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Jop Briëta,1,∗, Harry Buhrmana,1, Troy Leeb, Thomas Vidickc

a
CWI and University of Amsterdam. Science Park 123, 1098 SJ, Amsterdam, The

Netherlands.
b
Centre for Quantum Technologies, Block S15, 3 Science Drive 2 Singapore 117543

c
Computer Science Division, 615 Soda Hall, University of California at Berkeley, Berkeley,

CA 94720, USA

Abstract

We prove that the Banach algebra formed by the space of compact operators
on a Hilbert space endowed with the Schur product is a quotient of a uniform
algebra (also known as a Q-algebra). Together with a similar result of Pérez-
Garćıa for the trace class, this completes the answer to a long-standing question
of Varopoulos.
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In this paper, we consider the commutative Banach algebras formed by p-
Schatten spaces for 1 ≤ p ≤ ∞ on the Hilbert space �2 endowed with the Schur
product. In particular, we deal with the problem of determining if these algebras
are quotients of a uniform algebra (Q-algebra).

The spectral theorem asserts that the space of compact operators on �2,
which we denote by S∞, consists of the operators A that admit a representation
of the form

A =
∞�

i=1

λi�·, ei�fi,

where (ei)i and (fi)i are orthonormal bases for �2 and the sequence (λi)i ⊂ R
satisfies λ1 ≥ λ2 ≥ · · · ≥ 0 and limi→∞ λi = 0. The space S∞ is endowed
with the norm �A� = sup{|�x,Ay�| : �x�, �y� ≤ 1}. For 1 ≤ p < ∞, the
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Schatten p-norm of A is given by (Tr|A|p)1/p where |A| = (A∗A)1/2. The p-
Schatten space Sp ⊆ S∞ is the subspace of compact operators that have finite
Schatten p-norm. Common examples of these spaces are the trace class S1

and the Hilbert-Schmidt operators S2. The Schur product ∗ (also known as
the Hadamard product) is a continuous and commutative multiplication for S∞
defined as the entry-wise product when the elements of S∞ are represented by
matrices using the canonical basis for �2. Endowed with the Schur product, p-
Schatten spaces form the commutative Banach algebras (Sp, ∗). A commutative
Banach algebra is said to be uniform if it is isometrically isomorphic to a closed
subalgebra of C(K) the space of continuous functions on a closed Hausdorff
topological vector space K.

Definition 1. Let X be a commutative Banach algebra. Then X is a Q-algebra
if there exists a uniform algebra Y and a closed ideal I ⊆ Y such that X is
isomorphic, as a Banach algebra, to the quotient algebra Y/I.

The most interesting feature of Q-algebras, discovered by Cole (see [20]),
is that they are isometrically isomorphic to a closed (commutative) subalge-
bra of B(H), the algebra of bounded operators on a Hilbert space. In other
words, Q-algebras are commutative operator algebras. In general, the converse
is false [18], but Tonge [16] showed that it is true for every algebra generated by
a set of commuting Hilbert-Schmidt operators when equipped with the regular
matrix product.

Davie [5] and Varopoulos [17] proved that the Banach algebra (�p, ∗) is a
Q-algebra for all 1 ≤ p ≤ ∞. Since the space of Hilbert-Schmidt operators is
isometrically isomorphic to �2 it follows immediately that (S2, ∗) is also a Q-
algebra. Varopoulos [19] asked the natural question if the same is true for all
non-commutative analogues (Sp, ∗).

Is it true that (Sp, ∗) is a Q-algebra for all 1 ≤ p ≤ ∞?

Recently, progress on this question was made by Le-Merdy [12] and Pérez-
Garćıa [13], who proved that the property holds true for all 2 ≤ p ≤ 4 and
1 ≤ p ≤ 2, respectively. Mantero and Tonge [11] proved that (S∞, ∗) fails to be
a 1-summing algebra, which requires slightly stronger conditions than for being
a Q-algebra. Nevertheless, in this paper we give a positive result for the high
end of the spectrum.

Theorem 1. The Banach algebra (S∞, ∗) is a Q-algebra.

A related result of Varopoulos himself [17] which characterizes the algebras
(Sp, ∗) for the intermediate values 1 < p < ∞ via the complex interpolation
method as intermediate algebras of the couple

�
(S1, ∗), (S∞, ∗)

�
, implies that

the answer to his question is in fact completed.

Corollary 2. For any 1 ≤ p ≤ ∞, the Banach algebra (Sp, ∗) is a Q-algebra.
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The proof of Theorem 1 relies on a simple characterization of Q-algebras due
to Davie [5, Theorem 3.3]. We use a slight reformulation of it, as given in [7,
Lemma 18.5 and Proposition 18.6]. Let T denote the closed unit disc in C and
for Banach space X let BX = {A ∈ X : �A� ≤ 1} denote the unit ball in X.
For positive integers n,N let {1, . . . , n}N denote the N -fold Cartesian product
of the set {1, . . . , n}. For complex tensor T : {1, . . . , n}N → C, we abbreviate
the coordinates (i1, . . . , iN ) ∈ {1, . . . , n}N of T by I. We define the norm �T�∞
to be

sup






���
�

I∈{1,...,n}N

T [I]χ1(i1) · · ·χN (iN )
��� : χ1, . . . , χN : {1, . . . , n} → T




 .

Theorem 3 (Davie). Let X = (X, ·) be a commutative Banach algebra. Then X

is a Q-algebra if and only if there exists a universal constant K > 0, such that
for every choice of positive integers n,N , complex tensor T : {1, . . . , n}N → C,
and X-valued sequences A1, . . . , AN : {1, . . . , n} → BX , the inequality

���
�

I∈{1,...,n}N

T [I]A1(i1) · · ·AN (iN )
���
X

≤ KN
�T�∞, (1)

holds.

We prove that (S∞, ∗) satisfies Davie’s criterion using a multilinear gener-
alization of the famous Grothendieck inequality, due to Blei [2] and Tonge [16]
(see also [4]). The (complex) Grothendieck inequality [8, 10] states that there
exists a universal constant KG such that for every positive integer n, complex
matrix M ∈ Cn×n and complex vectors x(1), . . . , x(n), y(1), . . . , y(n) in B�2 , the
inequality ������

n�

i,j=1

Mij�x(i), y(j)�

������
≤ KG�M�∞,

holds. Currently the exact value of KG is unknown, but it is known to be
bounded as 1.3380 � KG � 1.4049. The lower and upper bounds on KG were
proved by Davie [6] and Haagerup [9], respectively.

For vector x ∈ �2, we will denote by x�, the number �x, e��, where e1, e2, . . .
are the canonical basis vectors for �2.

The multilinear extension of Grothendieck’s inequality we use replaces the
matrix M by a complex N -tensor T , and the inner product of pairs of unit
vectors by the multilinear form (the generalized inner product) on N -tuples of
vectors x1, . . . , xN ∈ �2 given by

�x1, . . . , xN � =
∞�

�=1

(x1)� · · · (xN )�.
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Theorem 4 (Tonge). For all positive integers n,N , any complex tensor T :
{1, . . . , n}N → C and sequences x1, . . . , xN : {1, . . . , n} → B�2 , the inequality

���
�

I∈{1,...,n}N

T [I]
�
x1(i1), . . . , xN (iN )

���� ≤ 2(N−2)/2KG�T�∞ (2)

holds.

This inequality was also used by Pérez-Garćıa [13] to prove that (S1, ∗) is a
Q-algebra.

Proof of Theorem 1: We fix integers n,N ∈ N, tensor T : {1, . . . , n}N → C
and operator-valued maps A1, . . . , AN : {1, . . . , n} → BS∞ . Define

M =
�

I∈{1,...,n}N

T [I]A1(i1) ∗ · · · ∗AN (iN ).

By Theorem 3 (Davie’s criterion) it suffices to show that the inequality

�M� ≤ KN
�T�∞, (3)

holds for some constant K independent of n,N, T and A1, . . . , AN .
We begin by making four small preliminary steps to show that without loss of

generality we may assume that T is real valued and the Ai are finite-dimensional
Hermitian matrices. Afterwards we will be able to apply Theorem 4 in order
to prove Eq. (3). In the first step we show that without loss of generality,
we may assume that the tensor T is real-valued. To this end, define the real-
valued tensors TR and TC by TR[I] = �(T [I]) and TC [I] = �(T [I]) for every
I ∈ {1, . . . , n}N . Define

MR =
�

I∈{1,...,n}N

TR[I]A1(i1) ∗ · · · ∗AN (iN )

MC =
�

I∈{1,...,n}N

TC [I]A1(i1) ∗ · · · ∗AN (iN )

Since M = MR + iMC , we have �M� ≤ 2max{�MR�, �MC�}. Proving Eq. (3)
for real-valued tensors thus suffices.

In the second step we show that it suffices to consider the case where the
operators A1(i1), . . . , AN (iN ) ∈ BS∞ are finite-dimensional matrices (in the
canonical basis for �2). Recall that norm of M is given by

�M� = sup{|�u,Mv�| : u, v ∈ B�2}.

For any u ∈ �2 with �u� ≤ 1 and any ε > 0 there exists a D ∈ N such that the

vector u� =
�D

�=1 u�e� has norm at least 1 − ε. Hence, for any u, v ∈ B�2 and
ε > 0 there exist D ∈ N and u�, v� ∈ B�2 supported only on e1, . . . , eD such that

|�u,Mv�| ≤ |�u�,Mv��|+
�
2ε(1− ε) + ε2

�
|�u,Mv�|.
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It follows that for some D ∈ N and vectors u�, v� ∈ B�2 supported only on
e1, . . . , eD, we have

�M� ≤ 2|�u�,Mv��|. (4)

Define for every k = 1, . . . , N and ik = 1, . . . , n the D-by-D complex matrix
A�

k(ik) = (�e�, Ak(ik)em�)D�,m=1. Note that �A�
k(ik)� ≤ �Ak(ik)� ≤ 1. Expand-

ing the definition of M then gives

�u�,Mv�� =
�
u�,

�

I∈{1,...,n}N

T [I]A1(i1) ∗ · · · ∗AN (iN )v�
�
=

�

I∈{1,...,n}N

T [I]�u�, A1(i1) ∗ · · · ∗AN (iN )v�� =

�

I∈{1,...,n}N

T [I]�u�, A�
1(i1) ∗ · · · ∗A

�
N (iN )v��. (5)

Define the complex number Θ = �u�,Mv��. Eq. (4) shows that to prove the
theorem, it suffices to show that the inequality

|Θ| ≤ KN
�T�∞, (6)

holds for some constant K, and Eq. (5) shows that we can write Θ using the
matrix-valued maps A�

1, . . . , A
�
N .

In the third step we absorb the complex part of the number Θ into the
matrix-valued map A�

1. Let us write Θ in polar coordinates as |Θ|eiφ for some
φ ∈ [0, 2π]. Define A��

1(i1) = e−iφA�
1(i1). Then by Eq. (5), we have

�

I∈{1,...,n}N

T [I]�u�, A��
1(i1) ∗A

�
2(i2) ∗ · · · ∗A

�
N (iN )v�� = |Θ|. (7)

In the fourth step we symmetrize the situation by making the matrices Her-
mitian. To this end, define the map ρ : CD×D → C2D×2D by

ρ(A) =

�
0 A
A∗ 0

�
.

Define matrix-valued maps B1, . . . , BN : {1, . . . , n} → C2D×2D by

B1(i1) = ρ
�
A��

1(i1)
�

B2(i2) = ρ
�
A�

2(i2)
�

...

BN (iN ) = ρ
�
A�

N (iN )
�
.

Note that �Bk(ik)� ≤ 1 for all k = 1, . . . , N and ik = 1, . . . , n, since the map ρ
leaves the norm unchanged. Define the matrices

M � =
�

I∈{1,...,n}N

T [I]A��
1(i1) ∗A

�
2(i2) ∗ · · · ∗A

�
N (iN )

M �� =
�

I∈{1,...,n}N

T [I]B1(i1) ∗B2(i2) ∗ · · · ∗BN (iN ).
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Since the tensor T is real-valued we have M �� = ρ(M �).
Define the vector w = (v� ⊕ u�)/

√
2 and note that �w� ≤ 1. We have

�w,M ��w� =
1

2
[(u�)∗, (v�)∗]

�
0 M �

(M �)∗ 0

� �
u�

v�

�

= �
�
�u�,M �v��

�

= �




�

I∈{1,...,n}N

T [I]�u�, A��
1(i1) ∗ · · · ∗A

�
N (iN )v��





= |Θ|, (8)

where the last identity follows from Eq. (7), which shows that the term between
brackets on the third line is the real number |Θ|.

Next, we absorb the complex parts of the vector w into the matrix-valued
map B1. Using polar coordinates we can write

w =
2D�

�=1

w�e
iψ�e�

for some moduli w� ∈ R+ and arguments ψ� ∈ [0, 2π]. Let U ∈ CD×D be the
diagonal unitary matrix given by U = diag(eiψ1 , . . . , eiψD ). Define the non-

negative real vector w� = U∗w =
�2D

�=1 w�e� and define the matrix-valued map
B�

1 by B�
1(i1) = U∗B1(i1)U . Note that �B�

1(i1)� ≤ �B1(i1)� ≤ 1.
Then, by Eq. (8) and by expanding the definition of M �� we have

�

I∈{1,...,n}N

T [I]�w�, B�
1(i1) ∗B2(i2) ∗ · · ·BN (iN )w�

� = �w,M ��w� = |Θ|. (9)

We can now make a connection to Theorem 4 using the following two claims.

Claim 5. There exist real numbers µ1, . . . , µ2D ≥ 0 such that

0 ≤

2D�

�,m=1

µ�µm min{�,m} ≤ 1 (10)

and for 1� = e1 + · · ·+ e�,

|Θ| =
2D�

�,m=1

µ�µmθ�,m, (11)

where

θ�,m =
�

I∈{1,...,n}N

T [I]�1�, B
�
1(i1) ∗B2(i2) ∗ · · · ∗BN (iN )1m�.
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Proof: By relabeling the basis vectors e1, . . . , e2D appropriately, we may as-
sume that the coefficients of the above vector w� satisfy w1 ≥ w2 ≥ · · · ≥ w2D.
Setting µ� = (w� − w�−1) for � = 1, . . . , 2D − 1 and µ2D = w2D gives

w� =
2D�

�=1

µ�1�,

since �w�, ek� = µk+µk+1+ · · ·+µ2D = wk. Eq. (10) follows as 0 ≤ �w�, w�� ≤ 1
and �1�, 1m� = min{�,m}, and Eq. (11) follows by expanding w� in Eq. (9). ✷

Claim 6. For every 1 ≤ �,m ≤ 2D, we have

|θ�,m| ≤ CN min{�,m}�T�∞, (12)

where CN = 2(N−2)/2KG.

Proof: Expanding the vectors 1� in the canonical basis gives

�
1�, B

�
1(i1) ∗B2(i2) ∗ · · · ∗BN (iN )1m

�
=

��

s=1

m�

t=1

�
es, B

�
1(i1) ∗B2(i2) ∗ · · · ∗BN (iN )et

�
. (13)

Note that each term in the double sum on the right-hand side of Eq. (13) is
simply the product of (s, t)-entries of the matrices B�

1(i1), B2(i2), . . . , BN (iN ).
Suppose that � ≤ m. Since the matrices B�

1(i1), B2(i2), . . . , BN (iN ) have
norm at most 1, their rows belong to B�m2 (where �m2 is the set of length-m 2-
summable sequences). Hence, the inner sum on the right-hand side of Eq. (13),

m�

t=1

�
es, B

�
1(i1) ∗B2(i2) · · · ∗BN (iN )et

�
=

m�

t=1

�es, B
�
1(i1)et��es, B2(i2)et)� · · · �es, BN (iN )et�,

is the generalized inner product of a set of N vectors in B�m2 . The result for the
case � ≤ m now follows from the triangle inequality and Theorem 4, as

|θ�,m| =

������

�

I∈{1,...,n}N

T [I]
�
1�, B

�
1(i1) ∗B2(i2) ∗ · · · ∗BN (iN )1m

�
������
≤

��

s=1

������

�

I∈{1,...,n}N

T [I]
m�

t=1

�es, B
�
1(i1)et��es, B2(i2)et)� · · · �es, BN (iN )et�

������
≤

�2(N−2)/2KG�T�∞.

The case � ≥ m is proved in the same manner. �
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Putting Claim 5 and Claim 6 together gives

|Θ| =
2D�

�,m=1

µ�µmθ�,m

≤

2D�

�,m=1

µ�µm|θ�,m|

≤ CN�T�∞

2D�

�,m=1

µ�µm min{�,m}

≤ CN�T�∞.

We conclude that Eq. (6) (Davie’s criterion) holds for K ≤ 4. ✷

Corollary 2 now follows directly from the following two lemmas and the
fact that both (S1, ∗) and (S∞, ∗) are Q-algebras. Pietsch and Triebel [15]
characterized the p-Schatten spaces for the intermediate values 1 < p < ∞ via
the complex interpolation method (see [1] for a detailed account).

Lemma 7 (Pietsch and Triebel). For 0 ≤ θ ≤ 1, denote by (S∞, S1)[θ] the
Banach space obtained via the complex interpolation method. Then, for p = 1/θ,
we have (S∞, S1)[θ] = Sp.

Varopoulos [17] proved that the property of being a Q-algebra is inherited
under the complex interpolation method if it holds for both parent algebras.

Lemma 8 (Varopoulos). Let (X0,X1) be a compatible pair of complex Banach
algebras. For 0 < θ < 1, denote by (X0,X1)[θ] the Banach algebra obtained via
the complex interpolation method. If X0 and X1 are Q-algebras, then (X0,X1)[θ]
is a Q-algebra.

Remark 1. Surprisingly, the main result of this paper came about in the context
of quantum information theory [3], after a translation to an equivalent problem
in this field was given by Pérez-Garćıa et al. [14].

Acknowledgements
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