OSSMETER: A Software Measurement Platform for
Automatically Analysing Open Source Software Projects:

Davide Di Ruscio
University of LAquila, Italy

davide.diruscioQunivaq.it

Nicholas Matragkas
University of York, UK

nicholas.matragkas@york.ac.uk

ABSTRACT

Deciding whether an open source software (OSS) project
meets the required standards for adoption in terms of qual-
ity, maturity, activity of development and user support is
not a straightforward process as it involves exploring vari-
ous sources of information. Such sources include OSS source
code repositories, communication channels such as news-
groups, forums, and mailing lists, as well as issue tracking
systems. OSSMETER is an extensible and scalable platform
that can monitor and incrementally analyse a large number
of OSS projects. The results of this analysis can be used
to assess various aspects of OSS projects, and to directly
compare different OSS projects with each other.

Categories and Subject Descriptors

H.4 Information Systems Applications|: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

General Terms

Measurement

Keywords

Open source software, Source code analysis, Text mining
techniques

1. INTRODUCTION

Deciding whether an open source software (OSS) project
meets the required standards for adoption in terms of qual-
ity, maturity, activity of development and user support is not

*This paper was partially supported by the EU OSSMETER
FP7 STREP project (318736). The authors would like to
acknowledge the valuable contributions and support of Prof.
Richard Paige and Prof. Sophia Ananiadou to this work as
Principal Investigators of the OSSMETER project.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ESEC/FSE’15, August 30 — September 4, 2015, Bergamo, Italy
© 2015 ACM. 978-1-4503-3675-8/15/08...
http://dx.doi.org/10.1145/2786805.2803186

Dimitrios S. Kolovos
University of York, UK

dimitris.kolovos@york.ac.uk

loannis Korkontzelos
University of Manchester, UK
ioannis.korkontzelos@manchester.ac.uk

Jurgen J. Vinju
Centrum Wiskunde &
Informatica, The Netherlands
Jurgen.Vinju@cwi.nl

a straightforward process. Various sources of information
have to be taken into account including source code reposi-
tories, communication channels, bug tracking systems, and
other relevant metadata such as the number of downloads,
the license(s) under which it is made available, its release
history etc. Additional challenges have to be faced when
one needs to discover and compare several OSS projects that
offer software of similar functionality, and make an evidence-
based decision on which one should be selected for the task
at hand. Even when a decision has been made for the adop-
tion of a particular OSS product, decision makers need to
be able to monitor whether the OSS project continues to
be healthy, actively developed and adequately supported
throughout the lifecycle of the software development project
in which it is used, in order to identify and mitigate any
risks emerging from a decline in the quality indicators of the
project in a timely manner. Previous work in the field of
OSS analysis and measurement has mainly concentrated on
analysing the source code behind OSS software to calculate
quality indicators and metrics.

Apart from source code repositories, online channels of
communication between OSS users and developers, such as
forums, newsgroups, mailing lists and bug trackers, can in-
form about the interest of users for an OSS project, the
engagement of OSS developers with the users and the qual-
ity of user support. Online forums, newsgroups and mailing
lists allow users to communicate with developers and with
each other in order to ask questions, exchange views, report
problems, make announcements and suggest enhancements
related to the OSS product. Bug trackers allow users and de-
velopers to formally provide defect reports and enhancement
requests for the OSS. An active and vibrant communication
channel is essential for candidate adopters of an OSS prod-
uct as this is often the main place where they can receive
expert support - in contrast to commercial software where
support is usually provided under a contract that prescribes
a certain quality of service (QoS) level.

In this paper we present OSSMETER?, a software mea-
surement and analysis platform, which has been developed
in the context of the EU project OSSMETER?. The plat-
form is capable of tracking repositories associated with OSS
projects and evaluate various quality and activity aspects.
OSSMETER extends the scope and effectiveness of OSS

!OSSMETER system: https://github.com/ossmeter
20SSMETER EU Project: http://www.ossmeter.eu

analysis and measurement with novel contributions on source
code analysis, Natural Language Processing (NLP) and text
mining techniques. OSSMETER has been developed as an
extensible cloud-based platform through which users can
register, discover and compare OSS projects, but which can
also be extended in order to support quality analysis and
monitoring of proprietary software development projects.
The OSSMETER system can be a highly valuable support-
ing tool for:

e Developers and Project Managers who are re-
sponsible for deciding on the adoption of OSS, as it
will enable them to make decisions on hard facts and
uniform quality indicators;

Developers of OSS as it will enable them to monitor
the quality of the OSS projects they contribute to, pro-
mote the OSS they contribute to using independently-
calculated and trustworthy quality indicators, and iden-
tify related projects for establishing synergies with;

Funding Bodies that are funding ICT projects which
produce OSS, as it will allow them to monitor the qual-
ity and assess the impact of the produced software even
after the end of the projects.

In the following, we present the OSSMETER system and
its constituent components.

2. OSSMETER

With the goal of measuring and monitoring numerous in-
formation sources of a vast number of OSS projects, the
OSSMETER platform needs to be both scalable and exten-
sible. It needs to interface not only with the most widely
used issue-tracking systems, version control systems, and
user support systems, but also with the most widely-used
open source hosting forges (e.g. SourceForge, Google Code,
Eclipse, Apache, Github). Moreover, the OSSMETER sys-
tem needs to be able to support different types of analysis
and measurement components. Such components should be
able to perform different types of analysis such as source
code analysis and natural language processing (e.g. sen-
timent analysis and thread classification). In addition to
extensibility, the OSSMETER system needs to be scalable
in order to support the automated analysis of an arbitrary
number of OSS projects of arbitrary size.

To support the aforementioned requirements of scalabil-
ity and extensibility, the architecture illustrated in Figure
1 is proposed. Every component of this architecture is de-
signed with these requirements in mind. In the following
sections, we will briefly present the main building blocks of
this architecture.

OSSMETER Web Application

l consumes

REST API

Metric Providers Fact Providers

Persistence

Database Filesystem

Figure 1: OSSMETER system architecture

971

2.1 Data Storage and Persistence

The OSSMETER system has to deal with various types of
structured and unstructured data, such as source code mod-
els and text. Moreover, the system has to deal with high vol-
ume data, since there are open source projects which consist
of millions of lines of code, and are developed by thousands
of contributors. For example, Mozilla Firefox consists of
9,577,883 lines of code, which are developed by 2,492 con-
tributors in 156,467 commits®. Monitoring such projects can
be a challenging task, especially if one considers the fact that
multiple projects will have to be monitored simultaneously.

Due to the nature of the data the OSSMETER platform
has to deal with, a scalable and efficient data storage has to
be used in order to avoid any performance bottlenecks. The
data storage is responsible for storing and retrieving project-
specific metadata (e.g., that which was extracted from the
hosting forge), and the metric measurements. The database
technology we are using is MongoDB?. Such a database is
scalable, and schemaless supporting the system architecture.
Finally, we use local disk storage in order to store tempo-
rary data required for the analysis, such as clones of source
repositories.

Atop the data storage layer lies the data persistence layer
which is responsible for raising the level of abstraction pro-
vided by the MongoDB driver. To this end we have de-
veloped an object mapping framework for the MongoDB
database called Pongo®. Pongo is a template-based POJO
generator for MongoDB which enables developers to spec-
ify a data model in a high level modeling language and to
generate strongly-typed Java classes for interacting with the
database.

2.2 OSSMETER Platform

The central component of the OSSMETER system is the
OSSMETER platform, which is responsible for the integra-
tion of the various OSSMETER components, as well as for
their scheduling, execution, and orchestration. Another ma-
jor responsibility of the OSSMETER platform is the min-
ing of the OSS data, which are then passed to the various
metrics providers for analysis. To provide this extensibil-
ity requirement, the OSSMETER platform is implemented
using a plug-in based approach (OSGi). A set of standard
platform eztension points are defined which plug-ins can im-
plement to register services with the platform (such as a new
issue-tracking system connector or a new metric). OSGi en-
ables these services to be stopped, started and updated at
runtime without stopping the platform.

2.2.1 Incremental Analysis

As the platform supports an arbitrary number of mea-
surement components, each of which require access to one
or more of the project information sources (e.g., version con-
trol systems, and issue tracking systems), the platform pro-
vides a number of information managers. These are modules
responsible for connecting to the remote information repos-
itories, and computing a delta of the artefacts that have
changed since the last analysis. These deltas are then pre-
sented to the measurement components to enable them to
perform their analysis without duplicating work. Managers

3 As measured on the 8th of October 2013
“http://www.mongodb.org
Shttps://code.google. com/p/pongo/

are scheduled to compute deltas for every day of the OSS
project’s existence. This enables OSSMETER to compute
fine-grained analyses of the evolution of each metric, whilst
also potentially correlating these analyses to days of the
week or time of the year (which has been shown to affect
the health of a project [7]).

A major goal of OSSMETER is to avoid storing any data
locally whenever this is possible. For example, due to the
nature of distributed version control systems such as Git,
data from such repositories need to be stored locally. On the
other hand, messages from NNTP newsgroups do not need
to be stored locally, since their analysis can be performed
in an incremental manner over the network. Therefore the
daily deltas calculated by the managers enable the analysis
to focus on small, incremental chunks of data, and therefore
the disk storage requirements of the system are minimised,
and the performance is optimised. Daily deltas is a novel
feature of OSSMETER in comparison to other similar plat-
forms such as Alitheia Core [5].

The OSSMETER system provides managers for the main
OSS information sources:

e Version control systems: SVN, Git
e Issue-tracking systems: Bugzilla, Bitbucket, GitHub
Issues, Jira, Redmine, SourceForge

e Communication channels: NNTP Newsgroups, Source-

Forge Forums
Moreover, due to the OSGi-based architecture of the sys-
tem additional managers can be implemented and integrated
with the system with minimal effort.

2.2.2 Scalability

The platform needs to scale to support the monitoring of
an arbitrary number of OSS projects. To achieve this, we
have developed the platform to scale horizontally at both
the data and logic layers (Figure 1). Firstly, our choice of
data store, MongoDB, is designed to be horizontally scaled
through the use of sharding. Secondly, the platform itself
can be horizontally scaled through the use of distributed
OSGi. New nodes running the OSSMETER platform can be
added to the network and register themselves as slave nodes.
As each OSS project is treated independently from all oth-
ers, the scheduler can delegate the analysis of entire projects
to any registered node on the network. At the node-level,
we optimise the execution by constructing a dependency tree
of the different measurement components, and by executing
each branch of this tree in a parallel fashion.

2.3 Measurement Components

The architectural layer atop the layer of the OSSME-
TER platform hosts the platform’s measurement compo-
nents. In the context of OSSMETER, these components
are responsible for measuring different aspects of monitored
OSS projects. Conceptually the OSSMETER system sup-
ports three different types of measurement components: fact
providers, metric providers, and factoids. Fact providers
perform utility measurements and store factual data that
can be consumed by other fact/metric providers. Metric
providers optionally use computed facts to measure one or
more project aspects and store the result in the database. Fi-
nally, factoids can aggregate heterogeneous metric providers
into a four-star system.

Currently, OSSMETER provides more than 300 providers.

measurement components for source code (e.g., number of
committed changes, code churn, cyclomatic complexity, etc.),
issue tracking systems components (e.g., average time be-
tween creating and closing a bug, number of open bugs,
length of discussion for a bug, etc.), and communication
channel measurement components (e.g., average response
time, number of new messages, number of active users). In
addition to the existing providers, new providers can be in-
tegrated with the platform with minimal effort by using the
provided OSGi extension points.

24 Open API

On top of the platform we provide an open Application
Programming Interface (API) that enables researchers and
developers of 3rd- party applications to access the data per-
sisted by the system. The REST API of the OSSMETER
platform® is developed using the Restlet framework”. The
API presents three types of data: project metadata, project
metric data, and project metric data summaries, intended
for visualisation.

2.5 Web Application

To make the results of the platform immediately accessi-
ble, we have designed and implemented a web application®
that consumes the REST API and enables users to register
and discover OSS projects and explore their quality indi-
cators in an intuitive manner to aid decision making. Ad-
ditionally, users can receive notifications when projects of
interest slip below (or above) selected thresholds on the set
of metrics that are most important to them. This can, for
example, help users plan migrations to a new OSS project
if an existing one is discontinued. Finally, the presentation
of the information about software projects can be fully cus-
tomised at the user level and it is based on custom quality
models.

3. OSSMETER EVALUATION AND
PERFORMANCE

So far we have analysed a number of OSS projects dur-
ing the evaluation period of the EU OSSMETER project.
Several evaluators, both internal and external to the project
consortium, have been involved in the evaluation phase in-
cluding small and medium enterprises like Tecnalia®, Soft-
eam'®, and UNPARALLEL Innovation'!, and large multi-
nationals like Airbus, and Thales. A sample of the anal-
ysed projects is listed in Table 1. During the analysis of
those projects we have performed a number of experiments
in order to assess the performance of the OSSMETER sys-
tem. These experiments have shown that on average it takes
~10 seconds to connect remotely to an information source
and create a delta which is then passed to the measurement
components. Once the measurement components obtain this
delta it takes them on average 20 milliseconds to complete
their measurement and store it to the database. For exam-
ple, Figure 2 illustrates the average time (in milliseconds) of
all metrics per day for the Drupal'? project.

Shttp://www.ossmeter.com/api/
"http://restlet.com/
Shttp://www.ossmeter.com
Shttp://www.tecnalia.com/

Ohttp://wuw.softeam. com/
Yhttp://wuw.unparallel.pt/

These providers include language-specific and language-agnostic '?https://www.drupal.org/

Table 1: Some of the projects used in the evaluation

Projects LOC Age of Code (days) # Developers # Commits Repository URL

Odoo 2,016,254 2,955 315 93,180 GitHub https://github.com/odoo/odoo

Joomla 865,282 3,465 561 21,831 GitHub https://github.com/joomla/joomla-cms

Drupal 609,987 4,680 107 16,450 GitHub https://github.com/drupal/drupal

Ossmeter 537,343 349 7 1,796 GitHub https://github.com/ossmeter/ossmeter

Assimp 310,235 2,555 7 2,610 GitHub https://github.com/assimp/assimp

Libreplan 291,744 1,251 35 9,346 GitHub https://github.com/Igalia/libreplan

BIMServer 224,000 1,716 15 2,775 GitHub https://github.com/opensourceBIM/BIMserver

Hudson 223,033 3,345 73 1,476 Eclipse https://projects.eclipse.org/projects/technology.hudson
Alitheia-Core 53,874 2,675 11 4,815 GitHub https://github.com/istlab/Alitheia-Core

Epsilon 5,483,784 2,920 6 5,122 Eclipse https://projects.eclipse.org/projects/modeling.epsilon
ATL 563,439 1,684 8 3,661 Eclipse https://projects.eclipse.org/projects/modeling.mmt.atl

100

2001 2003 2005 2007

date

2009 2011 2013 2015

Figure 2: Average metric provider timing for Drupal
in milliseconds.

Moreover we evaluated how scalable OSSMETER is in
terms of disk storage. Our results show that for the largest
project in terms of activity from the list in Table 1, namely
Odoo, the data obtained for this project is ~4GB. These
data correspond to the measurements of 315 metric providers
for the entire life of the project. Although the results indi-
cated that we need considerable amount of disk space, we ob-
served that measurements of 4 metric providers correspond
to more than half or the required disk space. These metrics
are responsible for very fine grained analysis such as keeping
track of every time a developer has performed an action on
a file. In a scenario where disk space is a system constraint,
the modular architecture of OSSMETER. permits the deac-
tivation of such costly metric providers without affecting the
execution of the rest of the system.

4. RELATED WORK

Several projects have provided platforms that support au-
tomated measurement of open source software in the last
decade. In our view, the most significant of these projects of
this kind are Flossmetrics [4], Qualoss [8], SQO-0SS (Alitheia
Core) [5] and Ohloh [1]. Also, many OSS forges such as
SourceForge, Google Code and GitHub provide built-in an-
notation and measurement facilities for the OSS projects
they host. OSSMETER differentiates itself from these by
addressing the entire community around an OSS project,
rather than focusing on a single aspect (such as source code).
OSSMETER’s novel daily deltas provide a fine-grained view
of the evolution of an OSS project’s health indicators. The
open API of OSSMETER enables third party developers
to benefit from our data analysis efforts and, optionally,
contribute ther results back to the community. Further-
more, OSSMETER facilitates long-term monitoring of OSS
projects, by issuing notifications when quality indicators fall
below a user-defined level.

973

There are many existing metrics that are used to evalu-
ate the quality of source code [3], bug tracking systems [2],
and newsgroups [6]. OSSMETER will support these metrics
whilst also extending the state-of-the-art in programming
language-agnostic and language-specific analysis methods,
and applying advanced NLP and text-mining techniques to
OSS information sources.

5. CONCLUSIONS

This paper has presented OSSMETER, an extensible sys-
tem for monitoring the health of OSS projects. Its architec-
ture and design enables the platform to be extensible and
scalable. Extensibility is achieved in multiple ways. First,
since we are using a schemaless database, the platform sup-
ports heterogeneous data models, which can be tailored ac-
cording to the needs of different metric providers. Moreover,
the use of OSGi enables the integration with the platform
of an arbitrary number of information managers and met-
ric providers. Scalability at the data level is supported by
the choice of an appropriate database technology, namely
MongoDB, which supports sharding. Furthermore, the plat-
form can be deployed in a distributed manner across mul-
tiple computational nodes. In addition computation at the
node-level can be performed in a parallel manner.

6. REFERENCES

[1] Ohloh Project. http://www.ohloh.net/.

[2] M. Amoui, N. Kaushik, A. Al-Dabbagh, L. Tahvildari,
S. Li, and W. Liu. Search-based duplicate defect
detection: An industrial experience. In Proc. MSR’13,
pages 173-182, 2013.

N.E. Fenton and S.L. Pfleeger. Software Metrics. Pws
Pub Co, 1996.

J. M. Gonzalez-Barahona, G. Robles, and S. Duenas.
Collecting data about floss development: the
flossmetrics experience. In Procs of FLOSS2010, pages
29-34. ACM, 2010.

G. Gousios and D. Spinellis. Alitheia core: An
extensible software quality monitoring platform. In
Procs of ICSE 2009, pages 579-582. IEEE Computer
Society, 2009.

B. Lundell J. Gamalielsson and B. Lings.
Responsiveness as a measure for assessing the health of
OSS ecosystems. In Proc. OSCOMM’10, 2010.

J. Sliwerski, T. Zimmermann, and A. Zeller. Don’t
program on fridays! how to locate fix-inducing changes.
In Proc. WSR’05, May 2005.

M. Soto and M. Ciolkowski. The qualoss open source
assessment model measuring the performance of open
source communities. In Procs of ESEM 2009, pages
498-501. IEEE Computer Society, 2009.

6

[7

8

