All Schatten spaces endowed with the Schur product
are QQ-algebras

Jop Briét®!*, Harry Buhrman®!, Troy Lee”, Thomas Vidick®

CCWI and University of Amsterdam. Science Park 123, 1098 SJ, Amsterdam, The
Netherlands.
b Centre for Quantum Technologies, Block S15, 8 Science Drive 2 Singapore 117543
¢Computer Science Division, 615 Soda Hall, University of California at Berkeley, Berkeley,
CA 94720, USA

Abstract

We prove that the Banach algebra formed by the space of compact operators
on a Hilbert space endowed with the Schur product is a quotient of a uniform
algebra (also known as a Q-algebra). Together with a similar result of Pérez-
Garcia for the trace class, this completes the answer to a long-standing question
of Varopoulos.
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In this paper, we consider the commutative Banach algebras formed by p-
Schatten spaces for 1 < p < oo on the Hilbert space ¢ endowed with the Schur
product. In particular, we deal with the problem of determining if these algebras
are quotients of a uniform algebra (Q-algebra).

The spectral theorem asserts that the space of compact operators on fo,
which we denote by S, consists of the operators A that admit a representation
of the form

A= "Nl fi,
i=1

where (e;); and (f;); are orthonormal bases for ¢, and the sequence ()\;); C R
satisfies A\y > Ao > --- > 0 and lim;_,oo A; = 0. The space S, is endowed
with the norm [|A] = sup{[{z, Ay)| : |lz|,|lyll < 1}. For 1 < p < oo, the
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Schatten p-norm of A is given by (Tr|A[?)Y/? where |A| = (A*A)Y/2. The p-
Schatten space S, C S is the subspace of compact operators that have finite
Schatten p-norm. Common examples of these spaces are the trace class Sy
and the Hilbert-Schmidt operators Ss. The Schur product * (also known as
the Hadamard product) is a continuous and commutative multiplication for S,
defined as the entry-wise product when the elements of S, are represented by
matrices using the canonical basis for 5. Endowed with the Schur product, p-
Schatten spaces form the commutative Banach algebras (Sp, *). A commutative
Banach algebra is said to be uniform if it is isometrically isomorphic to a closed
subalgebra of C(K) the space of continuous functions on a closed Hausdorff
topological vector space K.

Definition 1. Let X be a commutative Banach algebra. Then X is a Q-algebra
if there exists a uniform algebra Y and a closed ideal T C Y such that X is
isomorphic, as a Banach algebra, to the quotient algebra Y /T.

The most interesting feature of Q-algebras, discovered by Cole (see [20]),
is that they are isometrically isomorphic to a closed (commutative) subalge-
bra of B(H), the algebra of bounded operators on a Hilbert space. In other
words, Q-algebras are commutative operator algebras. In general, the converse
is false [18], but Tonge [16] showed that it is true for every algebra generated by
a set of commuting Hilbert-Schmidt operators when equipped with the regular
matrix product.

Davie [5] and Varopoulos [17] proved that the Banach algebra (£p,*) is a
Q-algebra for all 1 < p < oco. Since the space of Hilbert-Schmidt operators is
isometrically isomorphic to £y it follows immediately that (Ss,*) is also a Q-
algebra. Varopoulos [19] asked the natural question if the same is true for all
non-commutative analogues (.S, *).

Is it true that (Sp,*) is a Q-algebra forall 1 <p < oo?

Recently, progress on this question was made by Le-Merdy [12] and Pérez-
Garcfa [13], who proved that the property holds true for all 2 < p < 4 and
1 < p < 2, respectively. Mantero and Tonge [11] proved that (S, *) fails to be
a l-summing algebra, which requires slightly stronger conditions than for being
a Q-algebra. Nevertheless, in this paper we give a positive result for the high
end of the spectrum.

Theorem 1. The Banach algebra (S, *) is a Q-algebra.

A related result of Varopoulos himself [17] which characterizes the algebras
(Sp,*) for the intermediate values 1 < p < oo via the complex interpolation
method as intermediate algebras of the couple ((S1,%), (Seo,*)), implies that
the answer to his question is in fact completed.

Corollary 2. For any 1 < p < oo, the Banach algebra (Sy,*) is a Q-algebra.



The proof of Theorem 1 relies on a simple characterization of Q-algebras due
to Davie [5, Theorem 3.3]. We use a slight reformulation of it, as given in [7,
Lemma 18.5 and Proposition 18.6]. Let T denote the closed unit disc in C and
for Banach space X let Bx = {4 € X : ||A]| < 1} denote the unit ball in X.
For positive integers n, N let {1,...,n}" denote the N-fold Cartesian product
of the set {1,...,n}. For complex tensor T : {1,...,n}¥ — C, we abbreviate
the coordinates (i1, ...,iy) € {1,...,n}" of T by I. We define the norm ||T|
to be

swpd | Tlali) ()| oo {1 n = T
Ie{1,...n}N

Theorem 3 (Davie). Let X = (X, ) be a commutative Banach algebra. Then X
is a Q-algebra if and only if there exists a universal constant K > 0, such that
for every choice of positive integers n, N, complex tensor T : {1,...,n}¥ — C,
and X -valued sequences Ay, ..., Ay : {1,...,n} — Bx, the inequality

| X TG AnGy)||, < KT, (1)
Ie{1,...n}N

holds.

We prove that (S, *) satisfies Davie’s criterion using a multilinear gener-
alization of the famous Grothendieck inequality, due to Blei [2] and Tonge [16]
(see also [4]). The (complex) Grothendieck inequality [8, 10] states that there
exists a universal constant K¢ such that for every positive integer n, complex
matrix M € C"*™ and complex vectors z(1),...,z(n), y(1),...,y(n) in By,, the
inequality

> Mig(a(@), y(5))| < KellM |loo,

i,j=1

holds. Currently the exact value of K¢ is unknown, but it is known to be
bounded as 1.3380 < K¢ < 1.4049. The lower and upper bounds on K¢ were
proved by Davie [6] and Haagerup [9], respectively.

For vector = € {5, we will denote by x4, the number (x, e,), where e, es, . ..
are the canonical basis vectors for ¢5.

The multilinear extension of Grothendieck’s inequality we use replaces the
matrix M by a complex N-tensor T, and the inner product of pairs of unit
vectors by the multilinear form (the generalized inner product) on N-tuples of
vectors x1,...,TxN € {2 given by

(x1,...,aN) = Z(m)e e (xN)e

{=1



Theorem 4 (Tonge). For all positive integers n, N, any complex tensor T :

{1,...,n}Y — C and sequences x1,...,xy : {1,...,n} — By,, the inequality
> Tl an(in)| <2VV2K6| Tl (2)
Ie{1,....n}N
holds.

This inequality was also used by Pérez-Garcia [13] to prove that (S, ) is a
Q-algebra.

Proof of Theorem 1: We fix integers n, N € N, tensor T : {1,...,n}¥ — C

and operator-valued maps A;,..., Ay : {1,...,n} = Bs_ . Define
M= > TIA(ir) - Ax(in).
Ie{1,....n}N

By Theorem 3 (Davie’s criterion) it suffices to show that the inequality
1M1} < KTl (3)

holds for some constant K independent of n, N,T and A;,..., Ay.

We begin by making four small preliminary steps to show that without loss of
generality we may assume that T is real valued and the A; are finite-dimensional
Hermitian matrices. Afterwards we will be able to apply Theorem 4 in order
to prove Eq. (3). In the first step we show that without loss of generality,
we may assume that the tensor T is real-valued. To this end, define the real-
valued tensors Tr and Te by Tr[I] = R(T[I]) and T¢([I] = S(T[I]) for every
I€{l,...,n}V. Define

Mp = > TrIAx(ir) * - % An(in)
Ie{1,...n}N

Me = > To[lAi(iy) * -+ An(in)
Ie{l,...,n}N

Since M = Mg + iMc, we have ||M|| < 2max{||Mg|, |Mc|}. Proving Eq. (3)
for real-valued tensors thus suffices.

In the second step we show that it suffices to consider the case where the
operators Ajq(i1),...,An(in) € Bs, are finite-dimensional matrices (in the
canonical basis for ¢3). Recall that norm of M is given by

| M| = sup{|{u, Mv)| : u,v € By, }.

For any u € ¢; with ||ul| <1 and any € > 0 there exists a D € N such that the
vector v’ = Zle ugey has norm at least 1 —e. Hence, for any u,v € By, and
€ > 0 there exist D € N and «/,v" € By, supported only on ey, ..., ep such that

[(u, Mv)| < [(u/, MV")| + (26(1 — €) + &%) [{u, Mv)|.



It follows that for some D € N and vectors u’,v" € By, supported only on
ei,...,ep, we have

M| < 2|(', M')|. (4)
Define for every £k = 1,...,N and iy = 1,...,n the D-by-D complex matrix
Al (i) = (<64,Ak(ik)em>)£m:1. Note that ||A} (ix)|| < ||Ak(ix)]] < 1. Expand-
ing the definition of M then gives

(u', Mv') = <UI7 Z TA(i1) % -+ % AN(iN)v'> —

Ie{1,...n}N

> T, Ag(in) - % An(in)v') =

D TUNW, Af(i) o x A(in)). (5)
Ie{1,....n}N
Define the complex number © = (u/, Mv'). Eq. (4) shows that to prove the
theorem, it suffices to show that the inequality

0] < KT, (6)

holds for some constant K, and Eq. (5) shows that we can write © using the
matrix-valued maps A7, ..., A.

In the third step we absorb the complex part of the number © into the
matrix-valued map A}. Let us write © in polar coordinates as |©e'® for some
¢ € [0,27]. Define AY(i1) = e *?A{(i1). Then by Eq. (5), we have

Y TN, AV (i) * Ay(ia) % Ay (in)v') = [O]. (7)
Ie{1,...n}N

In the fourth step we symmetrize the situation by making the matrices Her-
mitian. To this end, define the map p : CP*P — C2P*x2D hy

0 A
=0 4l
Define matrix-valued maps By,..., By : {1,...,n} — C2Px2D by
Bi(i1) = p(Af(ir))
By(is) = p(A5(i2))
BN(iN) = p(A;V(ZN))

Note that || By (ir)|| < 1forall k=1,...,N and i, = 1,...,n, since the map p
leaves the norm unchanged. Define the matrices

M = Z TIAY (iq) % Ay (ig) * - - - % Ay (in)
Ie{1,....n}N

M = Z T[I]Bl(’tl)*Bg(Zg)**BN(ZN)
Ie{1,...n}N



Since the tensor T is real-valued we have M" = p(M’).
Define the vector w = (v/ @ u’)/v/2 and note that |Jw| < 1. We have

ey = 5160 oy o ] o]

= %((u',M’v'))

= R > T, A (i) % -x Ay (in)o')
Ie{1,....n}N

= |®‘7 (8)

where the last identity follows from Eq. (7), which shows that the term between
brackets on the third line is the real number |©|.

Next, we absorb the complex parts of the vector w into the matrix-valued
map B;. Using polar coordinates we can write

2D
w = E wee™re,
(=1

for some moduli wy, € Ry and arguments 1, € [0,27]. Let U € CP*P be the
diagonal unitary matrix given by U = diag(e’¥,...,e!¥?). Define the non-
negative real vector w’' = U*w = E?:Dl wyep and define the matrix-valued map
B} by Bi(ir) = U* By(i1)U. Note that | B} (i) | < || Bx(ir)]| < 1.

Then, by Eq. (8) and by expanding the definition of M"" we have

Z T[I{w', By(i1) * Ba(ig) * - - - Bn(in)w') = (w, M"w) =10|.  (9)
Ie{1,...,n}N

We can now make a connection to Theorem 4 using the following two claims.

Claim 5. There exist real numbers 1, ..., puep > 0 such that
2D
0< Z Lepim min{f,m} <1 (10)
lm=1

and for 1, =e1 + -+ + ey,

2D
|®| = Z M@Mmeé,mv (11)
lm=1
where
Orm = Y. TUNle, B (ix) * By(in) % -+ % By (in)1m).

I€{1,...n}N



Proof: By relabeling the basis vectors eq,...,esp appropriately, we may as-
sume that the coefficients of the above vector w’ satisfy wy > wg > -+- > wap.
Setting g = (we —wy—q1) for £ =1,...,2D — 1 and pop = wep gives

2D
!
w = Z tely,
=1

since (w', ex) = g+ pgr1+- -+ pap = wi. Eq. (10) follows as 0 < (w',w'y <1
and (1y,1,,) = min{¢, m}, and Eq. (11) follows by expanding w’ in Eq. (9). O

Claim 6. For every 1 < {,m < 2D, we have
10¢.m] < Cnmin{l, m}||T||cc, (12)
where Cy = 2WV-2/2 .

Proor: Expanding the vectors 1, in the canonical basis gives

<14,B{(i1) % Bo(in) % -+ - % BN(iN)lm> -
l

Zi <es,Bg(i1) * Bo(ig) * -+ - * BN(iN)et>. (13)

s=1t=1
Note that each term in the double sum on the right-hand side of Eq. (13) is
simply the product of (s, t)-entries of the matrices B (1), Ba2(i2),..., By (in)-
Suppose that ¢ < m. Since the matrices B} (i1), B2(i2),. .., Bn(in) have
norm at most 1, their rows belong to By (where (3" is the set of length-m 2-
summable sequences). Hence, the inner sum on the right-hand side of Eq. (13),

m

Z <657Bi(i1) * Bo(ig) - * BN(iN)€t> -

Z<687 Bi(il)etxesv BQ(i2)et)> T <687 BN(iN>et>7

is the generalized inner product of a set of IV vectors in Byy. The result for the
case £ < m now follows from the triangle inequality and Theorem 4, as

el = D0 TUI1e Bi(i2) * Balia) = - % B (in)Ln )| <
Ie{1,...n}N
0 m
S T fes, Bilin)er) es, Ba(in)er)) -+ (es, By (in)er)| <
s=1|refl,..m}v  t=1

N=D2EK T .

The case £ > m is proved in the same manner. ¢



Putting Claim 5 and Claim 6 together gives

2D
|@‘ = Z /”'@/f('7rL9€,m
Lm=1
2D
< Z toetim |00, m|
L,m=1
2D
< CNlITllse Y pepten min{f, m}
Lm=1
< x|
We conclude that Eq. (6) (Davie’s criterion) holds for K < 4. O

Corollary 2 now follows directly from the following two lemmas and the
fact that both (S1,#) and (Se,*) are Q-algebras. Pietsch and Triebel [15]
characterized the p-Schatten spaces for the intermediate values 1 < p < oo via
the complex interpolation method (see [1] for a detailed account).

Lemma 7 (Pietsch and Triebel). For 0 < 6 <1, denote by (Se, S1)[g] the
Banach space obtained via the complex interpolation method. Then, forp=1/0,
we have (Sx, 1)) = Sp-

Varopoulos [17] proved that the property of being a Q-algebra is inherited
under the complex interpolation method if it holds for both parent algebras.

Lemma 8 (Varopoulos). Let (Xy, X1) be a compatible pair of complex Banach
algebras. For 0 < 0 < 1, denote by (Xo, X1)jg) the Banach algebra obtained via
the complex interpolation method. If Xy and Xy are Q-algebras, then (Xo, X1 )]
is a Q-algebra.

Remark 1. Surprisingly, the main result of this paper came about in the context
of quantum information theory [3], after a translation to an equivalent problem
in this field was given by Pérez-Garcia et al. [14].
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