities for hypergeometric functions.
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A similar calculation was done by Konig and Tomczak-Jaegermann [31]. It would
be interesting to find a more geometrical proof of the lemma.

For computing the first coefficient of the Taylor series in [11] we took a slightly
different route: We integrated using the Wishart distribution of 2 x 2-matrices.

Proof of Lemma[2.1 Let Z; € R™ be the i-th row of the matrix Z, withi = 1,...7.
We define vectors

Zl~u Zl"U

ZQ'U ZQ"U
T = . and Yy = )

o U Ly v

so that we have x-y = (Zu)-(Zv). Since the probability distribution of the vectors Z;
is invariant under orthogonal transformations we may assume that v = (1,0,...,0)
and v = (t,v/1 —t2,0,...,0) and so the pair (z,y) € R"xR" is distributed according
to the probability density function (see e.g. Feller [I9, p. 69])

. cx— 2t - :
(2my/1— ) " exp (J” T2y ty y)

2(1 — 12

r-x—2r-y+y-y
~en/im [ o ye"p<‘ 20— 12) >df”dy'

By using spherical coordinates z = a&, y = 81, where «, 8 € [0,00) and &, € S™ 1,
we rewrite the above integral as

Jfeorton () [ e (5)

duw (&) dw(n)dadp,

where w is the surface-area measure, such that w(S" 1) = 27/2/T'(n/2).
If r =1, we get for the inner double integral

/So Soé-neXp (?iﬁ) dw (&) dw(n)
= 4sinh< oft )
1—¢2

_oapt - aft 2
=4 —poh (3/2 ’(2(1—t2)> )

Now we consider the case when r > 2. Since the inner double integral over the
spheres only depends on the inner product p = £ - 7 it can be rewritten as

1
w(ST’Z)W(ST’l)[lpexp <1aft£> (1= p») =32 dp,

where
A r—1/2

L(r/2)T((r —1)/2)°

(ST 2 w(S77Y) =
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Integration by parts yields

1
2\ (r—3)/2 aftp
/711)(1*1) )/ eXp<1_t2> d

t ! ~ t
e L0 e (720 )

The last integral can be rewritten using the modified Bessel function of the first
kind (cf. Andrews, Askey, Roy [, p. 235, Exercise 9])

1
2\ (r—1)/2 aftp
[ e (220 q

=Hv+mmnﬁ(““*%yﬂnm(ﬁ@).

afft 2

One can write I,.; as a hypergeometric function (cf. Andrews, Askey, and Roy [4
(4.12.2)])

2 2k (.1?/2)r/2 - N2

I 2 7"/2 .'I;/ _ F . — )
r/2(x) = (¢/2) Zk'I‘ (r/2+k+1) I(r+2)/2)"" (T’+2)/2’(2)
Putting things together, we get

1
w(S"Hw(S™7) [1pexp (fftp) (1-p*) =92 dp

12

_ AxT aﬁt - aft 2
T /2% ﬁ”«w+wr<m—w>>

Notice that the last formula also holds for r = 1. So we can continue without case
distinction.
Now we evaluate the outer double integral

[ enren(- (2+52>>0F1<( e (fﬁ;))2> dadp.

Here the inner integral equals

[ oo (- ) o <<r+2>/2 | (2(1@))) o

and doing the substitution v = a?/(2(1 — t?)) gives

2(r=1)/2(1 _ 42)(r+1)/2 /OO Y2 exp(=y) oFy L L) L BY* dy
0 (r+2)/272(1 —#2) ’

which is by the Bateman Manuscript Project [I8] p. 337 (11)] equal to

2
R e (st e T
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Now we treat the remaining outer integral in a similar way, using [1I8, p. 219 (17)],
and get that

e (o) e (L9 )

= 20— ey ey (TR0 ).

By applying Euler’s transformation (cf. Andrews, Askey, and Roy [4, (2.2.7)])

(r+1)/2,(r+1)/2 5\ _ —r 1/2,1/2
21 ( (r +2)/2 ’t2> = (=) R ((r+2)/2 ’tQ)

and after collecting the remaining factors we arrive at the result. (I

3. CONVERGENCE RADIUS

To construct the new vectors in the second step of Algorithm A we will make
use of the Taylor series expansion of the inverse of F,.. Locally around zero we can
expand the function E ! as

0o
(5) Er_l(t) = Zb2k+1t2k+l,
k=0

but in the proof of Lemma [4.1] it will be essential that this expansion be valid on
[—B(r,G), B(r,G)]. In the case r = 1 we have E;'(t) = sin((r/2)t), whose Taylor
expansion has infinite convergence radius. In this section we show that for all » > 2
the convergence radius of the Taylor series of E, ! is also large enough for our
purposes. The case r = 2 was previously dealt with by Haagerup [23], who proved
that the convergence radius is at least 1. Our proof, which applies uniformly for all
cases r > 2 (but gives a smaller radius for r = 2), is based on elementary techniques
from complex analysis.

Let D = {z € C: |z| < 1} denote the open unit disc and for a real number
¢ > 0 define ¢ = {z € C: |z] < ¢}. Since the function E, can be represented by
a Taylor series in [—1, 1], it has an analytic extension &, in I given by

O ee-cnn(J3Fe) ol <W> |

Theorem 3.1. Let r be a positive integer. Then, the Taylor series has conver-
gence radius at least |E,(7)].

Theorem follows from Lemma [3.2] and Lemma [3.5] below, by observing that
since &, equals E, on [—1,1], &1 equals E; ! on [E,.(—1), E.(1)].

-
Lemma 3.2. Let r be a positive integer and let ¢, be the number

(7) ¢, = min{ |E.(e")| : t € [0,27] }.

Then the Taylor series at the origin of the function £ has convergence radius at

least c,..

For the proof of Lemma we collect the following two basic facts (Propo-
sition and Proposition about the function &,, which are consequences of
Rouché’s theorem. The proof strategy can also be found in the classical lectures [24]
by Hurwitz.
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Proposition 3.3. The function &, has exactly one root in D and this is a simple
root located at the origin.

Proof: Since £.(0) = 0 and &/.(0) = C, # 0, the function &, has a simple root at
the origin. Recall that the Taylor coefficients aq, as,as,... of £. are nonnegative,
that a1 = C, and that £.(1) = E,.(1) = Y., ax = 1. For any z € 9D, the triangle
inequality therefore gives

(8) E0(2) — Cpz| =

o0 o0
Zakzk SZakzl—CT.
k=2 k=2

In [I0] it is shown that C, increases with r. Now, since C; = 2/7 > 1/2, we have
1-C, < C, and (8) thus implies |E,(z) — Crz| < C;. = |Cz|. By Rouché’s theorem,
the function &, therefore has the same number (counting multiplicities) of zeros in
D as the function C,.z does: one. O

Proposition 3.4. For any point z € ¢, D there is exactly one point w € D such
that &, (w) = 2.

Proof: 1If z = 0 the claim follows by Proposition [3.3] Fix a point z in the punctured
disc ¢, D\ {0} and define the function g by g(w) = &.(w) — z. For any w € JD on
the boundary of the unit disc,

&r(w) — g(w)| = |2] < ¢ < [Er(w)].

Hence, by Rouché’s Theorem the functions &, and g have an equal number of roots
in D. It now follows from Proposition that the function g has exactly one root
in the punctured unit disc D\ {0} and that this is a simple root, which proves the
claim. (]

Proof of Lemma[3.2: To get the Taylor series of £ ! at the origin we express this
function as a contour integral whose integrand we develop into a geometric series.

Let f be any function that is analytic in an open set of C that contains the closed
unit disc D. For z € ¢, D consider the contour integral

1 £1(w)
1) = 5 /6 rw) g du,

where the integral is over the counter-clockwise path around the unit circle. By
Proposition [3.4] the function g(w) = &,.(w) — z has exactly one root in D and this
is a root of order one. Hence, by the residue theorem, I(z) is the value of f at
the root of g. This root is £!(2), so we have I(z) = f(£'(z)). By taking the
function f(w) = w we thus get

VNS / & (w)
(9) E 7 (2) = 371 o w £ (w) —> dw.
We expand the fraction appearing in the integrand of @ as
El(w) El(w) z 22
1 r — or 1 o)
(10) Ew) -2 & T Ew T Ewe T

The above geometric series converges uniformly for any w € JD and z € ¢,.D,
since then |z| < ¢, and by the definition of ¢, (given in ), we have |&,.(w)| > ¢,.
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Substituting the fraction in the integrand of (9)) by the right-hand side of gives
the Taylor series at the origin

— [ 1 &l (w) _

11 — W) j

" ; <2m' /aD“’ & (w)i d“’) a
which converges to £1(z) in ¢, D. O

Lemma 3.5. Letr > 2 and ¢, be as in (7). Then ¢, = |,(i)].
Proof: Inspection of the definition of &, (given in @) shows that it suffices to
consider the function
_ 1/2,1/2
Frlt) = 2By < r/2+1°° )

and show that |F,.(¢)| is minimized at ¢ = 7. To this end we write |F,.(t)]? =
R, (t)241,.(t)?, where R, and I, are the real and the imaginary part of this function:

_i 1/2 cos(kt)
B =2+ )k K ’

& (1/2)7 sin(kt)
_Ig (r/2+1), k'~

We have I.(m) = 0 so if R.(t)? attains a minimum at t = 7 we are done.
Notice that for ¢t € [0,7] we have R.(m +t) = R.(w —t). We claim that the
derivative (R, (t)?)" = 2R, (t)R.L(t) is strictly negative for ¢ € (0,7). Since R,(t)?
is nonnegative and symmetric around = it then follows that its minimum on [0, 7]
is indeed attained at .

Claim 1. The function R, is strictly positive on (0,).

PROOF: Vietoris’s theorem (see [4, Theorem 7.3.5]) states that for any positive
integer n and real numbers dy,ds,...,d, that satisfy dy > dy > --- > d,, > 0 and
2kd2k (Qk — ].)dgk 1, k > ]. we have

de cos(kt) >0 for 0 <t <.

It is easy to check that the series R,.(t) satisfies the conditions of Vietoris’s theorem

with dj, = % when r > 2, so the claim follows. ¢

Claim 2. The derivative R.. is strictly negative on (0, 7).

PROOF: The function R is given by

S e (1/2); :
(12) R.(t)=— 2 m k sin(kt).

We show that the ratios appearing on the right-hand side of are the moments
of a finite nonnegative (Borel) measure p on [0, 1],

(1/2);

(13) W:/o sEdu(s).
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To this end, we write

w028 (TG0 (Tl ) (rEed

(r/2+1)kk!  \ T'(3)2 L(k+%+1) rk+1) )"
For real numbers a,b > 0 such that a —b < 0, define the sequence (dj)?2, by
dp =T(k+a)/T(k+b). Let Ady = dp+1 — di be the linear difference operator

and for positive integer ¢ recursively define Afd, = A(A*~'d;). By the formula
I'(z + 1) = aT'(x), we have

k+a a—>
Ady = —1)d; = d
4§ <kz+b ) k (k+b) ko

and induction on £ gives

(a—b)a—b—1)---(a—b—L+1)

Aldy, =
k (k +b)y

dy;.

Since a—b is negative this shows that (—1)*Adj, > 0 for every £, which is to say that
the sequence (dy )y is completely monotonic. Hausdorff’s theorem [19, pp. 223] says
that a sequence is completely monotonic if and only if it is the moment sequence
of some finite nonnegative Borel measure on [0,1]. In other words, there exist
independent [0, 1]-valued random variables X and Y and normalization constants
Cx,Cy > 0 such that for every integer k£ > 0, the right-hand side of can be
written as

I(3+1)

I(3)?

CxE[X*| CyE[Y"].
By defining the [0, 1]-valued random variable Z = XY, the above can be written

as CxCy ([(r/2 +1)/T(1/2)?)E[Z*], which gives .
With this, becomes

_ ,i ( /0 L du(s)> Je sin(kt)
—/01 (,i s*k sin(kt)) dp(s)
=0

L ! 5(1 — s?) sin(t) . -
a /0 ((1—25008(75)4-82)2) SRR

R.(t)

where in last line we used the identity

o0 .
1—s? t

Zskksin(kt)z s(1 = 57) sin(t) 5, 0<s<1,

=0 (1 — 2scos(t) + s?)
which follows by differentiating the imaginary part of the Poisson kernel. This
completes the proof. ¢

By combining the two claims, we get that (Rr(t)Q)/ = 2R, (t)R.(t) is strictly

negative on (0, 7), which gives the result. O

Theorem follows by combining Lemmas and
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4. CONSTRUCTING NEW VECTORS

In this section we use the Taylor expansion of the inverse of the function E, to
give a precise statement and proof of Lemma this is done in Lemma For
this we follow Krivine [32], who proved the statement of the lemma in the case of
bipartite graphs. We comment on how his ideas are related to our construction,
which can also deal with nonbipartite graphs, after we prove the lemma.

For the nonbipartite case we need to use the theta number, which is a graph
parameter introduced by Lovédsz [35]. Let G = (V,E) be a graph. The theta

number of the complement of G, denoted by ¥(G), is the optimal value of the
following semidefinite program:

ﬂ(@):min{)\: ZeRVyY,
(15) Z(u,u)=A—1 forueV,
Z(u,v) = -1 for {u,v} € E}

It is known that the theta number of the complement of G provides a lower bound
for the chromatic number of G. This can be easily seen as follows. Any proper
k-coloring of G defines a mapping of V' to the vertices of a (k — 1)-dimensional
regular simplex whose vertices lie on a sphere of radius vk — 1: Vertices in the
graph having the same color are sent to the same vertex in the regular simplex and
vertices of different colors are sent to different vertices in the regular simplex. The
Gram matrix of these vectors gives a feasible solution of .

Lemma 4.1. Let G = (V,E) be a graph with at least one edge. Given a func-
tion f: V — SWVI=1 there is a function g: V. — SIVI=1 such that if u and v are
adjacent,
B, (g(u) - g(v)) = B(r,G) f(u) - f(v).

The constant B(r, G) is defined as the solution of the equation
L
9(G) -1’
where the coefficients bag11 are those of the Taylor series (D).

Recall from Theorem and Lemma that the series has convergence

radius at least ¢, = |€,(¢)]. The proof of Lemma relies on the following propo-
sition.

(16) 3 bkl B(r, G)EH! =

k=0

Proposition 4.2. Let r be a positive integer and G be a graph with at least one
edge. Then, for any t € [—1,1], the series

Z bak+1 (¢ B(r, G))%+1
k=0
converges to E; (¢ 8(r,G)).

Proof: As described in the beginning of Section [3] the case » = 1 follows from the
fact that in that case the convergence radius of the series is infinity. For r > 2,
we consider the series

(17) FO) =3 oo |2,
k=0
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Let 3 = B(r,G) be as in (16). To prove the claim it suffices to show that 3 indeed
exists and that it lies in an interval where the series converges to E, 1. Since G
has at least one edge, we have ¥(G) > 2. Hence, by (16) the number 3 should
satisfy f(8) < 1. Note that f is well defined for any ¢ € (—c,,¢,), which follows
from Theorem and Lemma showing that the series converges in ¢, .

We distinguish two cases based on the behavior of f at the point ¢,.. The first
case is: f(c,) = 4o00. In this case notice that f(0) = 0 and that f is continuous
and increasing on the interval [0, ¢,). Since f(c,) > 1 it follows that there exists
at € (0,c.) such that f(t) = 1. Now, since 0 < f(8) < 1, we see that 3 exists and
lies in the radius of convergence of the series (|9)).

The second case is that f(c,) is finite. Recall that the Taylor series at the origin
of the complex function €1 is given by

oo
(18) Zb2k+122k+1~
k=0

Then, since for any z € D the triangle inequality gives

|3 bora(er2)® | < (),
k=0

the series converges absolutely in the closed disc ¢, D and thus defines a contin-
uous function g : ¢,D — C. By Lemma g equals £ in the open disc ¢, D, but
by continuity of both £ and g, this equality must hold even in its closure ¢, D.
In particular, this implies that the series converges to £t on [—c¢, ¢,].

Next, we argue that 3 < ¢,. Since &, is an odd function, and using Lemma [3.5]

(19) E(i) = agpri®™ T =0 agpia (—1)F = Lic,.
k=0 k=0

Suppose that &.(i) = ic, holds (the other case &.(i) = —ic, follows by the same
argument). Then, the above discussion implies that applying £ to both sides

of gives
o) 00

(20) = (57»)71(1'87-) = Zb2k+1(ic7-)2k+1 =1 Z b2k+1(—1)k63k+1.
k=0 k=0

Taking absolute values of the left- and right-hand sides of gives

oo

o0
1= \z szkﬂ(—l)kfka‘ <Y bk | = fler).
k=0 k=0

Hence, f(8) <1 < f(c,) and from the fact that f is increasing and zero at the
origin we conclude that /3 exists and that 5 € [0, ¢,]. O
Now we prove Lemma [£.1]

Proof of Lemma[].1 We construct the vectors g(u) € S IVI=1 by constructing vec-
tors R(u) in an infinite-dimensional Hilbert space whose inner product matrix co-
incides with the one of the g(u). We do this in three steps.
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In the first step, set H = R!V! and consider the Hilbert space

oo
H = @H®(2k+1),
k=0

For a unit vector © € H, consider the vectors S(z), T'(x) € H given componentwise
by

S(@)i = /Ibat1[B(r, G122k

and

T(@)i = sign(bais1)y/ [bais |B(r, G)2E+122CK+D.
From Proposition it follows that for any vectors z,y € SIVI=1 we have
S(z) - T(y) = Er_l(ﬁ(r, Gz - y),
and moreover

S(z)-S(z) =T(z) -T(z) = Z |bojer1|B(r, G)2HT =

In the second step, let A\ = ¥(G), and Z be an optimal solution of . We

have A > 2 since G has at least one edge. Let J denote the |V|x |V| all-ones matrix
and set

L
IG) -1

A-DU+2) L, (A=1I-Z

2\ 2\

U(é ﬁ).

By applying a Hadamard transformation

I Ui I I\ (A+B 0
B\ 1)V B\ -1)T\ 0 A-B
one sees that U is positive semidefinite, since both A + B and A — B are positive
semidefinite. Define s: V — R2IVI and ¢: V — R2IVI 5o that
s(u) - s(v) = t(u) - t(v) = Au,v) and s(u) - t(v) = B(u,v).

Matrix U is the Gram matrix of vectors (s(u)), ., and (t(v)), .- It follows that
these maps have the following properties:

A:

and consider the matrix

(1) s(u)-t(u)=0forallueV,

(2) s(u)-s(u) =t(u) - t(u ) (HG)—1)/2 for all u € V,
(3) s(u) - s(v) =t(u) - t(v) = 0 whenever {u,v} € E,

(4) s(u)-t(v) = s(v) - t(u) = 1/2 whenever {u,v} € E.

In the third step we combine the previous two. We define the vectors

R(u) = s(u) @ S(f(u)) + t(u) @ T(f(u)).

For adjacent vertices u,v € V we have

R(u) - R(v) = B (B(r, G) f(u) - f(v)),
and moreover the R(u) are unit vectors. Hence, one can use the Cholesky decom-
position of the matrix (R(u) - R(v))uvey € RYSY to define the desired function
g: V= SIVI-1, - O
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We conclude this section with a few remarks on Lemma [4.1] and its proof:

(1) To approximate the Gram matrix (R(u)- R(v)) it is enough to compute the
series expansion of E. ! and the matrix U to the desired precision. The
latter is found by solving a semidefinite program.

(2) Krivine proved the statement of the lemma in the case r = 1 and for
bipartite graphs G; then, ¥(G) = 2 holds. Here, one only needs the first
step of the proof. Also, 5(1,G) can be computed analytically. We have
E;(t) = sin(r/2t) and
Hence, B(1,G) = 2arcsinh(1)/7 = 2In(1 + v/2) /7.

(3) In the second step one can also work with any feasible solution of the
semidefinite program ([15]). For instance one can replace ¥(G) in the lemma
by the chromatic number x(G) albeit getting a potentially weaker bound.

(4) Alon, Makarychev, Makarychev, and Naor [2] also gave an upper bound for
K(1, Q) using the theta number of the complement of G. They prove that

7T/2)2k+1

(—1)%k+1 ((% — 2+ — sinh(n/2t).

K(1,G) < O(logd(Q)),

which is much better than our result in the case of large ¥(G). However,
our bound is favourable when ¥(G) is small. In Section [5| we generalize the
methods of Alon, Makarychev, Makarychev, and Naor [2] to obtain better

upper bounds on K (r,G) for r > 2 and large 9(G).

5. BETTER BOUNDS FOR LARGE CHROMATIC NUMBERS

For graphs with large chromatic number, or more precisely with large 9(G), our
bounds on K(r,G) proved above can be improved using the techniques of Alon,
Makarychev, Makarychev, and Naor [2]. In this section, we show how their bounds
on K(1,G) generalize to higher values of 7.

Theorem 5.1. For a graph G = (V, E) and integer 1 < r < log9(G), we have

K(r,G) <O <W) .

r

Proof: Tt suffices to show that for any matrix A : V x V — R, we have

SDP,.(G, A) > Q (r) SDP (G, A).
log ¥(G)
Fix a matrix A: V x V = R. Let f:V — SIVI=! be optimal for SDP (G, A),
so that
> A(u,v)f(u) - f(v) = SDP(G, A).
{uv}eFlE
Let A = 9(G), and Z : V xV — R be an optimal solution of (I5). Since

the matrix Z is positive semidefinite we get from its Gram decomposition column
vectors z(u) € RIV! for u € V. From the properties of Z it follows that z(u) - z(u) =
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A —1and z(u) - z(v) = —1 if {u,v} € E. Denote by 0 € RIVI the all-zero vector.
We now define vectors s(u),t(u) € R2VI+1 as

L [z

1 0
s(u) = 5y (1) and t(u) = — z(lu)

VA

It is easy to verify that these vectors have the following dot products:
(1) s(u)-s(u) =t(u) - t(u) =1forallu e V.
(2) s(u)-t(u) =1/ for all u,v € V.
(3) s(u) - s(v) =t(u) - t(v) =0 for all {u,v} € E.

Let H be the Hilbert space of vector-valued functions h : RVl — R"™ with
inner product

(9,h) =E[g(2) - h(Z)],
where the expectation is taken over random r x |V| matrices Z whose entries are
iid. N(0,1/r) random variables.

Let R > 2 be some real number to be set later. Define for every u € V the
function g, € H by

ZIW || Zf(u)]| < R

% otherwise.

gu(Z) =

Notice that for every matrix Z € R™IV| the vector g,(Z) € R” has Euclidean
norm at most 1. It follows by linearity of expectation that

SOP, (G ) 2B Y Aw0)au(2)- 02| = X Awo)nn)

{uv}eE {uv}eE

We proceed by lower bounding the right-hand side of the above inequality.
Based on the definition of g, we define two functions h?, hl € H by

W=z wa mz= Y2

For every u € V, define the function H, € RV ® H by

1
H,= Zs(u) @ hY + 2\ t(u) @ hl.

We expand the inner products (g, g,) in terms of f(u) - f(v) and (H,, H,).
Claim 3. For every {u,v} € E we have

1
R2
PRrOOF: Simply expanding the inner product (H,, H,) gives

(9us o) flu) - f(v) = (Hu, Hy).

(Ho, Hy) = 20500 (0 40y 432 (1) - 1)) (1, 1)

].6 u? v u?r v

+ 2 (st - #0)) (0. 1L) + (1) - 0) (51 D).
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It follows from property 3 of s and ¢ that the above terms involving s(u) - s(v) and
t(u) - t(v) vanish. By property 2, the remaining terms reduce to

(08w + i) = 15 | (2 1 02) - (22 - 0u(2))

38 (0@ (2 v a2

Expanding the first expectation gives

BT 2] (900) B | ZH 0,2)] 4 [0u(2) - 202
and expanding the second gives
R2E[f(u)TZTZf(U)] - (guvgv) +E [ZJCRSU’) 'gv(Z):| — K l:gu(Z) . Z'J‘CR@] .

Adding these two gives that the last two terms cancel. Since E[ZTZ] = I, what
remains equals

22 )+ F(0) = (9090,

which proves the claim. ¢

From the above claim it follows that

> A(u,v)(gu,gv)Z%SDP (G, A) = > Alu,v)(H,, H,)

{u,v}eE {u,v}eE
1
s (2 2
> (R2 max | H.| ) SDP (G, A),

where || H,||? = (H,, H,).
By the triangle inequality, we have for every u € V|

1 S| Z ?
i < (G180 + 22101 < 2 (5 + 2R | 22 — 0,00

By the definition of g,, the vectors Z f(u) and g, are parallel. Moreover, they
are equal if ||Z f(u)| < R. Since f(u) is a unit vector, the r entries of the random
vector Z f(u) are i.i.d. N(0,1/r) random variables. Hence,

E[ ZJ;; M / ]| > R}(H;” 1) (%)T/Qe—rllz\lzﬂdx

/ /S (=) (55) e s o

r/2 2/
e P 4dp,
< 7 | ’

where @, is the unique rotationally invariant measure on S"~!, normalized such
that ©,.(S"~1) = r"/2/T(r/2). Using a substitution of variables, we get

o r1)/2_p 41 rR2
gy 1) )

where I'(a, x) is the lower incomplete Gamma function [4, Eq. (4.4.5)].
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Collecting the terms from above then gives the bound

2
1 1 20+D/2 g1 rR2
21) SDP(G,A) > = | 1= | 5+ A==l (“o= 555 ) | | SDP(G, 4).
(21) SDP.(G,4) > o <2+ e (5 (G, 4)
The bound in the theorem follows by setting R as small as possible such that the
above factor between brackets is some positive constant.

By Stirling’s formula, there is a constant C; > 0 such that I'(z) > Ce~ %z~ 1/2
holds (see for example Abramowitz and Stegun [I, Eq. (6.1.37)]). Hence, for some
constants ¢, C' > 0, we have

2(7"+1)/2 eNT/2
(22) < (%)
VT (3) r

The power series of the incomplete gamma function [I, Eq. (6.5.32)] gives that
if a < x, for some constant Cy > 0, the inequality I'(a,x) < Cox®e~" holds. As
R > 2, for some constants d, D > 0, we have

r+1 rR? ro\T/2
(23) F( > ’2>§D\”<dm) -

Putting together estimates and gives
20 t1)/2 /41 rR2 c \"/?
A r V) < obyea (—) .
Vi (3) ( 2 2 ) s OOV (g
Since 7 < log A there is some constant C’ such that for R? = C’(logA)/r, the

above value is less than 1/4. It follows that for this value of R, Inequality is
nontrivial and we get the result. ([

6. NUMERICAL COMPUTATION OF TABLE [I]

Table [1] shows numerical estimates of 1/8(r, G) which can be obtained using the
Taylor polynomials of f given by

M
Fua(B) =Y lbaxsa [ 874
k=0

for positive integers M. The numerical estimates of §(r, G) can be obtained by solv-
ing for far(8) = 1/(9(G) —1) using a computer program such as the PARI/GP [42]
code given below. We strongly believe that all the digits of the table are correct
but our computations are just numerical and do not yield a formal proof. Since we
also believe that our bound is not sharp, K (r, G) < 8(r, G) !, we did not make the
effort to transform the numerical computations into rigorous proofs.
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Source code 1 PARI/GP [42] code to generate Table[l]

\p 100
M = 100
r =2

rhs = 1

Er = 0 + 0(t~(2*n+2))

for(k=0, M, Er = Er + (gamma(1/2+k)"2 *

gamma (r/2+1))/(gamma(1/2) "2 * gamma(r/2+1+k) * gamma(k+1)) *
£t~ (2%k+1))

Er = 2/r * (gamma((r+1)/2)/gamma(r/2))"2 * Er

Erinv = serreverse(Er)

fpol = 0
for(k=0, M, fpol = fpol + abs(polcoeff (Erinv,2%k+1))*t~(2*¥k+1))

beta_rG = polroots(fpol-rhs) [1]
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