Multimedia Documents on the Semantic Web

Jacco van Ossenbruggen

C W

Multimedia and Human-Computer Interaction http://media.cwi.nl/

Lynda Hardman, Frank Nack & Lloyd Rutledge, Joost Geurts, Stefano Bocconi

1/46

Agenda

Research overview

- Where we come from
- What we do with multimedia
- Why we need semantics

Practical issues

- Media/metadata links
- Multimedia annotation vocabularies
- Tool and production chain integration

What was the Web about?

A standard means of

- locating documents:
- -URL (URI,URN,IRI,...)
- transferring documents:
- -HTTP (FTP,Gopher,WAIS,RTSP,...)
- encoding documents:
- -HTML (XML,XHTML,SVG,SMIL)

7

generations web documents

- Hand-coded (HTML) Web content
- easy access through uniform interface
- huge authoring and maintenance effort
- hard to deal with dynamically changing content
- Automated on-the fly content generation
- based on templates filled with database content
- later extended with XML document transformations
- ω Automated processing of content
- the Semantic Web
- explicit meta-data instead of "screen scraping"
- agreed upon semantics (RDFS, OWL, DC, ...)

Multimedia on the Web

- Real multimedia Web content is still rare
- -Mostly bells & whistles to enhance HTML text ...
- -... or mono-media AV-streams
- Virtually all presentations are hand-authored
- proprietary formats that are hard to generate
- limited support for dynamic content and multichanneling
- -most Web technology is text/page-oriented ..
- with SMIL as one of the few exceptions
- Conclusion:

 Multimedia has hardly call

up with the 1st generation Web! Multimedia has hardly caught

5/46

We need 2nd generation multimedia

- Adapt to end-user's platform capabilities
- multichanneling: PC, PDA, mobile, voice-only, TV, ...
- Adapt to the network resources available
- bandwidth and other quality of service parameters
- Personalization
- language, abilities, level of expertise, ...

Why multimedia is different from text...

- Different document and presentation abstractions
- -hard to separate style from structure & content
- Formatting is not based on text flow
- -no pages or scrollbars, no line-breaking or hyphenation
- templates often do not work well either
- Feedback from the formatting back-end required
- need to check whether proposed layout is feasible
- layout of media items is less flexible than text-based layout
- Transformations are hard in a functional language
- need to try out designs and backtrack when necessary

Burteran Lubium ad i and Srediffication abstraction stext...

- -hard to separate style from structure & content
- Formatting is not based on text flow
- no pages or scrollbars, no line-breaking or hyphenation
- templates often do not work well eithe
- Feedback from the formatting back-end required
- need to check whether proposed layout is feasible
- layout of media items is less flexible than text-based layout
- Transformations are hard in a functional language need to try out designs and backtrack when necessary

Space/time trade-offs in Cuypers

9/46

Space/time trade-offs in Cuypers

- Media repository from Rijksmuseum
- Quantitative constraints necessary for pixel-based positioning & synchronization, but insufficient
- specification of constraints at higher level Qualitative constraints also used for
- A not-overlap B, B after C
- Prolog If insoluble then backtrack to other solutions using
- Geurts & van Ossenbruggen
 MMM 2001, WWW 2001

generation engine Cuypers multimedia presentation

- Cuypers is based on
- -media independent presentation abstractions
- transformation rules with built-in backtracking constraint solving (CLP) and

Cuypers Web Embedding

- Prolog-based engine embedded in Apache
- XML-based input/output stream
- Java servlets for XML to Prolog translation

Document Engineering Perspective

- Content is selected & structured (e.g. XML)
- Mappings are defined to a new presentation structure (e.g. SMIL)
- Styles can be applied (such as color and fontsizes)
- The transformation process is linear and assumes that
- Content/document structure,
- presentation structure and,
- style

are independent of each other.

design is about semantics! But in multimedia, space/time

External Forces on Design Process

- Content provider
- Mission (make profit, promote image)
- Limited resources (cost)
- Preferences (company colors)
- End-user
- Goals, needs
- Delivery context limitations (time, environment)
- Preferences (images vs text, audio vs visual)
- Designer
- Design experience
- Resource limitations

"Graphic Design Perspective"

Basically:

depend on one another. presentation structure, content and style

In multimedia presentations, spatio-temporal relations among the media items conveying its structure and the semantic layout gives meaning to the presentation by

Design dependencies

Inferring document structure

Inferring document structure

- Topia
- Rijksmuseum ARIA database -> RDF
- Clustering on results of query
- Presentation showing "table of contents" and current focus

 Rutledge & Hardman ACM Hypertext 2003

Semantic graph to presentation

.

Semantic graph to presentation

- DISC
- Rijksmuseum repository of media items
- also need discourse structures for deriving grouping, ordering and priorities Rembrandt married-to Saskia Semantic graph is not enough
- Biography template created painter is-a profession

 Stefano Bocconi, Joost Geurts ISWC 2003

Argument generation in video

Argument generation in video

- Vox Populi
- Database with "Interview with America" video clips
- RDF-annotated with topic and agree/disagree
- Argumentation model (Toulmin)
- User specifies query and video sequence generated

Bocconi & Nack,
ICME 2005, ACM Hypertext 2005

25/46

Wrap-up part I: Scientific challenges

- Making (multimedia) discourse and design knowledge explicit
- Expressing re-usable semantics of media assets Semantic Web
- Designing architectures for multimedia presentation generation

So in all our projects we need the Semantic Web

- Domain & discourse semantics
- What is this about?
- Potential functional roles in presentation
- intro, conclusion, ...
- Rhetorical relations
- Example-of, illustration-of, counter-argument-to, ...
- Used to
- Select media items (IR)
- Construct presentation structure
- Make space/time trade-offs
- Assign style properties

1/1

Part II

Multimedia and the Semantic Web: practical issues

Missing bits and pieces

- Binary, streaming non-textual documents?
- Linking data & metadata
- Vocabularies
- Ontological primitives?
- Tool support & production chain integration

Linking data & metadata

Linking:

- Attach multiple annotations to single media item (n:1)
- Attach single annotations to multiple media items (1:m)
- -(n:m)

Requires flexible linking

- Beyond rdf:about (or: Hypertext linking revisited)
- External or embedded links (in data, in metadata, or ...)
- Distributed ownership (of data, metadata & links)

() ()

Linking data & metadata

- Anchoring: attach metadata to
- Specific player in football match
- Audio fragment of gun shot
- Third character out of shot
- Specified bounding box in frame smpte=31:21:33:20
- Video currently playing in active window
- The last viewed document

Requires flexible anchoring:

- Beyond index.html#foobar
- fragment identifiers defined for media types other than text/xm/..
- Example: SVG viewports

Linking (current, only rdf:about)

http://.../clip1.mpg (m:clip1.mpg)

document

annotation

realizes he is late" the campanile clock tower. Then jumps up as he m:clip1.mpeg -"Joost sitting on a bench looking

33/46

Linking ("HTML" approach)

m:clip1.mpg#seq1 - "campanile"

m:clip1.mpg#seq2 "close up of campanile."

Linking (MPEG7 approach)

http://.../clip1.mpg

myclip.description myclip.end myclip.URL myclip.start m:clip1.mpg "Campanile in Berkeley"

- pI

myclip

Id – mycl myclip.U myclip.st myclip.e myclip.d

Linking (URI approach)

http://.../clip1.mpg#n-m

http://.../clip1.mpg#0-90 "Establishing shot"

http://.../clip1.mpg#70-150 - "Reaction shot"

Vocabularies:

Application scenario: Paintings

AAT ULAN ICONCLASS WordNet corpora Knowledge

VRA 3.0 **Annotation** Scene descriptors **Template**

& search

tool

annotations RDF image

37/46

This and next two slides courtesy of Guus Schreiber, VU Amsterdam

Vocabularies: term disambiguation

Vocabularies: observations

- Multimedia applications typically use
- not one "multimedia ontology"
- but multiple semantic sources thesauri, vocabularies, ontologies
- Semantic web languages solve the syntactic interoperability problem
- What remains is linking the semantics!
- annotation templates

Vocabularies: misconceptions

- Ontology instantiation # media annotation
- RDF/OWL schema # annotation template
- Ontology editor # annotation tool
- All metadata # RDF
- Leverage current practice: ID3, EXIF, DC, VRA
- MPEG7
- A single vocabulary is insufficient
- Combining vocabularies is not trivial
- Namespaces only solve syntax-level name clashes but provide no semantic integration

41/40

Fit into current practice

- Metadata support in current tools & production chain
- them available as metadata Keep digital production artefacts and make
- Storyboards, scripts, edit decision lists
- "The making of ...", DVD bonus material, etc
- MPEG7 camera of Nack et al.

tor multimedia? Ontological language primitives

- Uncertain formation
- Fuzzy DLs (Stoilos et al.)
- Coordinate spaces
- space, time, colour, ...
- don't say the H-word ("HyTime" ©)
- Common multimedia properties
- sample rates, resolutions, screen sizes, lens positions, etc
- Align RDF vocabulary with MPEG7 (XSD, Hunter 2001)
- Media-specific
- e.g. shot/scene/sequence for video
- Media-(record)-metadata relations
- foaf:depicts, vra:type=work, vra:type=image

7

technology & more standards? Do we really need new

- Or just need to learn to apply and combine what's already out there
- Semantic Web stack
- MPEG stack
- Other metadata formats
- Put some simple, open, easy to use multimedia vocabularies on the web
- Collect and publish "Best practices" for multimedia on the Semantic Web

Thanks

Questions?

45/46

This research is supported by

BSIK/MultimediaN

NWO ToKeN/I²RP

Intelligent Information Retrieval and Presentation

 NWO ToKeN/CHIME Cultural Heritage in an Interactive Multimedia Environment

- NWO NASH
- Networked Adaptive Structured Hypermedia
- Telematica Instituut Topia
- Images courtesy of Rijksmuseum, Amsterdam