
Structured Documents on the Web

Jacco van Ossenbruggen
CWI Amsterdam

Talk overview

- Introduction and historical background
- Multiple delivery publishing (MDP)
- MDP on the Web: Style sheets
- Conclusion

What is a "Document"?

Examples:

- Book, poem
- Article, paper, report
- —Memo, e-mail, letter, etc

My definition:

A document is a self-contained unit of information, intended to be communicated to a human interpreter

What isn't a document?

All data that is:

- Fragmentary
- Intended solely for further machine processing

Examples:

- Database records
- –HTTP requests
- Software source code

What is Markup?

enlarged font Indent and Fburscore and seven years ago our fathers, brought forth on this continent a new nation, conceived in liberty, and dedicated to the propositions that all men are created equal but in italics Now we are engaged in a paragraph great civil war, skip a line testing whether that nation, or any nation align text to both margins

Talk overview

- Introduction and historical background
- Multiple delivery publishing (MDP)
- MDP on the Web: Style sheets
- Conclusion

Electronic Documents (then)

- •Goal (authoring/production):
 - —More efficient/effective production by using WYSIWYG authoring interfaces (WP,DTP)
- •Goal (final-form):
 - Obtain same typographic quality as traditional print
- Production electronic, dissemination and final-form still on paper
- •Authoring & storage format:
 - —Mimics final-form presentation format

Electronic Documents (now)

- Goal (authoring/production):
 - -Efficient, industrial scale, full document life cycle
- •Goal (final-form):
 - —Improve communication by exploiting presentation potential of new media
 - Use of audio, video, animation, etc
 - Interactivity (hyperlinks, forms, etc.)
 - Dissemination over internet (WWW)
 - Use of document technology to access (legacy) information
- Both production & dissemination is electronic
- •Authoring & storage format:
 - Differs radically from presentation format

Electronic Documents: Issues

Problem: many document formats cannot cope with changing environment (c.f. issues in software engineering)

- —Hardware dependencies (use of printer/typesetter specific control sequences)
- —Software dependencies (use of proprietary formats)
- —Presentation dependencies (layout and style)

Related issues:

- -Longevity (many documents need to last >30 years)
- –Maintenance & reuse
- —Flexibility & tailorability

"Solution"

(Semi-automatically) convert all documents to new format or new layout

- -Expensive
- —Time consuming
- Error prone (& pretty boring too!)
- —Loss of (implicit) information

Real solution

Multiple delivery publishing model

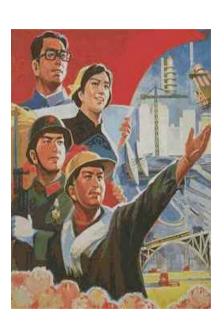
Multiple delivery publishing (MDP)

- MDP distinguishes two formats
 - One for authoring and long term storage
 - —Another one for final-form presentation
- Mappings from source to target format
- Source format can now abstract from all details that are likely to change in the target
- Sounds pretty straightforward eh?
- But it actually meant...

Revolution!

Software developers

No longer control their application's own file format


Document authors

No longer control style and layout of their documents

Tools

No longer used the "sacred" WYSIWYG paradigm

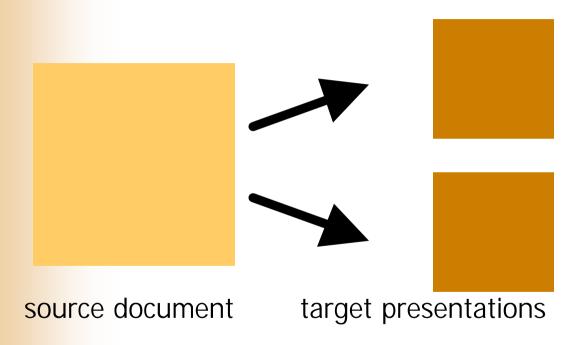
Multiple delivery publishing was not obvious at all!

MDP: Nothing new ...

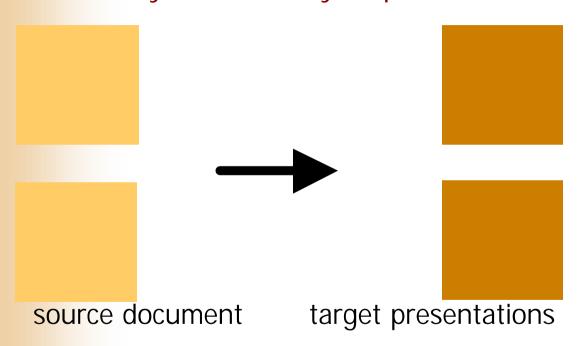
- This approach was already advocated by Goldfarb et al. in the 70's!
- Source documents encoded using IBM's Generic Markup Language (GML)
- •GML was standardized by ISO in 1986 as SGML

MDP & SGML

- MDP and SGML remained highly controversial
 - People do not like to give up control or change the way they work
 - —MDP could not always match the output quality of traditional tools
 - —MDP is no silver bullet!
 - —Primarily suited for content-driven applications
 - —Not for layout-driven applications
- SGML standard is extremely complex
 - —Still not fully implemented
 - –Huge and inflexible
 - —Mainly used in academic and large organizations


"SGML" revival due to the Web

- HTML already is an application of SGML (eh... sort of)
- XML is a stream-lined and simplified subset of SGML (it really is, this time)
- Published in 1998, XML already had more applications that year than SGML ever had!


Talk overview

- Introduction and historical background
- Multiple delivery publishing (MDP)
- MDP on the Web: Style sheets
- Conclusion

MDP: easy reuse of source document

MDP: easy reuse of style specification

MDP: Document design dimensions:

- Content versus markup
 - —what is in the tags, what is between the tags?
- Embedded versus external markup
 - —What is encoded in the same file, what is stored elsewhere?
- Declarative versus procedural
 - —Specify what or specify how
- Domain independent versus domain specific
 - -<title> or ctitle> or ctitle>
- Layout-driven versus content-driven applications
 - –magazine cover or technical manual?
- Visual markup versus structured markup
 - -<i> or <emph >?

Source vs. presentation format

•Source format:

- —Structured, declarative markup
- —Can be domain independent but…
- —...is usually tailored to a specific domain
- Provide sufficiently rich structure for style sheets and other processing

•Presentation format:

- Visual, often procedural markup
- —Can be platform/medium independent but…
- —... is usually tailored to a specific output medium/device
- Provide sufficient information to obtain high quality output
- •How do you classify your favorite document format?

Domain independent vs. domain specific

Domain independent:

- —Examples: HTML, Docbook, (LaTeX)
- -Wide deployment: easy to learn, many (cots) tools available
- Poor semantics for automatic processing other than presentation
- —Tools only need to deal with predefined markup semantics

Domain specific:

- Examples: product specific documents standards (e.g. automobile and aircraft industry)
- Users need training, tailor-made tools might need to be developed
- Rich (domain-specific) semantics for further processing (retrieval, screen scraping etc.)
- Need tools tailored to domain-specific document formats or ...

Presentation of domain specific document formats

- Generic tools that can process user-defined markup
 - Software adapts to document structure
- No predefined (presentation) semantics
 - —Also need to be user-defined

Beyond presentation semantics

- Document-oriented semantics
 - -static: style and layout (e.g. style sheets, focus second half of this talk)
 - —dynamic: scheduling & animation (see seminar 10/12/2002)
 - —interaction: linking & forms
- Other semantics:
 - —do not describe the document, but the domain of the document's content
 - —can still be related to document
 - annotations & meta data
 - —RDF(S), OWL, DAML+OIL, etc. (see seminar 28/1/2003)

Talk overview

- Introduction and historical background
- Multiple delivery publishing (MDP)
- MDP on the Web: Style sheets
- Conclusion

Multiple delivery publishing on the Web

Bloodtype Function	W3C/HTML	
Markup	HTML	
Style	CSS	
Linking	<a href="</td"><td></td>	
Addressing	<a name<="" td=""><td></td>	

Multiple delivery publishing on the Web

Bloodtype	W3C/HTML	ISO/SGML
Markup	HTML	SGML
Style	CSS	DSSSL
Linking	<a href="</td"><td>HyTime, TEI</td>	HyTime, TEI
Addressing	<a name<="" td=""><td>HyTime, TEI</td>	HyTime, TEI

Multiple delivery publishing on the Web

Bloodtype Function	W3C/HTML	W3C/XML	ISO/SGML
Markup	HTML	XML	SGML
Style	CSS	CSS, XSLT, XSL FO	DSSSL
Linking	<a href="</td"><td>XLink,</td><td>HyTime,</td>	XLink,	HyTime,
		(HLink)	TEI
Addressing	<a name<="" td=""><td>XPath,</td><td>HyTime,</td>	XPath,	HyTime,
		XPointer	TEI

Style sheets: HTML & CSS

```
HTML with embedded visual markup:
     <h3 align="center">
       <font color="black">
          The Need for Style Sheets
       </font>
     </h3>
versus HTML with separate CSS style sheet:
HTMI:
     <h3>The Need for Style Sheets</h3>
CSS (optional!):
     h3 { text-align: center; color: black }
```

Style sheets: XML & CSS

```
Example fragment using MyOwnML (XML):
     cproduct>
        <type>X112332</type>
        <color>dark blue</color>
     </product>

    With XML, your style sheet needs to specify more

than just the style (CSS2):
     product { display: list-item; ...}
     type { display: none; ...}
     color { display: block; ...}
```

Style sheets: XML & CSS

- With XML, style sheets are no longer optional
- Information presented with CSS remains in the same order
- Source tree and target tree have similar structure (allows cascading)
- Style properties are inherited via the source tree (!)

Transformations: XML and XSLT

- What if the desired target tree differs radically from the source tree?
 - —assigning CSS properties will not suffice
 - —need a language to describe XML (tree) transformations:
- XSL Transformations (XSLT)
 - —more on XSL later!
 - **—XSLT** transforms from XML to:
 - XML (including XHTML)
 - HTML (for legacy browsers, outputs "old" SGML syntax)
 - plain text (can be used to generate other text formats such as RTF, BibTeX, ...)

Transformations: XML and XSLT

- •XSLT itself also uses XML syntax (unlike CSS ...)
 - —so you can transform XSLT using XSLT...
 - but it doesn't look really human friendly!
- The structure of the target tree and source tree can differ (unlike CSS):
 - XSLT style sheets can be chained, not cascaded

XSLT template rules

- Transformations are described as a set of one or more template rules
- •Each template rule consists of two parts:
 - —A pattern that is matched against the source tree: the selector
 - —A template to be filled in and added to the result tree
- XSLT selectors are based on XPath, e.g.

```
-product /product
-color|type product/color
-catalog//product text()
-id("W11") product[1]
-@class / * @*
```

XSLT: Example (I)

```
A single template rule may be sufficient...
<xsl:template match="/">
 <html>
  <head>
   <title>Product Report Summary</title>
   </head><body>
   ...
    <
     <xsl:value-of select="product/type"/>
    <xsl:value-of select="product&color"/>
    ... ...</body></html>
</xsl:template>
```

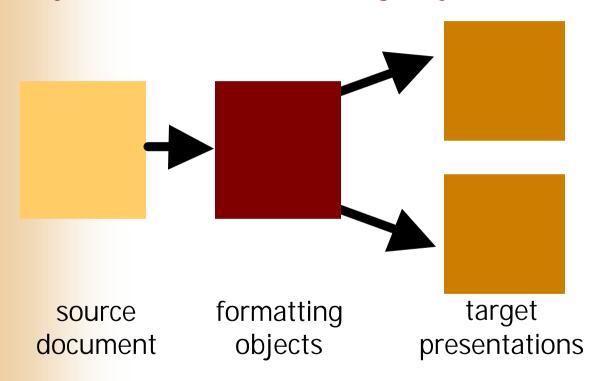
XSLT: Example (II)

```
... or a style sheet can contain many (smaller) template rules
<xsl:template match="/">
<xsl:apply-templates/>
</xsl:template>
<xsl:template match="product">
<xsl:apply-templates/>
</xsl:template>
<xsl:template match="color|type">
 >
  <xsl:apply-templates/>
 </xsl:template>
```

Style sheets: Formatting objects (I)

- All these style sheet examples actually do two things:
 - -specify how an XML document should be presented
 - —specify how that presentation should be encoded in HTML

• Drawbacks:


- —need to start all over again for target formats other than HTML
- —limited by the presentation capabilities of HTML & CSS

Style sheets: Formatting objects (II)

•Solution:

- —design new target language (argh!)
- —a language that is designed to describe formatting semantics
- —such a language is called a formatting vocabulary
- —elements in the language are called formatting objects (FO)
- Example: the formatting vocabulary defined by XSL
 - —fo:block, fo:flow, fo:footnote, fo:external-graphic, fo:page-sequence
- XSL well suited for on-line and paper-based formatting beyond HTML

Style sheets: Formatting objects (III)

Style sheets: Formatting objects (IV)

•Advantages:

- —Style sheets can be independent from final-form presentation format
- —Formatting objects have more advanced formatting semantics than HTML/CSS

Disadvantages

- —Yet another layer of abstraction
- Relative little tool support (XSL became a W3C Recommendation on 15 October 2001)
- —XSL FOs are not suited for all output media (SMIL, SVG etc.)

MDP wrap up: pros & cons

- Advantages:
 - –Longevity
 - –Reusability
 - —Flexibility & Tailorability
- Disadvantages:
 - –Complexity
 - —High dependency on tools (?!)
 - —Training
 - —High Initial investment
- Works best for content-driven material
 - becomes cheaper due to massive use on the Web
 - —free tool support
 - XML parsers/browsers, XSLT engines, XSL FO formatters, etc.
 - -many "off-the-shelf" source & target formats to choose from
 - XHTML, SVG, SMIL, MathML, Docbook, PDF, ...

Further reading

- Overview pages at <u>www.w3.org</u>:
 - <u>http://www.w3.org/XML/</u>
 - <u>http://www.w3.org/Style/XSL/</u>
 - <u>http://www.w3.org/Style/CSS/</u>
- •Recommendations (+ drafts) at www.w3.org/TR/:
 - <u>http://www.w3.org/TR/xsl</u>
 - <u>http://www.w3.org/TR/xslt</u>
 - <u>http://www.w3.org/TR/REC-xml</u>
 - <u>http://www.w3.org/TR/REC-CSS2</u>
- Tutorials and more
 - -http://www.xml.com
 - <u>http://www.mulberrytech.com/</u>
 - <u>http://www.mulberrytech.com/quickref/</u> (personal favorite)