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Abstract. Rascal is a new language for meta-programming and is
intended to solve problemsin the domain of source code analysisand
transformation. In this article we give a high-level overview of the
language and illustrate its use by many examples. Rascal is a work
in progress both regarding implementation and documentation. More
information is available at http://www.meta-environment.org/M eta-
Environment/Rascal .

Key wor ds: source code analysis, source code transformation, meta-
programming.

1. A New Language for Meta-Programming

Meta-programs are programs that analyze, transform or generate other programs.
Ordinary programs work on data; meta-programs work on programs. The range of
programs to which meta-programming can be applied is large: from programs in
standard languages like C and Java to domain-specific languages for describing high-
level system modelsor applicationsin specialized areaslike gaming or finance. In some
cases, even test results or performance data are used asinput for meta-programs. Rascal
isanew language for meta-programming, thisisthe activity of writing meta-programs.

1.1. The EASY Paradigm

Many meta-programming problems follow a fixed pattern. Starting with some input
system (ablack box that we usually call system-of-interest), first relevant informationis
extracted from it and stored in an internal representation. Thisinternal representation is
then analyzed and used to synthesize results. If the synthesis indicates this, these steps
can be repeated over and over again. These steps are shown in Figure 1.1, “EASY: the
Extract-Analyze-Synthesize Paradigm”.

Thisisan abstract view on solving meta-programming problems, but is it uncommon?
No, so let'sillustrate it with afew examples.
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1.1.1. Finding security breaches

Alice is system administrator of a large online marketplace and she is looking for
security breaches in her system. The objects-of-interest are the system's log files.
First relevant entries are extracted. This will include, for instance, messages from the
SecureShell demon that reports failed login attempts. From each entry login name and
originating | P address are extracted and put in atable (the internal representationin this
example). These data are analyzed by detecting duplicates and counting frequencies.
Finally results are synthesized by listing the most frequently used login names and |P
addresses.

Figure 1.1. EASY: the Extract-Analyze-Synthesize Paradigm

1.1.2. A Forensic DSL compiler

Bernd is a senior software engineer working at the Berlin headquarters of a forensic
investigation lab of the German government. His daily work isto find common patterns
infilesstored on digital mediathat have been confiscated during criminal investigations.
Text, audio and video files are stored in zillions of different data formats and each
data format requires its own analysis technique. For each new investigation ad hoc
combinations of tools are used. This makesthe process very labour-intensive and error-
prone. Bernd convinces his manager that designing a new domain-specific language
(DSL) for forensic investigations may relieve the pressure on their lab. After designing
the DSL---let's call it DERRICK---he makes an EASY implementation for it. Given
aDERRICK program for a specific case under investigation, he first extracts relevant
information from it and analyzesit: which mediaformats are relevant? Which patterns



to look for? How should search results be combined? Given this new information, Java
code is synthesized that uses the various existing tools and combines their results.

1.1.3. Renovating Financial Software

Charlotte is software engineer at alarge financial institution in Paris and sheislooking
for options to connect an old and dusty software system to a web interface. She will
need to analyze the sources of that system to understand how it can be changed to
meet the new requirements. The objects-of-interest are in this case the source files,
documentation, test scripts and any other availableinformation. They have to be parsed
in someway in order to extract relevant information, say the calls between various parts
of the system. The call information can be represented as a binary relation between
caller and callee (the internal representation in this example). This relation with 1-step
calsis analyzed and further extended with 2-step calls, 3-step calls and so on. In this
way call chainsof arbitrary length become available. With thisnew information, we can
synthesize results by determining the entry points of the software system, i.e., the points
where calls from the outside world enter the system. Having completed thisfirst cycle,
Charlotte may be interested in which procedures can be called from the entry points
and so on and so forth. Results will be typically represented as pictures that display the
relationships that were found. In the case of source code analysis, a variation of our
workflow scheme is quite common. It is then called the extract-analyze-view paradigm
and is shown in Figure 1.2, “ The extract-analyze-view paradigm”.

Figure 1.2. The extract-analyze-view paradigm
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1.1.4. Finding Concurrency Errors

Daniel is concurrency researcher at one of the largest hardware manufacturers
worldwide. He isworking from an office in the Bay Area. Concurrency isthe big issue
for his company: it is becoming harder and harder to make CPUs faster, therefore more



and more of them are bundled on a single chip. Programming these multi-core chipsis
difficult and many programs that worked fine on a single CPU contain hard to detect
concurrency errors due to subtle differences in the order of execution that results from
executing the code on more than one CPU. Here iswhere Daniel enters the picture. He
isworking on tools for finding concurrency errors. First he extracts facts from the code
that are relevant for concurrency problems and have to do with calls, threads, shared
variablesand locks. Next, he analyzes these facts and synthesizes an abstract model that
captures the essentials of the concurrency behaviour of the program. Finally he runs a
third-party verification tool with this model as input to do the actual verification.

1.1.5. Model-driven Engineering

Elisabeth is a software architect at a large airplane manufacturer and her concern
is reliability and dependability of airplane control software. She and her team have
designed a UML model of the control software and have extended it with annotations
that describe the reliability of individual components. She will use this annotated
model in two ways: (a) to extract relevant information from it to synthesize input for
a dtatistical tool that will compute overall system reliability from the reliability of
individual components; (b) to generate executable code that takes the reliability issues
into account.

1.2. Rascal

With these examples in mind, you have a pretty good picture how EASY appliesin
different use cases. All these cases involve a form of meta-programming: software
programs (in a wide sense) are the objects-of-interest that are being analyzed,
transformed or generated. The Rascal language you are about to learn is designed for
meta-programming following the EASY paradigm. It can be applied in domainsranging
from compiler construction and implementing domain-specific languages to constraint
solving and software renovation.

Since representation of information is central to the approach, Rascal providesarich set
of built-in data types. To support extraction and analysis, parsing and advanced pattern
matching are provided. High-level control structures make analysis and synthesis of
complex datastructures simple.

1.3. Benefits of Rascal

Before you spend your time on studying the Rascal language it may help to first hear
our elevator pitch about the main benefits offered by the language:

* Familiar syntax in a what-you-see is-what-you-get style is used even for
sophisticated concepts and this makes the language easy to learn and easy to use.

» Sophisticated built-in data types provide standard solutions for many meta
programming problems.



» Safety is achieved by finding most errors before the program is executed and by
making common errors like missing initializations or invalid pointers impossible. At
the time of writing, this checking is done during execution.

 Local typeinference makes local variable declarations redundant.
» Pattern matching can be used to analyze all complex datastructures.

» Syntax definitions make it possible to define new and existing languages and to
write tools for them.

* Visiting makesit easy to traverse datastructures and to extract information from them
or to synthesize resullts.

» Templates enable easy code generation.
* Functions as values permit programming styles with high re-use.
» Generictypesallow writing functions that are applicable for many different types.

» Eclipse integration makes Rascal programming a breeze. All familiar tools are at
your fingertips.

Interested? Read on!
1.4. Aim and Scope of this Article

Aim. The aim of this article is to give an easy to understand but comprehensive
overview of the Rascal language and to offer problem solving strategies to handle
realistic problems that require meta-programming. Problems may range from security
analysis and model extraction to software renovation, domain-specific languages and
code generation.

Audience. This article is intended for students, practitioners and researchers who
want to solve meta-programming problems.

Background. Readers should have some background in computer science,
software engineering or programming languages. Familiarity with several main stream
programming languages and experience with larger software projectswill makeit easier
to appreciate the relevance of the meta-programming domain that Rascal is addressing.
Some familiarity with concepts like sets, relations and pattern matching is assumed.

Scope. The scope of thisarticleislimited to the Rascal language and its applications
but does not address implementation aspects of the language.

Related Work. Rascal owesalot to other languages that aim at meta-programming,

in particular the user-defined, modular, syntax and term rewriting of ASF+SDF [K1i93],
[BDH+01], the relational calculus as used in Rscript [K1i08] and pioneered by GROK
[Hol08], traversal functions as introduced in [BKV03], strategies as introduced in
ELAN [BKK+98] and Stratego [BKVV08], and integration of term rewriting in Java



asdonein TOM [BBK+07]. We also acknowledge |ess specific influences by systems
like TXL [Cor06], ANTLR [Par07], JastAdd [HMO3], Semmle [dMSV+08], DMS
[BPMO04], and various others. A first application of Rascal in the domain of refactoring
is described in [KvdSV09].

1.5. Downloading, Installing and Running Rascal
See http://www.meta-environment.org/M eta-Environment/Rascal for information.

1.6. Reading Guide
Figure 1.3. Structure of the Rascal Description
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The structure of the description of Rascal is shown in Figure 1.3, “ Structure of the
Rascal Description”. This article provides the first three parts:

 Introduction: gives a high-level overview of Rascal and consists of Section 1, “A
New Language for Meta-Programming” and Section 2, “Rascal Concepts’ . It also
presents some simple examplesin Section 3, “ Some Classical Examples’.

* Problem Solving: describes the major problem solving strategies in Rascal's
application domain, see Section 4, “Problem Solving Strategies’.



» Examples: givesacollection of larger examples, see Section 5, “Larger Examples’.

The other parts can be found online [http://www.meta-environment.org/doc/books//
analysis/rascal-manual/rascal-manual .pdf]:

» Reference: gives a detailed description of the Rascal language, and all built-in
operators and library functions.

e Support: gives tables with operators and library functions, a bibliography and a
glossary that explains many concepts that are used in the descriptions of Rascal and
tries to make them self-contained.

1.7. Typographic Conventions

Rascal code fragments are always shown as alisting like this:
here is sone Rascal code ...

Interactive sessions are show as a screen like this:

rascal > Conmand;
Type: Val ue

where:
* rascal > isthe prompt of the Rascal system.
e Command isan arbitrary Rascal statement or declaration typed in by the user.

* Type: Val ue is the type of the answer followed by the value of the answer as
computed by Rascal. In some cases, the response will smply be ok when thereisno
other meaningful answer to give.

2. Rascal Concepts

Before explaining the Rascal language in more detail, we detail our elevator pitch a bit
and give you ageneral understanding of the concepts on which the language is based.

2.1. Values

Values are the basic building blocks of a language and the type of values determines
how they may be used.

Rascal is a value-oriented language. This means that values are immutable and are
always freshly constructed from existing parts and that sharing and aliasing problems
are completely avoided. Thelanguage al so providesvariables. A value can be associated
with avariable asthe result of an explicit assignment statement: during the lifetime of a
variabledifferent (immutable) values may be assignment to it. Other waysto associatea
valuewith avariableisby way of function calls (binding of formal parametersto actual
values) and as the result of a successful pattern match.
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2.2. Data structures

Rascal provides a rich set of datatypes. From Booleans (boal), infinite precision
integers (int) and reals (real) to strings (str) that can act as templates with embedded
expressions and statements. From source code locations (loc) based on an extension
of Universal Resource Identifiers (URI) that allow precise description of text areasin
local and remote files to lists (list), optionally labelled tuples (tuple), sets (set), and
optionally labelled maps (map) and relations (rel). From untyped tree structures (node)
to fully typed datastructures. Syntax trees that are the result of parsing source files
are represented as datatypes (Tree). There is a wealth of built-in operators and library
functions available on the standard datatypes. The basic Rascal datatypes areillustrated
inTable 1.1, “Basic Rascal Types'.

These builtin datatypes are closely related to each other:

* Inalist al elements have the same static type and the order of elements matters. A
list may contain the same value more than once.

* In aset al elements have the same static type and the order of elements does not
matter. A set contains an element only once. In other words, duplicate elements are
eliminated and no matter how many times an element is added to a set, it will occur
init only once.

e Inatuple ale elements (may) have a different static type. Each element of atuple
may have alabel that can be used to select that element of the tuple.

« A relation isaset of tuples which all have the same static tuple type.

* A mapisanasosciativetableof (key, value) pairs. Key and value (may) havedifferent
static type and akey can only be associated with avalue once

Untyped trees can be constructed with the builtin type node. User-defined algebraic
datatypes allow theintroduction of problem-specific types and are a subtype of node. A
fragment of the abstract syntax for statements (assignment, if, while) in aprogramming
language would look as follows:

data STAT = asgStat (ld nane, EXP exp)
| ifStat(EXP exp,list[STAT] thenpart,
|ist[STAT] el separt)
| whileStat(EXP exp, |ist[STAT] body)

Table 1.1. Basic Rascal Types

Type Examples

bool true,fal se




Type Examples

i nt 1,0,-1,123456789

real 1.0,1.0232e20, -25.5

str "abc","first\nnext","result: <X>"

| oc |file:///etc/passwd|

tuple[ Ty, ..., Ty |<1, 2><"john", 43, true>

list[T] [1.121.,[1,2,3],[true, 2, "abc"]

set[T] {}y.,{1,2,3,5,7}, {"john", 4.0}

rel [Ty, ..., T4 {<1, 2>, <2, 3>, <1, 3>},{<1, 10, 100>,
<2, 20, 200>}

map[ T, U (),(2:true, 2:false),("a":1, "b":2)

node f(),add(x,y),g("abc", [2,3,4])

2.3. Pattern Matching

Pattern matching determines whether a given pattern matches a given value. The
outcome can be false (no match) or true (a match). A pattern match that succeeds may
bind values to variables.

Pattern matching is the mechanism for case distinction (switch statement) and search
(visit statement) in Rascal. Patterns can also be used in an explicit match operator : =
and can then be part of larger boolean expressions. Since a pattern match may have
more than one solution, local backtracking over the alternatives of a match is provided.
Patterns can aso be used in enumerators and control structures like for and while
statement.

A very rich pattern language is provided that includes string matching based on regular
expressions, matching of abstract patterns, and matching of concrete syntax patterns.
Some of the features that are provided are list (associative) matching, set (associative,
commutative, idempotent) matching, and deep matching of descendant patterns. All
these forms of matching can be used in asingle pattern and can be nested. Patterns may
contain variables that are bound when the match is successful. Anonymous (don't care)
positions are indicated by the underscore ().

Here is aregular expression that matches a line of text, finds the first aphanumeric
word in it, and extracts the word itself aswell as the before and after it (\ Wmatches all
non-word characters; \ wmatches all word characters):

[ "<before:\ W><word: \w+><after:.*$>/

Regular expressions follow the Java regular expression syntax with one exception:
instead of using numbered groups to refer to parts of the subject string that have been
matched by a part of the regular expression we use the notation:



<Nane: Regul ar Expr essi on>

If Regul ar Expr essi on matches, the matched substring is assigned to string
variable Name.

The following abstract pattern matches the abstract syntax of awhile statement defined
earlier:

whi | eSt at (EXP Exp, |ist[STAT] Stats)

Variables in a pattern are either explicitly declared in the pattern itself---as done in
the example---or they may be declared in the context in which the pattern occurs. So-
called multi-variablesin list and set patterns are declared by a* suffix: X* isthusan
abbreviationfor list[...] Xorset[...] X wherethe precise element type
depends on the context. The above pattern can then be written as

whi | eSt at (EXP Exp, Stats*)
or, if you are not interested in the actual value of the statements as
whi | eSt at (EXP Exp, _*)

When there is a grammar for this example language (in the form of an imported SDF
definition), we can also write concrete patterns as we will see below.

2.4. Enumerators

Enumerators enumerate the values in a given (finite) domain, be it the elementsin a
list, the substrings of a string, or all the nodes in atree. Each value that is enumerated
is first matched against a pattern before it can possibly contribute to the result of the
enumerator. Examples are;

int x <~ {1, 3, 5 7, 11}
int x <- [ 1.. 10 ]
/asgStat(ld nane, ) <- P

The first two produce the integer elements of a set of integers, respectively, arange of
integers. Observe that the left-hand side of an enumerator is a pattern, of which i nt
X is a specific instance. The use of more genera patterns is illustrated by the third
enumerator that does a deep traversal (as denoted by the descendant operator /) of the
complete program P (that is assumed to have a PROGRAM as value) and only yields
statements that match the assignment pattern (asgSt at ) we have seen earlier. Note
the use of an anonymous variable at the EXP position in the pattern.

2.5. Comprehensions

Comprehensions are a notation inspired by mathematical set-builder notation that helps
to write succinct definitions of lists and sets. They are also inspired by queries asfound
in alanguage like SQL.



Rascal generalizescomprehensionsin variousways. Comprehensionsexist for lists, sets
and maps. A comprehension consists of an expression that determines the successive
elements to be included in the result and a list of enumerators and tests (boolean
expressions). The enumerators produce values and the tests filter them. A standard
exampleis

{ x* x| int x < [1 .. 10], x %3 == 0 }

which returns the set {9, 36, 81}, i.e, the squares of the integers in the range
[ 1 .. 10 ] that aredivisibleby 3. A moreintriguing exampleis

{name | /asgStat(ld nanme, _) <- P}

which traverses program P and constructs a set of al identifiers that occur on the left
hand side of assignment statementsin P.

2.6. Control structures

Control structures like i f and whi | e statement are driven by Boolean expressions,
for instance

if(N <= 0)
return 1;
el se

return N * fac(N - 1);

Actually, combinations of generators and Boolean expressions can be used to drive the
control structures. For instance,

for(/asgStat(ld nane, ) <- P, size(nane) > 10){
printl n(nane);
}

prints al identifiersin assignment statements (asgSt at ) that consist of more than 10
characters.

2.7. Case Distinction

The switch statement as known from C and Java is generalized: the subject value to
switch on may be an arbitrary value and the cases are arbitrary patterns followed by
a statement. Each case is comparable to a transaction: when the pattern succeeds and
the following statement is executed successfully, all changes to variables made by the
statement are committed and thus become permanent. The variablesbound by the pattern
are dwayslocal to the statement associated with the case. When a match fails or when
the associated statement fails, a rollback takes place and all side-effects are undone.
External side-effectslike /O and side-effectsin user-defined Java code are not undone.
Hereis an example where we take a program P and distinguish two cases for while and
if statement:



switch (P){

case whileStat(_, ):
println("A while statenment");
case ifStat(_, ., ):
println("An if statenent");
}
2.8. Visiting

Visiting the elements of a datastructure is one of the most common operations in our
domain and the visitor design pattern is a solution known to every software engineer.
Given atree-like datastructure wewant to perform an operation on some (or all) nodes of
thetree. The purpose of the visitor design pattern is to decouple the logistics of visiting
each node from the actual operation on each node. In Rascal the logistics of visiting is
completely automated.

Visiting is achieved by way of visit expressions that resemble the switch statement. A
visit expressions traverses an arbitrarily complex subject value and applies a number of
cases to all its subtrees. All the elements of the subject are visited and when one of the
cases matches the statements associated with that case are executed. These cases may:

* cause some side effect, i.e., assign avalue to local or global variables;
* executeani nsert statement that replaces the current element;

* execute af ail statement that causes the match for the current case to fail (and
undoing all side-effects due to the successful match itself and the execution of the
statements so far).

The value of avisit expression isthe original subject value with all replacements made
asdictated by matching cases. Thetraversal order in avisit expressions can be explicitly
defined by the programmer. An example of visiting is given below and in Section 3.3,
“Colored Trees".

2.9. Functions

Functions allow the definition of frequently used operations. They have a name and
formal parameters. They are explicitly declared and are fully typed. Hereisan example
of afunction that counts the number of assignment statements in a program:

i nt count Assi gnnent s( PROGRAM P) {
int n=0;
visit (P){
case asgStat(_, ):
n += 1;
}

return n;



Functions can al so be used as val ues thus enabling higher-order functions. Consider the
following declarations:

int double(int x) { return 2 * x; }
int triple(int x) { return 3 * x; }
int f(int x, int (int) nulti){ return multi(x); }

The functions double and triple simply multiply their argument with a constant.
Function f is, however, more interesting. It takes an integer x and a function nul t i
(with integer argument and integer result) as argument and appliesnul ti toits own
argument. f (5, triple) will hencereturn 15. Function values can also be created
anonymously as illustrated by the following, alternative, manner of writing this same
caltof:

f(5, int (int y){return 3 * y;});

Here the second argument of f is an anonymous function.

Rascal is ahigher-order language in which functions are first-class values.
2.10. Syntax Definition and Parsing

All source code analysis projects need to extract information directly from the source
code. There are two main approaches to this:

* Lexical information: Use regular expressions to extract useful, but somewhat
superficial, flat, information. This can be achieved using regular expression patterns.

» Structured information: Use syntax analysisto extract the complete, nested, structure
of the source code in the form of a syntax tree.

In Rascal, we reuse the Syntax Definition Formalism (SDF) and its tooling. See
http://www.meta-environment.org/M eta-Environment/Documentation for tutorials and
manuals for SDF.

SDF modul es define grammars and these modul es can be imported in a Rascal module.
These grammar rules can be appliedinwriting concrete patternsto match parts of parsed
source code. Hereis an exampl e of the same pattern we saw above, but now in concrete
form:

whi |l e <Exp> do <Stats> od
Importing an SDF module has the following effects:

* All non-terminals (sortsin SDF jargon) that are used in the imported grammar are
implicitly declared as Rascal types. For each SDF sort S also composite symbolslike
S*,{S ", "}+asobecomeavailable astype. Thismakesit possibleto handle parse
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treesand parsetree fragmentsasfully typed values and assign them to variables, store
them in larger datastructures or pass them as arguments to functions and use them
in pattern matching.

* For al start symbols of the grammar parse functions are implicitly declared that can
parse source files according to a specific start symbol.

» Concrete syntax patterns for that specific grammar can be used.

» Concrete syntax constructors can be used that allow the construction of new parse
trees.

The following example parses a Java compilation unit from atext file and counts the
number of method declarations:

nmodul e Count

i mport | anguages::java::syntax::Java;
i mport ParseTree;

public int count Met hods(loc file){

int n=0;
for(/MethodDecl aration nd <- parse(#Conpil ationUnit,
file))
n += 1;
return n;

}

First observe that importing the Java grammar has as effect that non-terminals like
Met hodDecl ar at i on and Conpi | ati onUni t become available as type in the
Rascal program.

The implicitly declared function par se takes areified type (#Conpi | ati onUni t)
and alocation asarguments and parsesthe contents of thelocation accordingto thegiven
non-terminal. Next, a match for embedded Met hodDecl ar at i ons is done in the
enumetrator of the for statement. This example ignores many potential error conditions
but does illustrate some of Rascal's syntax and parsing features.

2.11. Rewrite Rules

A rewriterule is arecipe on how to simplify values. Remember: (a + b)2 = a?

+ 2ab + b2?A rewriterule has a pattern as left-hand side (here: (a + b) 2) and
areplacement as right-hand side (here: a’ + 2ab + bz). Given avalue and a set of
rewrite rules the patterns are tried on every subpart of the value and replacements are
made if amatch is successful. Thisis repeated as|ong as some pattern matches.

Rewrite rules are the only implicit control mechanism in the language and are used
to maintain invariants during computations. For example, in a package for symbolic
differentiation it is desirable to keep expressions in simplified form in order to avoid



intermediate results like sum( pr oduct (num( 1), x), product (nun(0),
y)) that can be simplified to x. The following rules achieve this:

rule sinplifyl product(num(1), Expression e) => e;
rul e sinplify2 product (Expression e, nun(l)) => e;
rul e sinplify3 product (num(0), Expression e) => nun(0);
rul e sinplify4 product (Expression e, nun(0)) => nun(0);
rule sinplify5 sum(num(0), Expression e) => g;
rule sinplify6 sun(Expression e, num(0)) => g;

Whenever a new expression is constructed during symbolic differentiation, these rules
areimplicitly applied to that expression and all its subexpressions and when a pattern at
the left-hand side of arule applies the matching subexpression is replaced by the right-
hand side of the rule. Thisis repeated aslong as any rule can be applied.

Sincerewriterules are activated automatically, one may always assume that expressions
arein simplified form.

Rewrite rules are Turing complete, in other words any computable function can be
defined using rewrite rules, including functions that do not terminate. Thisis apoint of
attention when using rewrite rules.

2.12. Equation Solving

Many problems can be solved by forms of constraint solving. This is a declarative
way of programming: specify the constraints that a problem solution should satisfy
and how potential solutions can be generated. The actual solution (if any) is found by
enumerating solutions and testing their compliance with the constraints.

Rascal provides a sol ve statement that helps writing constraint solvers. A typical
exampleis dataflow analysis where the propagation of values through aprogram can be
described by a set of equations. Their solution can be found with thesol ve statement.
See Section 5.6, “Dataflow Analysis’ for examples.

2.13. Other features

All language features (including the ones just mentioned) are described in more detail
later onin this article. Some features we have not yet mentioned are:

» Rascal programs consist of modules that are organized in packages.

» Modules can import other modules. These can be Rascal modules or SDF modules
(as shown abovein Section 2.10, “Syntax Definition and Parsing”).

» Thevisibility of entities declared in modules can be controlled using public/private
modifiers.

« Datastructures may have annotations that can be explicitly used and modified.



» Thereisan extensive library for builtin datatypes, input/output, fact extraction from
Java source code, visualization, and more.

2.14. Typechecking and Execution

Rascal has a statically checked type system that prevents type errors and uninitialized
variables at runtime. There are no runtime type casts as in Java and there are therefore
less opportunities for run-time errors. The language provides higher-order, parametric
polymorphism. A type aliasing mechanism allows documenting specific uses of atype.
Built-in operators are heavily overloaded. For instance, the operator + is used for
addition on integers and reals but also for list concatenation, set union etc.

The flow of Rascal program execution is completely explicit. Boolean expressions
determine choices that drive the control structures. Rewrite rules form the only
exception to the explicit control flow principle. Only local backtracking is provided in
the context of boolean expressions and pattern matching; side effectsare undonein case
of backtracking.

3. Some Classical Examples

The following simple examples will help you to grasp the main features of
Rascal quickly. You can also consult the online documentation at http://www.meta-
environment.org/Meta-Environment/Rascal for details of the language or specific
operators or functions.

3.1. Hello
The ubiquitous hello world program looks in Rascal as follows:

rascal > i nport 1Q
ok

rascal > printlin("Hello world, my first Rascal prograni);
Hello world, my first Rascal program
ok

First, the library module 10 is imported since hello world requires printing. Next, we
cal pri nt | n and proudly observe our first Rascal output!

A dlightly more audacious approach is to wrap the print statement in a function and
cal it:

rascal > void hello() {
printin("Hello world, nmy first Rascal prograni);
}

void (): void hello();

rascal > hell o();
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Hell o world, my first Rascal program
ok

Don't get scared by thevoi d (): void hell o(); thatyou get back when typing
inthehel | o function. Thefirstvoi d () part saystheresultisafunction that returns
nothing, and the second part voi d hel | o() summarizes its value (or would you
prefer ahex dump?).

The summit of hello-engineering can be reached by placing all the above in a separate
module:

nodul e deno: : Hel |l o
i mport 10

public void hello() {
printin("Hello world, my first Rascal prograni);
}

Note that we added a public modifier to the definition of hello, since we want it to be
visible outside the Hello module. Using this Hello module is now simple;

rascal > i nport deno:: Hell o;
ok

rascal > hell o();
Hello world, my first Rascal program
ok

3.2. Factorial
Hereis another classical example, computing the factorial function:

nodul e deno: : Fact ori al

public int fac(int N)

{
if(N <= 0)
return 1;
el se
return N * fac(N - 1);
}

It uses a conditional statement to distinguish cases and hereis how to useit:

rascal > i nport deno:: Factori al ;
ok

rascal > fac(47);



int: 25862324151116818064296435515361197996919763238912000
0000000

Indeed, Rascal has arbitrary length integers.
3.3. Colored Trees

Suppose we have binary trees---trees with exactly two children--that have integers as
their leaves. Also suppose that our trees can have red and black nodes. Such trees can
be defined as follows:

nodul e denp: : Col or edTr ees

data Col oredTree =
leaf (int N)
| red(Col oredTree left, ColoredTree right)
| bl ack(Col oredTree | eft, Col oredTree right);

We can use them as follows:

rascal > i nport deno:: Col or edTr ees;
ok

rascal > rb = red(bl ack(leaf (1), red(leaf(2),leaf(3))),
bl ack(l eaf (3), leaf(4)));

Col oredTree: red(bl ack(leaf(1),red(leaf(2),leaf(3))),
bl ack(l eaf (3),1eaf(4)))

Observe that the type of variabler b was autimatically inferred to be Col or edTr ee.

We define two operations on ColoredTrees, one to count the red nodes, and one to sum
the values contained in al leaves:

/1 continui ng nodul e deno: : Col or edTr ees

public int cntRed(Col oredTree t){
int ¢ = 0;
visit(t) {
case red(_, ): c=c¢c + 1,0
1
return c;

}

public int addLeaves(Col oredTree t){
int ¢ = 0;
visit(t) {

case leaf(int NJ: ¢ =c + N©

}H



return c;

}

© Visit dl the nodes of the tree and increment the counter ¢ for each red node.
® Visit dl nodes of the tree and add the integers in the leaf nodes.

This can be used as follows:

rascal > cnt Red(rb);

int: 2
rascal > addLeaves(rb);
int: 13

A final touch to this example is to introduce green nodes and to replace all red nodes
by green ones:

/1 continuing nodul e deno: : Col or edTr ees

dat a Col oredTree = green(Col oredTree |eft,
Col oredTree right); ©

public Col oredTree nmakeG een(Col oredTree t){
return visit(t) {

case red(l, r) => green(l, r) (2]

i

}

© Extend the ColoredTree datatype with anew gr een constructor.
® Visit adl nodes in the tree and replace red nodes by green ones. Note that the
variables| andr areintroduced here without a declaration.

Thisis used as follows:

rascal > makeG een(rb);
Col oredTree: green(black(leaf(1),green(leaf(2),leaf(3))),
bl ack(! eaf (3),1eaf(4)))

3.4. Word Replacement

Suppose you are in the publishing business and are responsible for the systematic
layout of publications. Authors do not systematically capitalize wordsin titles—--"Word
replacement” instead of Word Replacement”--- and you want to correct this. Here is
one way to solve this problem:

nodul e deno: : Wr dRepl acenent
i mport String;

public str capitalize(str word)



(2]

e

if(/"<letter:[a-z]><rest:.*$>/ := word) ©
return toUpperCase(letter) + rest;®
el se

return word; ©

The function capitalize takes a string as input and capitalizes its first character
if that is aletter. Thisis done using a regular expression match that anchors the
match at the beginning (*), expects a single letter and assigns it to the variable
letter (I et t er : [ a- z] ) followed by an arbitrary sequence of |ettersuntil theend
of the string that is assigned to the variablerest (<r est : . *$>).

If the regular expression matches we return a new string with the first letter
capitalized.

Otherwise we return the word unmodified.

The next challenge ishow to capitalize all the wordsin astring. Here are two solutions:

11

conti nui ng nodul e deno: : Wr dRepl acenent

public str capAl1(str S)

{
result ="";
whil e (/"<before:\W><word:\w+><after:.*$>/ :=S) { ©
result += before + capitalize(word);
S = after;
}
return result;

}

public str capAl2(str S)

{
return visit(S){®

case /<word:\w+>/i © => capitalize(word)®

i

}

© Inthefirst solution capAl | 1 we just loop over al the words in the string and
capitalize each word. The variable resul t is used to collect the successive
capitalized words. Herewe use\ Wdo denote non-word characters and\ wfor word
characters.

® In the second solution we use a visit expression to visit al the substrings of S.
Each matching case advances the substring by the length of the pattern it matches
and replaces that pattern by another string. If no case matches the next substring
istried.

® Thesingle case matches aword (note that \ w matches aword character).



O Whenthecasematchesaword, it isreplaced by acapitalized version. Themodifier
i at theend of the regular expressions denotes case-insensitive matching.

We can apply thisall asfollows:

rascal > i nport denp:: Wr dRepl acenent ;
ok

rascal > capitalize("rascal");
str: "rascal"

rascal > capAll 1("rascal is great");
str: "Rascal |Is Geat"

3.5. Template Programming

Many websites and code generators usetempl ate-based code generation. They start from
atext template that contains embedded variables and code. The template is "executed”
by replacing the embedded variables and code by their string value. A language like
PHPispopular for thisfeature. L et's see how we can do thisin Rascal . Given amapping
from field namesto their type, the task at hand is to generate a Java class that contains
those fields and corresponding getters and setters. Given a mapping

public map[str, str] fields = (

"nane" "String",
"age" . "Integer",
"address" : "String"
)15
we expect the call

gend ass("Person", fields)
to produce the following outpult:

public class Person {

private |nteger age;

public void set Age(l nteger age) {
t hi s. age = age;

}

public Integer getAge() {
return age;

}

private String namne;
public void setName(String name) {
t hi s. name = nane;



}
public String get Name() {
return nanme;

}

private String address;

public void set Address(String address) ({
t hi s. address = addr ess;

}

public String getAddress() {
return address;

}
}

Thisis achieved by the following definition of genCl ass:

nmodul e deno: : StringTenpl at e
i mport String;

public str capitalize(str s) {
return toUpper Case(substring(s, 0, 1)) +
substring(s, 1);
}

public str gend ass(str nane, map[str,str] fields) {
return "
public class <name > {
<for (x <- fields) {
str t = fields[x];
str n = capitalize(x);>
private <t> <x>;
public void set<n>(<t> <x>) {
this.<x> = <x>;
}
public <t> get<n>() {
return <x>;
}
<}>

n ., }
.

Observe how the for statement and expressions that access the map fields that are
embedded in the string constant customize the given template for a Java class.



3.6. A Domain-Specific Language for Finite State Machines

Finite State Machines (FSMs) are a universal device in Computer Science and are
used to model problems ranging from lexical tokens to concurent processes. An FSM
consists of named states and labeled transitions between states. An example is shown
in Figure 1.4, “Example of a Finite State Machine”. This example was suggested by
Goerel Hedin at GTTSEO9.

Figure 1.4. Example of a Finite State Machine

This same information can be represented in textual form as follows:

finite-state machine
state S1;
state S2;
state S3;
trans a: S1 -> S2;
trans b: S2 -> Si;
trans a: S1 -> S3

and hereiswhere theideais born to design a Domain-Specific Language for finite state
machines (aptly called FSM). This always proceeds in three steps:

1. Do domain analysis. Explore the domain and make an inventory of the relevant
concepts and their interactions.

2. Define syntax. Design atextual syntax to represent these concepts and interactions.

3. Define operations. Define operations on DSL programs. This maybe, for example,
be typechecking, validation, or execution.

We will now apply these steps to the FSM domain.

Do domain analysis. We assume that the FSM domain is sufficiently known. The
concepts are states and labeled transitions.

Define syntax. We define a textual syntax for FSMs. This syntax is written in
the Syntax Definition Formalism SDF. See http://www.meta-environment.org/Meta-
Environment/Documentation for tutorials and manuals for SDF. The syntax definition
looks as follows:

nodul e deno/ St at eMachi ne/ Synt ax
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i mports basi c/ Wi tespace
i mports basic/ldentifierCon

exports
context-free start-synbol s
FSM
sorts FSM Decl Trans State |dCon

cont ext-free syntax

"state" |dCon -> State
"trans" 1dCon ":" 1dCon "->" |dCon -> Trans
St at e -> Decl
Tr ans -> Decl
“finite-state" "machine" {Decl ";"}+ -> FSM

Two standard modules for whitespace and identifiers are imported and next a fairly
standard grammar for state machines is defined. Observe that in SDF rules are written
in reverse order as compared to standard BNF notation.

Define Operations. There are various operations one could define on a FSM:
executing it for given input tokens, reducing a non-deterministic automaton to a
deterministic one, and so on. Here we select areachability check on FSMs as example.

We start with the usual imports and define a function getTransitions that extracts all
transitions from an FSM:

nmodul e denp: : St at eMachi ne: : CanReach

i nport deno: : St at eMachi ne: : Synt ax;
i mport Rel ation;

i mport Map;

i mport 10

/!l Extract froma give FSMall transitions as a relation

public rel[str, str] getTransitions(FSM fsn{

return

{<"<from", "<to>"> |
[ trans <l dCon a>: <ldCon fronm -> <IdCon to> <- fsm
b
}

The function get Tr ansi ti ons illustrates several issues. Given a concrete fsm,
a deep pattern match (/) is done searching for t r ans constructs. For each match
three identifiers (I dCon) are extracted from it and assigned to the variables a,



f r om respectively, t 0. Next from and to are converted to a string (using the string
interpolations"<from>" and "<to>") and finally they are placed in atuplein theresulting
relation. The net effect isthat transitions encoded in the syntax tree of f smare collected
in arelation for further processing.

Next, we compute all reachable statesin the function canReach:

/1 continuing nodul e deno: : St at eMachi ne: : CanReach

public map[str, set[str]] canReach(FSM fsm {
transitions = getTransitions(fsm;
return
( s: (transitions+)[s] |
str s <- carrier(transitions)
)
}

Herestr s <- carrier(transitions) enumerates all elements that occur
in the relations that is extracted from f sm A map comprehension is used to construct
a map from each state to all states that can be reached it. Heret r ansi ti ons+ is
the transitive closure of the transition relation and (t r ansi ti ons+) [ s] givesthe
image of that closure for a given state; in other words all states that can be reached
fromit.

Finally, we declare an example FSM (observethat it uses FSM syntax in Rascal code!):

/1 continuing nmodul e deno: : St at eMachi ne: : CanReach

public FSM exanpl e =

finite-state machi ne
state S1;
state S2;
state S3;
trans a: S1 -> S2;
trans b: S2 -> S1;
trans a: S1 -> S3;

Testing the above functions gives the following results:

rascal > i nmport deno: : St at eMachi ne: : CanReach;
ok

rascal > get Transi ti ons(exanpl e);

rel[str,str]: {<"S1", "S2">, <"S2", "S1">, <"S1", "S3">}
rascal > canReach(exanpl e) ;



map[str: set[str]: ("S1" : {"Ss1", "S2", "S3"},

"s2t . {"S1v, "S2", "S3"},
"8 {})

4. Problem Solving Strategies

Before we study more complicated examples, it is useful to discuss some general
problem solving strategies that are relevant in Rascal's application domain.

To appreciate these general strategies, it is good to keep some specific problem areas
in mind:

Documentation gener ation: extract facts from source code and use them to generate
textual documentation. A typical example is generating web-based documentation
for legacy languages like Cobol and PL/I.

Metrics calculation: extract facts from source code (and possibly other sources like
test runs) and use them to cal cul ate code metrics. Examplesare cohesion and coupling
of modules and test coverage.

Model extraction: extract facts from source code and use them to build an abstract
model of the source code. An exampleisextracting lock and unlock calls from source
code and to build an automaton that guarantees that lock/unlock occursin pairsaong
every control flow path.

Model-based code generation: given a high-level model of a software system,
described in UML or some other modelling language, transform this model into
executable code. UML-to-Java code generation fallsin this category.

Source-to-source transformation: large-scale, fully automated, source code
transformation with certain objectives like removing deprecated language features,
upgrading to newer APIs and the like.

I nteractiverefactoring: given known "code smells' auser can interactively indicate
how these smells should be removed. The refactoring featuresin Eclipse and Visual
Studio are examples.

With these examples in mind, we can study the overall problem solving workflow as
shown in Figure 1.5, “General 3-Phased Problem Solving Workflow”. It consists of
three optional phases:

Is extraction needed to solve the problem, then define the extraction phase, see
Section 4.1, “Defining Extraction”.

Is analysis needed, then define the analysis phase, see Section 4.2, “Defining
Anaysis’.

Is synthesis needed, then define the synthesis phase, see Section 4.3, “Defining
Synthesis’.



Figure 1.5. General 3-Phased Problem Solving Wor kflow

Each phaseis subject to avalidation and improvement workflow asshownin Figure 1.6,
“Validation and Improvement Workflow”. Each individual phase as well as the
combination of phases may introduce errors and has thus to be carefully validated. In
combination with the detailed strategiesfor each phase, this forms a compl ete approach
for problem solving and validation using Rascal.

Figure 1.6. Validation and I mprovement Wor kflow

<>
:

A major question in every problem solving situation is how to determine the
requirements for each phase of the solution. For instance, how do we know what to
extract from the source code if we do not know what the desired end results of the
project are? The standard solution is to use aworkflow for requirements gathering that




is the inverse of the phases needed to solve the complete problem. This is shown in
Figure 1.7, “Requirements Workflow” and amounts to the phases:

* Requirements of the synthesis phase. This amounts to making an inventory of the
desired results of the whole project and may include generated source code, abstract
models, or visualizations.

» Requirements of the analysis phase. Once these results of the synthesis phase are
known, it is possible to list the analysis results that are needed to synthesize desired
results. Possible results of the analysis phase include type information, structural
information of the original source.

* Requirements of the extraction phase. As alast step, one can make an inventory
of the factsthat have to be extracted to form the starting point for the analysis phase.
Typical facts include method calls, inheritance relations, control flow graphs, usage
patterns of specific library functions or language constructs.

Figure 1.7. Requirements Wor kflow

Y ou will have no problem in identifying requirements for each phase when you apply
them to a specific example from the list given earlier.

When these requirements have been established, it becomes much easier to actually
carry out the project using the three phases of Figure 1.5, “ Genera 3-Phased Problem
Solving Workflow”.

4.1. Defining Extraction

How can we extract facts from the System under Investigation (SUI) that we
are interested in? The extraction workflow is shown in Figure 1.8, “Extraction
Workflow” and consists of the following steps:

* First and foremost we have to determine which facts we need. This sounds trivial,
but it is not. The problem is that we have to anticipate which facts will be needed
in the next---not yet defined---analysis phase. A common approach is to use look-
ahead and to sketch the queries that are likely to be used in the analysis phase and
to determine which facts are needed for them. Start with extracting these facts and
refine the extraction phase when the analysis phase is completely defined.



« If relevant facts are already available (and they are reliable!) then we are done. This
may happen when you are working on a system that has already been analyzed by
others.

» Otherwise you need the source code of the SUI. This requires:

e Checking that all sources are available (and can be compiled by the host system
on which they are usually compiled and executed). Due to missing or unreliable
configuration management on the original system this may be a labour-intensive
step that requires many iterations.

« Determining in which languages the sources are written. In larger systems it is
common that three or more different languages are being used.

« If there are reliable third-party extraction tools available for this language mix, then
we only have to apply them and we are done. Here again, validation is needed that
the extracted facts are as expected.

» The extraction may require syntax analysis. This is the case when more structural
properties of the source code are needed such as the flow-of-control, nesting of
declarations, and the like. There two approaches here:

¢ Use athird-party parser, convert the source code to parse trees and do the further
processing of these parse treesin Rascal. The advantage is that the parser can be
re-used, the disadvantage is that data conversion is needed to adapt the generated
parse tree to Rascal. Validate that the parser indeed accepts the language the SUI
is written in, since you will not be the first who has been bitten by the language
dialect monster when it turns out that the SUI uses a local variant that slightly
deviates from a mainstream language.

« Usean existing SDF definition of the source language or write your own definition.
In both cases you can profit from Rascal's seamless integration with SDF. Be
aware, however, that writing a grammar for a non-trivial language is a major
undertaking and may require weeks to month of work. Whatever approach you
choose, validate that the result.

» The extraction phase may only require lexical analysis. This happens when more
superficial, textual, facts have to be extracted like procedure calls, counts of certain
statements and the like. Use Rascal's full regular expression facilitiesto do thelexical
analysis.

It may happen that the facts extracted from the source code are wrong. Typical error
classes are:

» Extracted facts are wrong: the extracted factsincorrectly state that procedure P calls
procedure Q but this is contradicted by a source code inspection. This may happen
when the fact extractor uses a conservative approximation when precise information
isnot statically available. In the language C, when procedure P performs an indirect



call via a pointer variable, the approximation may be that P calls al procedures in
the procedures.

 Extracted facts are incomplete: the inheritance between certain classes in Java code
ismissing.

The strategy to validate extracted facts differ per case but here are three strategies:

* Post process the extracted facts (using Rascal, of course) to obtain trivial facts about
the source code such astotal lines of source code and number of procedures, classes,

interfaces and the like. Next validate these trivia facts with tools like wc (word and
line count), gr ep (regular expression matching) and others.

» Do amanud fact extraction on a small subset of the code and compare this with the
automatically extracted facts.

» Useanother tool onthe same sourceand compareresultswhenever possible. A typical
example is acomparison of acall relation extracted with different tools.

Figure 1.8. Extraction Workflow




The Rascal features that are most frequently used for extraction are;

* Regular expression patterns to extract textual facts from source code.

» Syntax definitions and concrete patterns to match syntactic structures in source code.
* Pattern matching (used in many Rascal statements).

 Visitsto traverse syntax trees and to locally extract information.

» The repertoire of built-in datatypes (like lists, maps, sets and relations) to represent
the extracted facts.

4.2. Defining Analysis

The analysis workflow is shown in Figure 1.9, “Analysis Workflow” and consists of
two steps:

» Determine the results that are needed for the synthesis phase.
» Write the Rascal code to perform the analysis. This may amount to:
* Reordering extracted facts to make them more suitable for the synthesis phase.
 Enriching extracted facts. Examples are computing transitive closures of extracted
facts (e.g., A may call B in one or more calls), or performing data reduction by
abstracting aways details (i.e., reducing a program to a finite automaton).
« Combining enriched, extracted, facts to create new facts.
As before, validate, validate and validate the results of analysis. Essentially the same
approach can be used asfor validating thefacts. Manual checking of answerson random

samples of the SUI may be mandatory. It also happens frequently that answers inspire
new queries that lead to new answers, and so on.

Figure 1.9. Analysis Workflow




The Rascal featuresthat are frequently used for analysis are:

List, set and map comprehensions.

The built-in operators and library functions, in particular for lists, maps, sets and
relations.

Pattern matching (used in many Rascal statements).
Visits and switches to further process extracted facts.
The solve statement for constraint solving.

Rewrite rules to simplify results and to enforce constraints.

4.3. Defining Synthesis

Results are synthesized as shown in Figure 1.10, “ Synthesis Workflow” . This consists
of the following steps:

Determine the results of the synthesis phase. Wide range of results is possible
including:

* Generated source code.

« Generated abstract representations, like finite automata or other formals models
that capture properties of the SUI.

» Generated data for visualizations that will be used by visuaization tools.

If source code is to be generated, there are various options.

 Print strings with embedded variables.

» Convert abstract syntax trees to strings (perhaps using forms of pretty printing).

¢ Use agrammar of the target source language, also for code generation. Note that
this approach guarantees the generation of syntactically correct source code as

opposed to code generation using print statements or string templ ates.

If other output is needed (e.g., an automaton or other formal structure) write data
declarations to represent that output.

Finally, write functions and rewrite rules that generate the desired results.



Figure 1.10. Synthesis Wor kflow

The Rascal features that are frequently used for synthesis are:
 Syntax definitions or data declarations to define output formats.
* Pattern matching (used in many Rasca statements).

* Visits of datastructures and on-the-fly code generation.

* Rewriterules.
5. Larger Examples

Now we will have a closer look at some larger applications of Rascal. We start with
acall graph analysisin Section 5.1, “Call Graph Analysis’ and then continue with the
analysis of the component structure of an application in Section 5.2, “Analyzing the
Component Structure of an Application” and of Javasystemsin Section 5.3, “Analyzing
the Structure of Java Systems’. Next we move on to the detection of uninitialized
variables in Section 5.4, “Finding Uninitialized and Unused Variables in a Program”.
As an example of computing code metrics, we describe the calculation of McCabe's
cyclomatic complexity in Section 5.5, “McCabe Cyclomatic Complexity”. Severd
examplesof dataflow analysisfollow in Section 5.6, “ Dataflow Analysis’. A description
of program dlicing concludes the chapter, see Section 5.7, “Program Slicing”.



5.1. Call Graph Analysis

Suppose a mystery box ends up on your desk. When you open it, it contains a huge
software system with several questions attached to it:

» How many procedure calls occur in this system?
» How many procedures does it contains?

» What are the entry points for this system, i.e., procedures that call others but are not
called themselves?

» What aretheleaves of thisapplication, i.e., proceduresthat are called but do not make
any calls themselves?

» Which procedures call each other indirectly?

» Which procedures are called directly or indirectly from each entry point?
» Which procedures are called from all entry points?

L et's see how these questions can be answered using Rascal.

5.1.1. Preparations

Toillustratethisprocess consider theworkflow in Figure 1.11, “Workflow for analyzing
mystery box”. First we have to extract the calls from the source code. Rascal is very
good at this, but to simplify this example we assume that this call graph has already
been extracted. Also keep in mind that a real call graph of a rea application will
contain thousands and thousands of calls. Drawing it in the way we do later on in
Figure 1.12, “Graphical representation of thecal | s relation” makesno sense sincewe
get auniformly black picture dueto all the call dependencies. After the extraction phase,
we try to understand the extracted facts by writing queries to explore their properties.
For instance, we may want to know how many callsthere are, or how many procedures.
We may also want to enrich these facts, for instance, by computing who calls who in
more than one step. Finally, we produce a simple textual report giving answers to the
guestions we are interested in.



Figure 1.11. Workflow for analyzing mystery box

textual report

Now consider the call graph shown in Figure 1.12, “Graphical representation of the
cal | s relation”. This section is intended to give you a first impression what can be
done with Rascal.

Figure 1.12. Graphical representation of thecal | s relation
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Rascal supports basic data types like integers and strings which are sufficient to
formulate and answer the questions at hand. However, we can gain readability by
introducing separately named types for the items we are describing. First, weintroduce
therefore anew type pr oc (an aliasfor strings) to denote procedures:

rascal > alias proc = str;
ok

Suppose that the following facts have been extracted from the source code and are
represented by therelation Cal | s:

rascal > rel [proc, proc] Calls =
{ <l| all , n bll >, <l| bll , n Cll >, <l| bll , n dll >, <l| dll , n Cll >,



<" d" , "e" >, <" f " , "e" >, <" f " , " g" >, <" g" , "e">
b
rel [proc,proc]: { <"a", "b"> <"b", "c"> <"b", "d">,
<'d", "c"> <"d","e"> <"f", "e">,
<" f " , " g" , <" g" , "e" >}

This concludes the preparatory steps and now we move on to answer the questions.
5.1.2. How many procedure calls occur in this system?

To determine the numbers of calls, we simply determine the number of tuplesin the
Cal | s relation, asfollows. First, we need the Relation library so we import it:

rascal > i nport Rel ation;
ok

next we describe a new variable and cal culate the number of tuples:

rascal > nCalls = size(Calls);
int: 8

The library function si ze determines the number of elementsin a set or relation. In
thisexample, nCal | s will get the value 8.

5.1.3. How many procedures are contained in it?

We get the number of procedures by determining which names occur in the tuplesin
therelation Cal | s and then determining the number of names:

rascal > procs = carrier(Calls);
set[proc]: {"a", "b", "c", "d", "e", "f", "g"}

rascal > nprocs = size(procs);
int: 7

The built-in function car ri er determines al the values that occur in the tuples of a
relation. In this case, pr ocs will get thevaue{"a", "b", "c", "d", "e",
"f", "g"} and nprocs will thus get value 7. A more concise way of expressing
this would be to combine both steps:

rascal > nprocs = size(carrier(Calls));
int: 7

5.1.4. What are the entry points for this system?

The next step in the analysis is to determine which entry points this application has,
i.e., procedures which call others but are not called themselves. Entry points are useful
since they define the external interface of a system and may also be used as guidance to



split asystem in parts. Thet op of arelation contains those |eft-hand sides of tuplesin
arelation that do not occur in any right-hand side. When arelation isviewed asagraph,
itstop corresponds to the root nodes of that graph. Similarly, the bot t omof arelation
corresponds to the leaf nodes of the graph. Using this knowledge, the entry points can
be computed by determining the top of the Cal | s relation:

rascal > i mport G aph;

ok

rascal > entryPoi nt = top(Calls);

set[proc]: {"a", "f"}

Inthiscase, entryPoi nts isequa to{"a", "f"}.In other words, procedures

"a" and"f" aretheentry points of this application.
5.1.5. What are the leaves of this application?

In asimilar spirit, we can determine the leaves of this application, i.e., procedures that
are being called but do not make any calls themselves:

rascal > bottonCaII = botton(Calls);
set[proc]: {"c", "e"}

Inthiscase, bott ontCal | sisequal to{"c", "e"}.

5.1.6. Which procedures call each other indirectly?

We can also determine the indirect calls between procedures, by taking the transitive
closure of the Cal | s relation, written as Cal | s+. Observe that the transitive closure

will contain both the direct and the indirect calls.

rascal > cl osureCalls = Cal | s+;

rel[proc, proc]: {<"a", "b"> <" b", c > <"b", "d">,
<"d", "c"> <"d", <"f", "e">,
<" f " , " g" >, <" g" , "e" >, <"a" , "c" >,
<"'a", "d">, <"b", "e"> <"a", "e">}

5.1.7. Which procedures are called directly or indirectly from each entry
point?

We now know the entry pointsfor thisapplication (*a" and" f ") and theindirect call
relations. Combining this information, we can determine which procedures are called
from each entry point. This is done by indexing cl osur eCal | s with appropriate
procedure name. The index operator yields all right-hand sides of tuples that have a
given value as | eft-hand side. This gives the following:

rascal > cal | edFromA = closureCalls["a"];



set[proc]: {"b", "c", "d", "e"}
and

rascal > cal | edFronF = closureCalls["f"];
set[proc]: {"e", "g"}

5.1.8. Which procedures are called from all entry points?

Finally, we can determine which procedures are called from both entry points by taking
the intersection of thetwo setscal | edFromAand cal | edFr ontF:

rascal > conmonProcs = cal | edFromA & cal | edFr onF;
set[proc]: {"e"}

In other words, the procedures called from both entry points are mostly disjoint except
for the common procedure " e" .

5.1.9. Wrap-up

These findings can be verified by inspecting a graph view of the calls relation as
shown in Figure 1.12, “ Graphical representation of thecal | s relation”. Such avisua
inspection does not scale very well to large graphs and this makes the above form of
analysis particularly suited for studying large systems.

5.2. Analyzing the Component Structure of an Application

A frequently occurring problem isthat we know the call relation of a system but that we
want to understand it at the component level rather than at the procedure level. If itis
known to which component each procedure belongs, it is possibleto lift the call relation
to the component level as proposed in [Kri99]. Actual lifting amounts to trandating
each call between procedures by a call between components. This is described in the
following module:

nodul e deno: : Lift

alias proc
alias conp

= str;
= str;
public rel[conp,conp] lift(rel[proc, proc] aCalls,
rel [ proc, conp] aPart OF) {
return
{ <C1, C2> | <proc P1, proc P2> <- aCalls,
<comp Cl, conp C2> <- aPartOf[P1] *
aPart O [ P2]
1



For each pair <P1, P2> in the Calls relation we compose the corresponding parts
aPart OF [ P1] and aPart O [ P2] (each yielding a set of components) into a new
relation of calls between components. This relation is added pair by pair to the result.

Let's now apply this. First import the above module, and define a call relation and a
partof relation:

rascal > i mport deno::Lift;

ok

rascal> Calls = {<"main", "a"> <"main", "b"> <"a", "b">,
<"a", "c"> <"a", "d"> <"b", "d">
1

rel[str,str] : {<"main", "a"> <"main", "b"> <"a", "b">,
<"a", "c"> <"a", "d"> <"b", "d">
}

rascal > Conponents = {"Appl", "DB", "Lib"};

set[str] : {"Appl", "DB", "Lib"}

rascal > PartOf = {<"main", "Appl"> <"a", "Appl">,
<"b", "DB"> <"c", "Lib">,
<"d", "Lib">};
rel[str,str] : {<"main", "Appl"> <"a", "Appl">,
<"b", "DB"> <"c", "Lib">,
<"d", "Lib">}

Thelifted call relation between components is now obtained by:

rascal > ConponentCalls = lift(Calls, PartO);

rel[str,str] : {<"DB", "Lib"> <"Appl", "Lib">,
<"Appl", "DB"> <"Appl", "Appl">}

The relevant relations for this example are shown in Figure 1.13, “(@) Cal | s; (b)
Part O ; (c) Conponent Cal | s.”.

Figure1.13.(a) Cal I s; (b) Part O ; (c) Conponent Cal | s.
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5.3. Analyzing the Structure of Java Systems

Now we consider the analysis of Java systems (inspired by [BNLO5]). Suppose that the
typecl ass isdefined as follows

alias class = str;
and that the following relations are avail able about a Java application:

* rel[class,class] CALL:If <G, GCy>isaneementof CALL, then some
method of G, iscalled from C;.

* rel[class, cl ass] | NHERI TANCE: If <Cy, C> is an eement of
| NHERI TANCE, then class C; either extends class C, or C; implementsinterface C,.

e rel[class, cl ass] CONTAI NMENT: If <Ci, C> is an element of
CONTAI NVENT, then one of the fields of class C; is of type C,.

To make this more explicit, consider the class Locat or Handl e from the JHotDraw
application (version 5.2) as shown here;

package CH.ifa.draw standard;

i mport java.aw . Poi nt;

i mport CH.ifa.draw framework. *;

/**
* A LocatorHandl e inplenments a Handl e by del egating t he
* |ocation requests to a Locator object.

*/
public class LocatorHandl e extends AbstractHandl e {
private Locator f Locat or ;
/**

* |nitializes the LocatorHandl e with the
* given Locator.
*/
publ i c Locator Handl e( Fi gure owner, Locator |) {
super (owner) ;
fLocator = |;

}
/**
* Locates the handle on the figure by forwarding
* the request to its figure.
*/
public Point |ocate() {
return fLocator.|ocate(owner());

}



It leads to the addition to the above relations of the following tuples:

e To CALL the pairs <"Locat or Handl e", " Abst ract Handl e" > and
<"Locat or Handl e", "Locat or" > will be added.

* To | NHERI TANCE the pair <" Locat or Handl e", "AbstractHandl e">
will be added.

e To CONTAI NVENT thepair <" Locat or Handl e", "Locat or" > will beadded.

Cyclic structures in object-oriented systems makes understanding hard. Therefore it is
interesting to spot classes that occur as part of a cyclic dependency. Here we determine
cyclic uses of classes that include calls, inheritance and containment. Thisis achieved
asfollows:

rel[class, class] USE = CALL + CONTAI NMENT + | NHERI TANCE;
set[str] C asseslnCycle =
{Cl | <class Cl, class C2> <- USE+, Cl1 == C2};

First, we define the USE relation as the union of the three available relations CALL,
CONTAI NVENT and | NHERI TANCE. Next, we consider all pairs <C;, C> in the
transitive closure of the USE relation such that C; and C, are equal. Those are precisely
the cases of a class with a cyclic dependency on itself. Probably, we do not only want
to know which classes occur in a cyclic dependency, but we also want to know which
classes are involved in such a cycle. In other words, we want to associate with each
class a set of classes that are responsible for the cyclic dependency. This can be done
asfollows.

rel[class, class] USE = CALL + CONTAI NMENT + | NHERI TANCE;
set[class] CLASSES = carri er (USE);
rel [cl ass, cl ass] USETRANS = USE+;
rel[class,set[class]] O assCycles =
{<C, USETRANS[C]> | class C <- CLASSES,
<C, C in USETRANS };

First, we introduce two new shorthands: CLASSES and USETRANS. Next, we consider
all classes C with a cyclic dependency and add the pair <C, USETRANS[ C] > to the
relation Cl assCycl es. Note that USETRANS[ C] is the right image of the relation
USETRANS for element C, i.e., all classesthat can be called transitively from class C.

5.4. Finding Uninitialized and Unused Variables in a Program

Consider the following program in the toy language Pico: (Thisis an extended version
of the example presented earlier in [K1i03].)

[ 1] begin declare x : natural, y : natural,
[ 2] z : natural, p : natural;
[ 3] x :=3;



4] p = 4
5] if g then

[

[

[ 6] Z =y + X
[ 71 else

[ 8] X .= 4

[ 9 fi;

[10] vy := 2z

[11] end

Inspection of this program learns that some of the variables are being used before they
have been initialized. The variables in question are q (line 5), y (line 6), and z (line
10). It isaso clear that variable p isinitialized (line 4), but is never used. How can we
automate these kinds of analysis? Recall from Section 1.1, “The EASY Paradigm” that
we follow the Extract-Analyze-SY nthesize paradigm to approach such a problem. The
first step is to determine which elementary facts we need about the program. For this
and many other kinds of program analysis, we need at |east the following:

» The control flow graph of the program. We represent it by a graph PRED (for
predecessor) which relates each statement with its predecessors.

» Thedefinitionsof eachvariable, i.e., the program statementswhereavalueisassigned
to the variable. It is represented by the relation DEFS.

» Theusesof eachvariable, i.e., the program statements where the value of the variable
isused. It is represented by the relation USES.

In this example, we will use line numbers to identify the statements in the program.
Assuming that there is atool to extract the above information from a program text, we
get the following for the above example:

nodul e deno: : Uni ni t
i mport Rel ation;
i mport G aph;

alias expr = int;
alias varnane = str;

public expr ROOT = 1;

public graph[expr] PRED = { <1,3>, <3,4> <4,5> <5, 6>,
<5, 8>, <6,10>, <8, 10> };
public rel[varname, expr] DEFS = { <"x", 3> <"p", 4>,
<II zII , 6>, <II XII , 8>,
<II yll , 10> }

public rel[varname, expr] USES = { <"qg", 5> <"y", 6>,



<" X" ) 6>l <" Z" ) 1O> } ;

This concludes the extraction phase. Next, we have to enrich these basic factsto obtain
the initialized variables in the program. So, when is a variable V in some statement S
initialized? If we execute the program (starting in ROOT), there may be several possible
execution pathsthat can reach statement S. All iswell if all these execution path contain
adefinition of V. However, if one or more of these path do not contain a definition of
V, then V may be uninitialized in statement S. This can be formalized as follows:

/1 nodul e denp::Unit continued
public rel[varname,expr] UNINIT =
{ <V,E> | <varnane V, expr E> <- USES,
E in reachX(PRED, {ROOT}, DEFS[V])

}i
We analyze this definition in detail:

e <varname V, expr E> : USES enumerates all tuplesin the USES relation.
In other words, we consider the use of each variablein turn.

« E in reachX(PRED, {ROOT}, DEFS[V]) is atest that determines
whether expression E is reachable from the ROOT without encountering a definition
of variable V.

« { ROOT} representstheinitial set of nodes from which all path should start.

e DEFS[ V] yieldstheset of all statementsinwhich adefinition of variableV occurs.
These nodes form the exclusion set for r eachX: no path will be extended beyond
an element in this set.

« PREDistherelation for which the reachability has to be determined.

e Theresult of reachX( PRED, {ROOT}, DEFS[V]) isa setthat contains
al nodes that are reachable from the ROOT (as well as al intermediate nodes on
each path).

e Finally, E in reachX(PRED, {ROCOT}, DEFS[V]) tests whether
expression E can be reached from the ROOT .

* The net effect is that UNI NI T will only contain pairs that satisfy the test just
described.

When we execute the resulting Rascal code (i.e., the declarations of ROOT, PRED,
DEFS, USES and UNI NI T), we get asvalue for UNI NI T:

rascal > i mport deno:: Uninit;
ok



rascal > UNINIT;
rel [ varnane, expr]: {<"q", 5> <"y", 6> <"z", 10>}

and this is in concordance with the informal analysis given at the beginning of this
example.

Asabonus, we can aso determine the unused variablesin aprogram, i.e., variables that
are defined but are used nowhere. Thisis done asfollows:

// nodul e denp::Unit continued

public set[varnanme] UNUSED = donai n( DEFS) - domai n( USES) ;

Taking the domain of therelations DEFS and USES yieldsthe variablesthat are defined,
respectively, used in the program. The difference of these two sets yields the unused
variables, inthiscase{" p"}.

5.5. McCabe Cyclomatic Complexity

The cyclomatic complexity of a program is defined ase - n + 2, where e and n are
the number of edges and nodes in the control flow graph, respectively. It was proposed
by McCabe [McC76] as a measure of program complexity. Experiments have shown
that programs with a higher cyclomatic complexity are more difficult to understand
and test and have more errors. It is generally accepted that a program, module or
procedure with a cyclomatic complexity larger than 15 is too complex. Essentially,
cyclomatic complexity measures the number of decision points in a program and can
be computed by counting al if statement, case branches in switch statements and the
number of conditional loops. Given a control flow in the form of a predecessor graph
Graph[ &T] PRED between elements of arbitrary type &T, the cyclomatic complexity
can be computed in Rascal as follows:

nmodul e deno: : McCabe
i mport G aph;

public int cyclomaticConplexity(G aph[&T] PRED) {
return size(PRED) - size(carrier(PRED)) + 2;
}

The number of edges e isequal to the number of tuplesin PRED. The number of nodes
n isegual to the number of elementsin the carrier of PRED, i.e., all elements that occur
inatuplein PRED.

5.6. Dataflow Analysis

Dataflow analysis is a program analysis technique that forms the basis for many
compiler optimizations. It is described in any text book on compiler construction, e.g.
[ASU86]. The goal of dataflow analysisisto determine the effect of statements on their
surroundings. Typical examples are:



» Dominators (Section 5.6.1, “Dominators’): which nodes in the flow dominate the
execution of other nodes?

» Reaching definitions (Section 5.6.2, “Reaching Definitions’): which definitions of
variables are still valid at each statement?

» Livevariables (Section 5.6.3, “Live Variables’): of which variables will the values
be used by successors of a statement?

» Available expressions: an expression is available if it is computed along each path
from the start of the program to the current statement.

5.6.1. Dominators

A node d of aflow graph dominates a node n, if every path from the initial node of
the flow graph to n goes through d [ASU86] (Section 10.4). Dominators play arole
in the analysis of conditional statements and loops. The function domi nat or s that
computes the dominators for a given flow graph PRED and an entry node ROOT is
defined as follows:

nodul e deno: : Domi nat or s
i mport Set;

i mport Rel ation;

i mport G aph;

public rel [&T, set[&T]] doni nators(rel[&T, &T] PRED,
&T ROOT)
{
set [ &T] VERTI CES = carri er ( PRED);
return { <V, (VERTICES - {V, ROOT}) -
r eachX( PRED, { ROOT}, {V}) >
| &T V <- VERTI CES

1
}
First, the auxiliary set VERTI CES (al the statements) is computed. The relation
DOM NATES consists of al pairs<S, {Si, ..., Sp}> such that

* S isnot aninitial node or equal to S.
» S; cannot be reached from the initial node without going through S.
First import the above module and consider the sample flow graph PRED:

rascal > i nport deno: : Domi nators;
ok

rascal > rel[int,int] PRED = {



<1, 2>, <1, 3>,

<2, 3>,

<3, 4>,

<4, 3>, <4,5> <4,6>,
<5, 7>,

<6, 7>,

<7, 4>, <7, 8>,

<8, 9>, <8, 10>, <8, 3>,
<9, 1>,

<10, 7>

}s

rel[int,int]: { <1,2> <1, 3>,

Itisillustrated inFigure 1.14, “Flow graph”

Figure 1.14. Flow graph

Theresult of applying domi nat or s to it isasfollows:

rascal > domi nat or s( PRED) ;
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<10, {}>}

The resulting dominator treeisshown in Figure 1.15, “ Dominator tree”. The dominator
tree has the initial node as root and each node d in the tree only dominates its
descendantsin the tree.

Figure 1.15. Dominator tree

A
HYHR
5]
El

5.6.2. Reaching Definitions

Weillustrate the calculation of reaching definitions using the example in Figure 1.16,
“Flow graph for various dataflow problems” which wasinspired by [ASU86] (Example
10.15).

Figure 1.16. Flow graph for various dataflow problems
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We assume the following basic definitions to represent information about the program:

nodul e deno: : Reachi ngDef s

i mport Rel ation;



i mport G aph;

i mport |G

public alias stat = int;

public alias var = str;

public alias def = tuple[stat, var];

public alias use = tuple[stat,var];

public rel[stat,def] definition(rel[stat,var] DEFS){
return {<S,<S,V>> | <stat S, var V> <- DEFS};
}

public rel[stat,def] use(rel[stat, var] USES){
return {<S, <S, V>> | <stat S, var V> <- USES};
}

Let's use the following values to represent our example:

rascal > rel [stat,stat] PRED = { <1, 2>, <2,3> <3,4>,
<4,5> <5 6>, <5,7>,
<6, 7>, <7,4>};
rel[stat,stat]: { <1,2> <2, 3>,

rascal > rel[stat, var] DEFS = { <1, "i">, <2, "j">,
<3, "a">, <4, "i">,
<5, "j"> <6, "a">,
<7, i)

rel [stat,var]: { <1, "i"> <2, "j">

rascal > rel [stat,var] USES = { <1, "ni'> <2, "n">,

<3, "ul">, <4, "i">,
<5! "j " >! <6! " u2" >!
<7, "u3">};

rel[stat,var]: { <1, "nm'> <2, "n">, ...

For convenience, we have introduced above a notion def that describes that a certain
statement defines some variable and we revamp the basic relations into a more
convenient format using this new type and the auxiliary functionsdef i ni ti on and
use:

rascal > defi ni ti on( DEFS)

rel[stat,def]: { <1, <1, "i">> <2, <2, "j">>,
<3, <3, "a">>, <4, <4, "i">>,
<5, <5, "j">> <6, <6, "a">>
<7, <7, "i">>}



rascal > use( USES) ;

rel[stat,def]: { <1, <1, "ni'>> <2, <2, "n">>,
<3, <3, "ul">>, <4, <4, "i">>,
<5, <5, "j">> <6, <6, "u2">>,
<7, <7, "u3">>}

Now we are ready to define an important new relation KI LL. Kl LL defines which
variable definitionsare undone (killed) at each statement and is defined by thefollowing
functionki 11 :

/1 continui ng nodul e deno: : Reachi ngDef s

public rel[stat,def] kill(rel[stat,var] DEFS) ({
return {<S1, <S2, V>> | <stat Sl1, var V> <- DEFS,
<stat S2, V> <- DEFS,
S1 = S2};
}

In this definition, all variable definitions are compared with each other, and for each
variable definition all other definitions of the same variable are placed in itskill set. In
the example, Kl LL getsthe value

rascal > kil |l (DEFS);
rel [stat, def]:

{ <1, <4, "i">>, <1, <7, "i">> <2, <5, "j">>,
<3, <6, "a">>, <4, <1, "i">> <4, <7, "i">>,
<5, <2, "j">>, <6, <3, "a">>, <7, <1, "i">>,
<7, <4, "i">>

}

and, for instance, the definition of variablei in statement 1 kills the definitions of i
in statements 4 and 7.

After these preparations, we are ready to formulate the reaching definitions problem
in terms of two relations | Nand OUT. | N captures al the variable definitions that are
valid at the entry of each statement and OUT captures the definitions that are till valid
after execution of each statement. Intuitively, for each statement S, | N[ S] isequal to
the union of the QUT of al the predecessors of S. QUT[ S] , on the other hand, is equal
to the definitions generated by Stowhichweadd | N[ S] minusthe definitionsthat are
killed in S. Mathematically, the following set of eguations captures this idea for each
Statement:

IN[S] = UNIONp i predecessors of s OUT[P]
OUTI[S] = DEF[S] + (IN[S] - KILL[S])

Thisidea can be expressed in Rascal quite literally:



public rel[stat, def] reachi ngDefinitions(

}

First, the relations | N and OUT are declared and initialized. Next follows a solve
statement that uses | N and OUT as variables and contains two equations that
resemble the mathematical equations given above. Note the use of the library function
pr edecessor s to obtain the predecessors of a statement for a given control flow

rel [ stat, var] DEFS,
rel [stat,stat] PRED){
set[stat] STATEMENT = carri er(PRED);
rel [ stat, def] DEF definiti on(DEFS);
rel[stat,def] KILL kill (DEFS);

/1l The set of mutually recursive datafl ow equations
// that has to be sol ved:

rel[stat,def] IN = {};
rel [stat, def] OUT = DEF;

solve (IN, QUT) {
IN = {<S, D> | int S <- STATEMENT,
stat P <- predecessors(PRED, S),
def D <- QUT[P]};
QUT = {<S, D> | int S <- STATEMENT,

def D <- DEF[S] + (IN[S] - KILL[S])};

}s

return IN;

graph.

Figure 1.17. Reaching definitions for flow graph in Figure 1.16,

“Flow graph for various dataflow problems’

"waomn [l] i = m-1
[ E7d <
G<1,uiu>,<2,uju>97_. [3] a .= ul

{(l’lli")'(z’"j"),

.

<3’uau>’<5,uj>
<6’"a">’<7,"i">}

{<21”j”>1<31”a">1

<41"i”>1<51"j”>:
<6,”a”>}

I
{<3,”a”>,<4,”i”>,
<5,”j”>,<6,”a”>}




For our running example (Figure 1.17, “Reaching definitions for flow graph in
Figure 1.16, “Flow graph for various dataflow problems’”) the results are as follows
(see Figure 1.17, “Reaching definitions for flow graph in Figure 1.16, “Flow graph for
various dataflow problems’”). Relation | N has as value:

<7, <5, "j">>, <7, <4, "i">> <7, <3, "a">>,
<7, <6, "a">>

}

If we consider statement 3, then the definitions of variablesi andj from the preceding
two statements are still valid. A more interesting case are the definitions that can reach
statement 4-:

{ <2, <1, "i">>, <3, <2, "j">>, <3, <1, "i">>,
<4, <3, "a">>, <4, <2, "j">> <4, <1, "i">>,
<4, <7, "i">> <4, <5, "j">> <4, <6, "a">>,
<5, <4, "i">>, <5, <3, "a">>, <5, <2, "j">>,
<5, <5, "j">> <b, <6, "a">>, <6, <5, "j">>,
<6, <4, "i">>, <6, <3, "a">>, <6, <6, "a">>,

J

» Thedefinitions of variablesa,j andi from, respectively, statements 3,2 and 1.

* The definition of variablei from statement 7 (via the backward control flow path
from7 to 4).

» Thedefinition of variablej from statement 5 (viathe path 5, 7, 4).
» Thedefinition of variable a from statement 6 (viathe path 6, 7, 4).

Relation OUT has as value:

{ <1, <1, "i">> <2, <2, "j">> <2, <1, "i

I I

<3, <3, "a">>, <3, <2, "j">> <3, <1, "i">>,
<4, <4, "i">> <4, <3, "a">>, <4, <2, "|">>,
<4, <5, "j">> <4, <6, "a">>, <5, <5, "j">>,
<5, <4, "i">> <5, <3, "a">>, <5, <6, "a">>,
<6, <6, "a">>, <6, <5, "j">> <6, <4, "i">>,
<7, <7, "i">> <7, <5, "j">> <7, <3, "a">>,
<7, <6, "a">>

}

Observe, again for statement 4, that all definitions of variable i are missing in
QUTT 4] since they are killed by the definition of i in statement 4 itself. Definitions
for a and j are, however, contained in OQUT[ 4] . The result of reaching definitions
computation is illustrated in Figure 1.17, “Reaching definitions for flow graph in
Figure 1.16, “Flow graph for various dataflow problems’. We will use the function
r eachi ngDef i ni ti ons later onin Section 5.7, “Program Slicing” when defining
program dlicing.



5.6.3. Live Variables

The live variables of a statement are those variables whose value will be used by the
current statement or some successor of it. The mathematical formulation of thisproblem
isasfollows:

IN[S] =USE[S] + (OUT[S] - DEF[S])
OUTI[S] = UNIONs in successorsof s IN[S]

Thefirst equation saysthat avariableis live coming into a statement if either it is used
before redefinition in that statement or it is live coming out of the statement and is not
redefined init. The second equation saysthat avariableislive coming out of astatement
if and only if it islive coming into one of its successors.

This can be expressed in Rascal asfollows:

public rel[stat,def] liveVariables(rel[stat, var] DEFS,
rel [stat, var] USES,
rel [stat,stat] PRED){
set[stat] STATEMENT = carri er(PRED);
rel [stat,def] DEF = definition(DEFS);
rel [stat, def] USE = use(USES);

rel[stat,def] LIN = {};
rel [stat,def] LOUT = DEF;

sol ve(LI N, LOUT) {
LIN ={ <S, D> | stat S <- STATEMENT,
def D <- USE[ S] +
(LOUT[S] - (DEF[S]))};
LOUT = { <S, D> | stat S <- STATEMENT,
stat Succ <- successors(PRED, S),
def D <- LIN[ Succ] };
}

return LIN;

}

The results of live variable analysis for our running example are illustrated in
Figure 1.18, “Live variables for flow graph in Figure 1.16, “Flow graph for various
dataflow problems’”.



Figure 1.18. Live variables for flow graph in Figure 1.16, “Flow
graph for various dataflow problems’
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5.7. Program Slicing

Program dlicing is a technique proposed by Weiser [Wei84] for automatically
decomposing programsin partsby analyzing their dataflow and control flow. Typically,
a given statement in a program is selected as the dlicing criterion and the original
program is reduced to an independent subprogram, caled a dlice, that is guaranteed
to represent faithfully the behavior of the origina program at the dlicing criterion. An
example will illustrate this (we use line numbers for later reference):

[ 1] read(n) [1] read(n) [ 1] read(n)
[ 21 i :=1 [2] i :=1 [ 21 i :=1
[ 3] sum:=0 [3] sum:=0
[ 4] product :=1 [ 4] product :=1
[ 5] while i<=n [5] while i<=n [ 5] while i<=n
do do do
begin begin begin
[ 6] sum:-= [6] sum:=
sum + i sum + i
[ 71 product := [ 71 product :=
product * i product * i
[ 8 i :=i1 +1 [8 i :=i +212 [ 8 i:=1 +1
end end end
[ 9] wite(sum [9] wite(sum
[10] write(product) [10] write(product)

(a) Sanple program (b) Slice for (c) Slice for
statenent [9] stat enent [10]



The initial program is given as (a). The slice with statement [9] as dlicing criterion is
shown in (b): statements [ 4] and [ 7] are irrelevant for computing statement [ 9]

and do not occur in the slice. Similarly, (¢) shows the slice with statement [ 10] as
dlicing criterion. This particular form of dicing is called backward slicing. Slicing
can be used for debugging and program understanding, optimization and more. An
overview of slicing techniques and applications can be found in [Tip95]. Here we will
explore arelational formulation of slicing adapted from aproposal in[JR94]. The basic
ingredients of the approach are as follows:

* We assume the relations PRED, DEFS and USES as before.

* Weassume an additional set CONTRCL- STATEMENT that defines which statements
are control statements.

» Totietogether dataflow and control flow, three auxiliary variables are introduced:

e The variable TEST represents the outcome of a specific test of some conditional
statement. The conditional statement defines TEST and all statements that are
control dependent on this conditional statement will use TEST.

« Thevariable EXECrepresentsthe potential execution dependence of astatement on
some conditional statement. The dependent statement defines EXECand an explicit
(control) dependence is made between EXEC and the corresponding TEST.

¢ Thevariable CONST represents an arbitrary constant.
The calculation of a (backward) slice now proceedsin six steps:

» Compute the relation rel [ use, def] use-def that relates all uses to their
corresponding definitions. The function r eachi ng- defi ni ti ons as shown
earlier in Section 5.6.2, “Reaching Definitions’ does most of the work.

» Compute the relation r el [ def , use] def-use-per-stat that relates the
internal definitions and uses of a statement.

e Compute the relation r el [ def , use] control - dependence that links all
EXECs to the corresponding TESTS.

» Compute the relation r el [ use, def] use-control - def combines use/def
dependencies with control dependencies.

» After these preparations, compute the relation r el [ use, use] USE- USE that
contains dependencies of uses on uses.

e The backward slice for agiven slicing criterion (ause) is now simply the projection
of USE- USE for the dlicing criterion.

Thisinformal description of backward dlicing can now be expressed in Rascal:

nodul e deno: : Slicing



i mport
i mport
i mport
i mport
i mport

Set ;

Rel ati on;

deno: : Reachi ngDef s;
deno: : Dom nat or s;
Uni t Test ;

set[use] BackwardSlice(set[stat] CONTROLSTATEMENT,

rel [stat, stat] PRED,
rel [ stat, var] USES,
rel [ stat, var] DEFS,
use Criterion) {

rel [stat, def] REACH = reachi ngDefi nitions(DEFS, PRED);

/1 Conpute the relation between each use and
/1 correspondi ng definitions: use def

rel [use, def] use_def =
{<<S1, V>, <S2,V>> | <stat Sl1, var V> <- USES,

<stat S2, V> <- REACH[S1]};

/1 Internal dependencies per statenent

rel [ def,use] def use per stat =

{<<S, V1>, <S V2>> | <stat S, var V1> <- DEFS,
<S, var V2> <- USES}
+
{<<S, V>, <S "EXEC'>> | <stat S, var V> <- DEFS}
+
{<<S,"TEST">,<S,V>> | stat S <- CONTROLSTATEMENT,
<S, var V> <-
domai nR(USES, {S})};

/1 Control dependence: control -dependence

rel [stat, set[stat]] CONTROLDOM NATOR =
domai nR(dom nat or s(PRED, 1), CONTROLSTATEMENT) ;

rel [ def,use] control dependence =
{ <<S2, "EXEC'>, <S1, "TEST">>

<stat Sl1, stat S2> <- CONTROLDOM NATOR};

/1 Control and data dependence: use-control -def



rel [use, def] use_control def =
use_def + control dependence;
rel [use, use] USE USE =
(use_control def o def _use per stat)?*;

return USE USE[ Criterion];
}

Let's apply thisto the example from the start of this section and assume the following:

rascal > i nport deno:: Slici ng;
ok

rascal > rel [stat, stat] PRED <1, 2>, <2,3>, <3,4>,
<4,5>, <5,6>, <5,9>,
<6, 7>, <7,8>, <8, 5>,
<8, 9>, <9,10> };

11
—~~

rel[stat,stat]: {<1, 2>,

<1, "n">, <2, "i">
<3, "suni >,

<4, " product " >,

<6, "suni >,

<7, "product">,

rascal > rel [stat, var] DEFS

11
—~~

<8, "i">};
rel[stat,var]: {<1, "n">,
rascal > rel[stat,var] USES = { <5, "i"> <5, "n">,
<6, "sunli'> <6,"i">,
<7, "product">, <7, "i">,
<8, "i"> <9, "sunl>,
<10, "product">
}i

rel[stat,var]; { <5, "i"> ...

rascal > set[int] CONTROL- STATEMENT = { 5 };
set[int]: {5}

rascal > Backwar dSl i ce( CONTROL- STATEMENT,
PRED, USES, DEFS, <9, "suni>);
set[use]: { <1, "EXEC'>, <2, "EXEC'>, <3, "EXEC'>,

<5, "i">, <5, "n"> <6, "suni> <6, "i">,
<6, "EXEC'>, <8, "i">, <8, "EXEC'>,
<9, "sunt> }

Take the domain of this result and we get exactly the statementsin (b) of the example.



6. Concluding Remarks

Rascal and its IDE are in full development at the time of writing and a first prototype
implementation is available for download. We have given here only a sketch of the
language and its applications. Thefollowing topics have not been covered inthisarticle:

» Theuse of SDF modules to parse source text.

e The extensive Rascal library that supports many operations on the basic datatypes
including shortest path, reachability and bisimulation on graphs. It also providestools
for drawing graphs and charts, for extracting data from Subversion repositories and
more.

» The Rascal Eclipse DT library that provides direct access to facts that have been
extracted from Java source code.

» The Rascal IDE that is based on Eclipse and that provides, for instance, very good
interactive debugging facilities and basic visualization tools.

Werefer theinterested reader to http://www.meta-environment.org/M eta- Environment/
Rascal for a more complete and up-to-date overview and for downloading the latest
version of Rascal.
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