An Empirical Study of PHP Feature Usage

A Static Analysis Perspective

Mark Hills', Paul Klint*2, and Jurgen Vinju*?
LCentrum Wiskunde & Informatica, Amsterdam, The Netherlands
2INRIA Lille Nord Europe, Lille, France
Mark.Hills,Paul.Klint,Jurgen.Vinju@cwi.nl

ABSTRACT

PHP is one of the most popular languages for server-side
application development. The language is highly dynamic,
providing programmers with a large amount of flexibility.
However, these dynamic features also have a cost, making it
difficult to apply traditional static analysis techniques used
in standard code analysis and transformation tools. As part
of our work on creating analysis tools for PHP, we have
conducted a study over a significant corpus of open-source
PHP systems, looking at the sizes of actual PHP programs,
which features of PHP are actually used, how often dynamic
features appear, and how distributed these features are across
the files that make up a PHP website. We have also looked
at whether uses of these dynamic features are truly dynamic
or are, in some cases, statically understandable, allowing us
to identify specific patterns of use which can then be taken
into account to build more precise tools. We believe this
work will be of interest to creators of analysis tools for PHP,
and that the methodology we present can be leveraged for
other dynamic languages with similar features.

1. INTRODUCTION

PHP [2], invented by Rasmus Lerdorf in 1994, is an im-
perative, object-oriented language focused on server-side
application development. It is now one of the most popular
languages, as of January 2013 ranking 6th on the TIOBE
programming community index [5], used by 78.8 percent of
all websites whose server-side language can be determined [4],
and ranking as the 6th most popular language on GitHub [3].
PHP is dynamically typed, with a single-inheritance class
model and a number of standard built-in types (e.g., strings,
integers, floats). Type correctness is judged based on duck
typing, allowing values to be used whenever they can behave
like values of the expected type. For instance, adding the
strings "3" and "4" yields the number 7, while concate-
nating the numbers 3 and 4 yields the string "34". PHP
also includes a number of object-oriented features, such as
interfaces, exceptions, and traits, as well as dynamic features
common to other scripting languages, including an eval ex-

pression to run dynamically-built code and special methods
that handle uses of undefined object fields and methods.

The flexible, dynamic nature of PHP may sometimes yield
unexpected results or make programs harder to understand:
the files that are included in another file are computed at
runtime, making it difficult to know, before execution, the
text of the program that will actually run; variable constructs
provide reflective access to variables, classes, functions, meth-
ods, and properties through strings, which may be defined
dynamically, or may even be based on user input; magic
methods make it hard to reason about which fields and
methods a class actually supports; eval can run arbitrary,
potentially dangerous code, and can create new definitions,
including entire new classes; and the behavior of built-in op-
erations can be puzzling, returning unexpected results (e.g.,
"hello"+"world" is equal to 0). While these features pro-
vide strong motivation for building program analysis tools to
aid in program understanding, testing, security vulnerability
detection, refactoring, and debugging, they also make it hard
for these tools to efficiently provide correct, precise results.

To understand the impact of these features on analysis tool
development, we set out to answer the following questions.
How large are real PHP programs? How often are the various
features of the PHP language used in these programs? With
the goal of supporting a core of the language for experimen-
tation with new analysis algorithms and tools, which features
would need to be defined precisely to faithfully capture the
core of PHP as it is used in practice, and which little-used
features could be modeled with less precision? Where and
how often are some of the harder to analyze language fea-
tures (such as those mentioned above, like dynamic includes)
used in existing PHP code? Are these features spread evenly
through the code, or do they tend to cluster in specific files?
And, finally, are these uses truly dynamic, or is it possible
to capture patterns that can be leveraged in analysis tools?

To answer these questions, we assembled a large corpus of
open-source PHP systems, described further in Section 3.
We then analyzed this corpus using the Rascal [14] meta-
programming language (Section 4). Sections 5 and 6 contain
our main results with answers to the questions posed above
(the first three, on general feature usage, in Section 5, the
last three, specifically on the dynamic features of PHP, in
Section 6). Section 7 then presents final thoughts and con-
cludes. But first, in Section 2 we discuss related work focused
on empirical studies of feature usage in real programs.

System Version PHP Release Date File Count SLOC Description

CakePHP 2.2.0-0 5.2.8 2012-07-02 640 137,900 Application Framework
Codelgniter 2.1.2 5.1.6 2012-06-29 147 24,386 Application Framework
Doctrine ORM 2.2.2 5.3.0 2012-04-13 501 40,870 Object-Relational Mapping
Drupal 7.14 5.2.4 2012-05-02 268 88,392 CMS

Gallery 3.0.4 5.2.3 2012-06-12 505 38,123 Photo Management
Joomla 2.5.4 5.2.4 2012-05-02 1,481 152,218 CMS

Kohana 3.2 5.3.0 2011-07-25 432 27,230 Application Framework
MediaWiki 1.19.1 5.2.3 2012-06-13 1,480 846,621 Wiki

Moodle 2.3 5.3.2 2012-06-25 5,367 729,337 Online Learning
osCommerce 2.3.1 4.0.0 2010-11-15 529 44,952 Online Retail

PEAR 1.9.4 4.4.0 2011-07-07 74 31,257 Component Framework
phpBB 3 4.3.3 2012-01-12 269 148,276 Bulletin Board
phpMyAdmin 3.5.0 5.2.0 2012-04-07 341 116,630 Database Administration
SilverStripe 2.4.7 5.2.0 2012-04-05 514 108,220 CMS

Smarty 3.1.11 5.2.0 2012-06-30 126 15,468 Template Engine
Squirrel Mail 1.4.22 4.1.0 2011-07-12 276 36,082 Webmail

Symfony 2.0.12 5.3.2 2012-03-19 2,137 120,317 Application Framework
‘WordPress 3.4 5.2.4 2012-06-13 387 110,190 Blog

The Zend Framework 1.11.12 5.2.4 2012-06-22 4,342 553,750 Application Framework

The PHP versions listed above in column PHP are the minimum required versions. The File Count includes files with a .php or an .inc extension.
In total there are 19 systems consisting of 19,816 files with 3,370,219 total lines of source.

Table 1: The PHP Corpus.

2. RELATED WORK

We are not aware of any empirical studies of the PHP lan-
guage similar to our own. However, there are a number of
studies focused on applying static techniques to other lan-
guages, examining how language features are used or looking
for patterns that can be exploited in analysis. Hackett and
Aiken [12], as part of their work on alias analysis, studied
aliasing patterns in large C system programs, identifying nine
patterns that account for almost all aliasing encountered in
their corpus. Ernst et al. [8] investigated similar questions to
those we have for PHP, but for the C preprocessor. This result
was instrumental in the development of further experiments
in preprocessor-aware C code analysis and transformation,
such as that by Garrido [11]. Liebig et al. also focused on
the C preprocessor, undertaking a targeted empirical study
to uncover the use of the preprocessor in encoding variations
and variability [16]. Collberg et al. [7] performed an in-depth
empirical analysis of Java bytecode, computing a wide variety
of metrics, including object-oriented metrics (e.g., classes per
package, fields per class) and instruction-level metrics (e.g.,
instruction frequencies, common sequences of instructions).
Baxter et al. [6] looked at a combination of Java bytecode and
Java source (generated from bytecode), where they focused
on characterizing the distributions for a number of metrics.

Other studies have used a combination of static and dynamic
analysis, or have instead focused just on dynamic analysis—
for instance, by gathering execution traces which are then
used to provide information on runtime behavior. Knuth [15]
used a combination of both static and dynamic techniques to
examine real-world FORTRAN programs, gathering statis-
tics over FORTRAN source code and using both profiling and
sampling techniques to gather runtime information. Richards
et al. [20] used trace analysis to examine how the dynamic
features of JavaScript are used in practice, specifically in-
vestigating whether the scenarios assumed by static analysis
tools (e.g., limited use of eval, limited deletion of fields, use
of functions that matches the provided function signatures)

are accurate. In a more focused study over a larger corpus,
Richards et al. [19] analyzed runtime traces to find uses of
eval; as part of this work, the authors categorized these
uses into a number of patterns. Meawad et al. [17] then used
these results to create a tool, Evalorizer, that can be used to
remove many uses of eval found in JavaScript code. Srid-
haran et al. [21] show that scaling analysis tools to handle
real-world code is challenging, but that leveraging idiomatic
uses of dynamic JavaScript features can greatly improve the
efficiency and precision of static analyses, something we are
attempting to do as well in identifying usage patterns of
dynamic features in PHP code.

Morandat et al. [18] undertook an in-depth study of the R
language. As part of this work, they used a combination
of runtime tracing and static analysis to examine how the
unlikely combination of features found in R are actually used,
examining a corpus of 3.9 million lines of R code pulled
from multiple repositories. Furr et al. [9] used profiling of
dynamic Ruby features, in conjunction with provided test
cases, to determine how the dynamic features of a program
are used in practice. They discovered that these features are
generally used in ways that are almost static, allowing them
to replace these dynamic features with static versions that
are then amenable to static type inference in a system such
as DRuby [10]. We have not used this approach, but, based
on our results, believe it could be applied to PHP as well.

3. CORPUS

We assembled a corpus of 19 large open-source PHP systems,
basing our choice on popularity rankings provided by Ohloh®,
a site that tracks open-source projects. The chosen systems
are shown in Table 1. Systems were generally selected just
based on this ranking, although in some cases we skipped
systems if we already had several, more popular systems of
the same type in the corpus. We used popularity, instead of
actual number of downloads or installed sites, since we have

'nttp://www.ohloh.net/tags/php

no way to accurately compute these figures. In total, the
corpus consists of 19,816 PHP source files with 3,370,219
lines of PHP source (counted using the cloc [1] tool).

When building the corpus, we chose specifically to focus on
larger, more widely used systems for two reasons. First, such
large systems are more likely to benefit from static analysis
and the code inspection and transformation tools such anal-
ysis enables. Second, larger systems should provide a greater
mix of language features and usage scenarios. However, this
does present two related threats to validity: a different corpus
could yield very different results, and our selection of larger,
more mainstream projects may mean we are seeing more
carefully written code than is actually typical of many real-
world PHP programs. For the first, we believe that choosing
systems across a variety of different application areas helps
to ensure the corpus is representative of actual PHP use.
For the second, we believe this is a natural consequence of
selecting popular, widely-used systems for the corpus, but
even with that said, there are still significant differences in
how features are used in the different systems, with some tak-
ing much more advantage of newer code structuring features
(e.g., PHP5 classes and namespaces) than others.

4. RESEARCH METHOD

Rascal [14], a meta-programming language for source code
analysis and transformation, uses a familiar Java-like syntax
and is based on immutable data (trees, relations, sets), term
rewriting, and relational calculus primitives. All analysis
performed in this paper was performed using Rascal code,
ensuring that the results are reproducible and checkable.
We also used Rascal to generate the ITEX for the tables
and pgfplots figures in this paper, using the Rascal string
template facility to produce the ITEX code found in the
IXTEX source of the paper. All code is available online at
https://github.com/cwi-swat/php-analysis.

We are parsing PHP scripts using our fork? of an open-source
PHP parser®, which itself is based on the grammar used inside
the Zend Engine, the scripting engine for PHP. This parser
generates ASTs as terms formed over Rascal’s algebraic
datatypes. Of the 19,816 files in the corpus analyzed in
this paper, 11 fail to parse. 10 of these files are actually
uninstantiated templates which would need to be instantiated
to be valid PHP, while the other, in the Zend Framework,
is a test file designed to trigger a parse error. Reuse of an
existing PHP parser provides a way for us to stay compatible
with changes to PHP as it evolves.

A number of different functions extract data from the source
code. For each file we measure the lines of code and the lan-
guage features—expressions, statements, and declarations—
used in the file, based on our count of the AST nodes used
to represent these features. Information on how dynamic
features are used is computed by extracting occurrences of
specific patterns from the data, such as of include expres-
sions that do not use static paths, definitions of methods
used to handle reads and writes to missing fields, and calls
to standard functions used to support dynamic language
features (e.g., create_function). Some information is in-

?https://github.com/cwi-swat/PHP-Parser
3https://github.com/nikic/PHP-Parser/

800 1041 [—m
600

é
= 400 102 4
= 200
100 s
0 2 4 10° 10® 10*
Loc -10* LOC & cumulative LOC

Figure 1: PHP File Sizes, Linear and Log Scales.

stead based on directly inspecting the underlying code. This
information is stored in CSV files, which can then be read in
as Rascal relations and used as part of other computations
or to generate the tables and figures in the paper.

Distribution graphs are directly generated from the metrics
data, without any statistical analysis in between. We use
log axes when the plots are indistinguishable otherwise. We
normalize for the size of a PHP file by considering the ratio
between a single feature and the total number of feature
usages detected in a PHP file (see Section 5.2). Computation
of feature coverage is a combinatorial optimization problem,
which we approximate as described in Section 5.3.

S. PHP IN GENERAL

In this section we provide an overview of the usage of all PHP
language features in the assembled PHP corpus, answering
the first three questions we posed in Section 1. First, taking
the view that a system is made up of a number of individual
programs—each a collection of files—that run in response
to user requests, we look at the sizes of the individual files
that make up the programs in the corpus (dynamic includes,
described in Section 6, make it impossible to statically look
at each program as a whole). Next, we look at how the
various features of the PHP language are distributed across
these program files. Finally, with the goal of defining a core
PHP for experimentation, we look at which features of PHP
would need to be defined precisely to faithfully capture the
core of the language as it is used in practice, meaning this
core should fully support a large number of real programs.

5.1 PHP File Size

First we must understand how PHP file sizes are distributed.
Naturally, larger files contain more individual uses of features;
we would also expect to see a wider variety of features used
as files increase in size. This means feature usage expectancy
is likely to be dominated by the file size.

The histogram in Figure 1 depicts the distribution of file sizes
in the corpus, left on a linear scale, and right on a logarithmic
scale (bottom, gray x’s) with the cumulative distribution
superimposed on it (top, black o’s). The distribution of sizes
over files has a very high start (there are many very short
files) and a very long tail (there are some very large files).
Only when we plot the distribution logarithmically on both
axes can we really see its shape. The lower limit of the
distribution drops off faster than negative exponential (it
curves down on the log scale).

10* &

—a— allocations - 8- assignments b binary ops

S
\'1‘ ~is --¢.- casts --0-- control flow —d— definitions
-4- invocations -1 lookups --k-- predicates
31
_ 10 - P print —3— unary ops
g
&
S 10% §
]
=
o
]
2 T N e Ao SO SSEes S
10" |
10° : e : b b : ——p : :
0 10 20 30 40 50 60 70 80 90 100

Feature ratio per file (%)

Figure 2: What features should one expect to find in a given PHP file? This histogram shows, for each
feature group, how many times it covers a certain percentage of the total number of features per file. Lines

between dots are guidelines for the eye only.

array, clone, new, nextArrayElem, scalar
BitAnd, BitOr, BitXor, Concat, Div, LShift,
Minus, Mod, Mul, Plus, RShift, assign, list Assign,
refAssign, unset

BitAnd, BitOr, BitXor, BoolAnd, BoolOr, Con-
cat, Div, Equal, Geq, Gt, Identical, LShift, Leq,
LogAnd, LogOr, LogXor, Lt, Minus, Mod, Mul,
NotEqual, NotId, Plus, RShift

casts toArray, toBool, toFloat, tolnt, toObject,
toString, toUnset

break, continue, declare, do, exit, expStmt, for,
foreach, goto, haltCompiler, if, label, return,
suppress, switch, ternary, throw, tryCatch, while

allocations
assignments

binary ops

control flow

definitions classConstDef, classDef, closure, const, function-
Def, global, include, interfaceDef, methodDef,
namespace, propertyDef, static, traitDef, use

invocations call, eval, methodCall, shellEzxec, staticCall

lookups fetchClassConst, fetchConst, fetchStaticProperty,
propertyFetch, traitUse, var

predicates empty, instanceOf, isSet

print echo, inlineHTML, print
unary ops BitNot, BoolNot, PostDec, Postlnc, PreDec,
Prelnc, UnaryMinus, UnaryPlus

Features in bold are not used in the corpus. Features in italics are
not used in 90% of the corpus files. Features that are underlined are
not used in 80% of the corpus files.

Table 2: Logical Groups of PHP Features.

It is unnecessary to characterize the type of distribution
our analysis yields (which would be challenging to validate).
Nevertheless, as can be estimated from the cumulative dis-
tribution graph, the area under 1303 LOC covers 98% of the
corpus. Although there are 397 files with larger sizes, they
do not contribute significantly to the size of the corpus.

5.2 PHP Feature Distribution

We have grouped the PHP language features into 11 cate-
gories (Table 2). Syntax analysis reveals that 102 different
PHP language features are used in the corpus, out of 109
total features (unused features are shown in Table 2 in bold).

If we were to plot the feature distributions over files in our

corpus, all plots would neatly follow the shape of the above
file size distribution. Instead of doing this, we normalize for
the file size by computing for every feature, for every file, the
ratio between this feature and the total number of feature
usages in the file. Figure 2 plots a histogram of these ratios
for each of the aforementioned groups of features. You can
read from this graph what features to expect when you open
an arbitrary file in the corpus.

The graph shows how the bulk of our corpus consists of
files that have high variety in feature usage. Casts, unary
operators and builtin predicates are almost never used, and
never in large quantities in the same file. When we move
to the right —as variety diminishes— we see that lookups
and allocations rise in exchange for invocations, control flow,
definitions, prints, and binary operations. Notably, the dis-
tributions for lookups and allocations are different: they
have strong upward curves and would look bell shaped when
printed on a linear axis. For these feature groups we can
predict what the most likely percentage is, which is where
they reach the maximum coverage. For lookups this is 30%
(£10%), for allocations 15% (+10%).

The distribution for definitions (functions, classes, methods)
is interesting. It drops off rapidly (exponentially) from more
than half of the files that contain practically no definitions,
to 35 files that consist of around 45% definitions. Then
it spikes again at 50% to 551. A quick inspection shows
that these 551 files make heavy use of PHP’s object-oriented
definition features, defining interfaces, classes, and methods,
while the other files contain more “procedural” code (i.e.,
regular statements and expressions from the top-level of the
script or from method and function bodies). There are also
hundreds of files which consist solely of definitions (100%).
These are abstract classes and interfaces.

All the way on the right, the most uniform files are repre-
sented. For example, there are 100 files where 90% of the

100
8
580
g
=
- 60
L
o
[}
E) 40
o
E
20
0 + + + + +
0 20 40 60 80 100

Percent of Files Covered

Figure 3: Features Needed for Percent File Cover-
age. Numbers of features are shown for each 5%
increment in coverage. There are 109 features total.

features are data allocations. Typically those are files which
contain large arrays of constants, for string translations or
character encoding. We also see a few dozen files which
consist of prints only. These are the HTML template files.
It is surprising to see such a low number of these in a PHP
corpus, but only if we forget that the corpus is made up
of general applications and reusable frameworks that, even
when used in scripts that return HTML, do not necessarily
directly generate HTML themselves.

Now we have an overview that shows that:

e Practically all files are below 1300 LOC;

e Seven out of 109 features are never used, and predicates,
casts and unary operations are used only sporadically;

e There is no immediate “core” of PHP features that cover
the larger part of many files, but allocation, lookup
and printing, wrapped in definitions such as variables,
functions, and methods, can be expected to be the most
prominent groups of features in any given file.

e Four types of PHP files are distinguishable based on the
balance of features used: object-oriented definitions,
HTML templates, data definitions, and procedural, the
latter mainly consisting of statements and expressions
from the top-level of the script or in the bodies of
functions and methods. Most files are procedural.

5.3 PHP Feature Coverage

To build an effective core PHP for experimenting with new
analysis algorithms and tools, it is important to know which
language features we need to include to faithfully capture how
PHP is used in practice. While the information in Section 5.2
provides guidance about what we can expect to find in any
given PHP file, it does not tell us which features we need
to implement to completely cover a file, i.e., to ensure that
all features used in the file are implemented. To provide
guidance about the feature set to actually implement, we
ask the following question: what language features must be
supported to cover all features used in a given percentage of

System 80% 90% System 80% 90%
set set set set,

CakePHP 95.3% 98.3% MediaWiki 86.1% 94.6%
osCommerce 95.1% 96.4% SilverStripe 85.4% 91.1%
ZendFramework 93.2% 97.3% | phpMyAdmin 85.3% 90.3%
Kohana 92.1% 96.5% WordPress 82.4% 95.1%
Symfony 91.1% 94.9% Gallery 81.0% 96.6%
Joomla 91.0% 97.0% PEAR 75.7% 90.5%
SquirrelMail 90.9% 95.7% phpBB 72.1% 85.1%
DoctrineORM 89.2% 96.6% Smarty 66.7% 86.5%
Moodle 87.6% 96.9% Drupal 57.1% 93.7%
Codelgniter 87.1% 91.8%

Table 3: Percent of System Covered by Feature Sets.

the files in the corpus? This should allow us to capture the
core of the language, while ensuring experiments using this
core can actually be used on real code.

Selecting this smallest set of features is non-trivial. With
109 features available, the smallest set of features that covers
2% of the corpus is one of the 2% combinations of features,
and need not be unique (there could be multiple smallest
sets of the same size). Ergo, a brute force solution to find
this is infeasible. Similarly to standard combinatorial prob-
lems such as Set-Cover and Maximum-Coverage, we instead
approximate the solution using a greedy algorithm. Our
polynomial time algorithm starts with all the features that
need to be present to reach a given percentage (e.g., a feature
that appears in 85% of all files needs to be included in any
feature set that covers at least 15% of the files) and then
greedily adds features based on the feature popularity, i.e.,
how many files it appears in. This is continued until the
target percentage is reached.

The results of this analysis, for coverage of 1% to 100% of
the corpus, are shown in Figure 3. The numbers given in
the graph are the number of features sufficient to cover that
percentage of files, with each 5% increment labeled with this
number of features. For example, to cover 50% of the files
the language core must support 54 PHP language features,
while 74 features are enough to cover 80% of the corpus.

Every 10% of added coverage adds roughly 10 more language
features. The nearly linear increase of file coverage for every
feature added confirms the variety in the distribution of
feature usage over files that we observed on the left-hand
side of Figure 2. Although in theory our analysis only shows
which features are sufficient, not which are necessary, it would
be surprising if the current graph does not approximate the
optimal solution rather closely. Smaller solutions would entail
the existence of small groups of features that, in combination,
cover large parts (> 10%) of the corpus. While this is possible,
Figure 2 indicates that the existence of any such group is
unlikely, let alone several of them.

The bottom line of this analysis is that, to create a core
PHP for experimentation that still handles all the features
in 80% of the corpus files, 74 features should be defined,
while 82 features are needed to cover 90% of the corpus files.
These features are shown in Table 2 by italicizing features
not needed for the 90% case and underlining features also not
needed for the 80% case. Assuming a core PHP is defined

1

N}

Sdeps = "{$wgStyleDirectory}/{$skinName}.deps.php";
if (file_exists (Sdeps)) {
include_once ($deps) ;
}
require_once ("{$wgStyleDirectory}/{$skinName}.php");

Figure 4: Dynamic Includes.

with these feature sets, Table 3 then shows how much of
each of the corpus systems would be covered. For instance,
a core PHP defined using the 80% feature set would actually
cover 95.3% of the files in CakePHP. One threat to validity
with these figures is that include expressions could make the
distribution of features in a program much different than the
distributions we see in individual files. However, as discussed
in Section 6, we have (except in isolated cases) not seen this
happen with the dynamic features we looked at, even in cases
where many of the dynamic includes can be resolved.

6. DYNAMIC PHP LANGUAGE FEATURES

The PHP language includes a number of dynamic features
that can be challenging to model in static analysis tools.
Below, we look at six of these features: dynamic file includes;
variable constructs, which allow variables to be used in place
of identifiers to name entities such as variables (variable vari-
ables) and functions (variable functions); overloading, which
uses so-called magic methods to dynamically handle accesses
of undefined or non-visible methods and properties; the
eval expression; variadic functions; and call_user_func,
a function used to call other functions, taking the function
name and arguments as parameters. For each feature, we fo-
cus on answering the final three questions in Section 1. First,
we look at where, and how often, these features are used in
PHP programs. Next we look at how uses of these features
are distributed: are they clustered together, or spread evenly
through the files in which they appear? Finally, with the
first two features and with eval we look at how dynamic
the features are in practice, looking for usage patterns and,
with dynamic includes, briefly discussing the results of an
analysis that resolves many apparently dynamic cases.

6.1 Dynamic Includes

In PHP, a script includes another file using an include ex-
pression (including the variants include_once, require,
and require_once). The name of the file to include can be
provided as a string literal, but can also be dynamic, given
using an arbitrary expression computed at runtime. Because
of this, it may not be possible for static analysis tools to
know the PHP source code for the program that will actually
be executed. Two examples, from includes/Skin.php in
MediaWiki 1.19.1, are shown in Figure 4: $deps, a string
based on a combination of a global variable, a local variable,
and a string literal, names the file included on line 3; a sec-
ond file, identified by the same path as the first except for a
different string literal, is included on line 5.

Table 4 provides a high-level overview of the incidence of
dynamic includes in the corpus. The total number of include
expressions in the system is shown in column Total, with any-
where from just 38 includes in Smarty to 12,829 in the Zend
Framework. The next column, Dynamic, then restricts this
number to just those includes with dynamic paths, defined
here as any path not given solely by a string literal.

System Includes Files Gini
Total Dynamic Resolved
CakePHP 124 120 91 640(19) 0.28
Codelgniter 69 69 28 147(20) 0.44
DoctrineORM 56 54 36 501(14) 0.19
Drupal 172 171 130 268(16) 0.42
Gallery 44 39 25 505(10) 0.26
Joomla 354 352 200 1,481(122) 0.17
Kohana 52 48 4 432(18) 0.55
MediaWiki 554 493 425 1,480(38) 0.34
Moodle 7,744 4,291 3,350 5,367(504) 0.39
osCommerce 683 539 497 529(22) 0.28
PEAR 211 11 0 74(9) 0.14
phpBB 404 404 313 269(51) 0.34
phpMyAdmin 819 52 15 341(27) 0.23
SilverStripe 373 56 27 514(10) 0.34
Smarty 38 36 25 126(7) 0.29
SquirrelMail 426 422 406 276(13) 0.14
Symfony 96 95 41 2,137(40) 0.22
WordPress 589 360 332 387(17) 0.32
ZendFramework 12,829 350 285 4,342(42) 0.29

Table 4: Usage of Dynamic Includes.

As part of our ongoing work on PHP analysis, we are in-
vestigating techniques to resolve dynamic includes statically.
We do this using a combination of techniques, including con-
stant propagation, algebraic simplification (mainly for string
concatenation), pattern matching over paths, and function
simulation. Column Resolved shows the result of applying
our current include resolution analysis to the dynamic in-
cludes in the corpus. While in some cases this does very
little (O resolved in PEAR, only 4 of 48 resolved in Kohana),
in other cases it is quite effective, for instance resolving 332
of the 360 dynamic includes in WordPress, and 3350 of the
4291 dynamic includes in Moodle. Overall, more than 78%
of the dynamic includes in the corpus are actually static.

The final two columns provide information about the result-
ing systems after resolving dynamic includes. Column Files
shows the total number of files in the system (initially shown
in Table 1, repeated here for convenience) along with the
number of files that still contain unresolved dynamic includes,
given in parentheses. Column Gini shows how occurences of
the dynamic includes are distributed across the files which
contain at least one occurrence. This is shown in terms of
the Gini coefficient (from here on, just “Gini”). The Gini,
ranging from 0.0 to 1.0, provides a measure for inequality—
0.0 means that all files have the same number of occurrences,
while 1.0 means that one file holds all the occurrences.

When we measure the Gini, here and with the other dynamic
features, we only include those files with at least one occur-
rence of the feature we are discussing. This is done to lower
noise in the computed Gini—in most cases, many of the files
have no occurrences of the feature being examined. If we
included these files in the Gini computation, this would cause
the Gini value to be very high (i.e., very unequal) in almost
all cases. Focusing on just files with occurrences, we can see
more clearly how the occurrences are distributed through
these files. It’s also worth noting that the Gini grows very

System Files PHP Variable Features
Variables Function Calls Method Calls Property Fetches Instantiations All

Files Uses Files Uses Files Uses Files Uses Files Uses Files w/Inc Uses Gini
CakePHP 640 7 20 0 0 15 25 55 377 39 95 91 92 534 0.63
Codelgniter 147 4 20 5 6 11 17 22 59 9 14 35 36 116 0.44
DoctrineORM 501 0 0 7 15 8 8 5 60 11 21 28 29 108 0.63
Drupal 268 1 1 33 372 2 3 20 91 13 25 50 65 492 0.73
Gallery 505 3 7 3 7 6 14 25 94 13 19 46 48 153 0.52
Joomla 1,481 1 2 6 9 10 11 57 239 45 155 101 113 418 0.61
Kohana 432 3 7 3 8 4 11 6 14 11 12 24 24 56 0.44
MediaWiki 1,480 6 11 3 3 11 12 45 95 72 90 125 282 213 0.30
Moodle 5,367 19 39 68 203 61 88 248 1,276 170 387 472 1,410 2,020 0.59
osCommerce 529 21 89 1 2 0 0 4 7 15 19 38 60 117 0.45
PEAR 74 1 1 1 2 7 16 2 7 16 22 23 23 48 0.38
phpBB 269 18 82 8 36 5 6 5 14 19 27 47 85 165 0.49
phpMyAdmin 341 13 112 12 34 4 6 4 8 8 8 36 36 168 0.65
SilverStripe 514 2 3 2 2 44 102 47 152 55 173 108 116 432 0.59
Smarty 126 10 40 6 12 6 19 5 12 11 21 31 32 104 043
SquirrelMail 276 5 24 13 24 0 0 2 3 0 0 18 47 51 047
Symfony 2,137 0 0 21 37 20 22 13 98 38 57 89 90 223 0.53
WordPress 387 14 37 8 33 3 4 40 119 13 108 70 115 301 0.60
ZendFramework 4,342 4 7 7 10 93 204 120 473 151 249 320 334 947 0.50

Table 5: Usage of Variable Features.

foreach (array(’columns’, ’indexes’) as $var) { different named variables or object properties. The variable

if (is_array(${Svar})) {
${$var} = implode ($join[$var], array_ filter (${$var}));
}
}

foreach (array_keys (Router::getNamedExpressions())
unset (${$var});
}

foreach (array(’_ci_library_paths’, ’_ci_model_paths’,
' _ci_helper_paths’) as $var) {
if ((Skey = array_search($path, $this->{$var})) !== FALSE) {

unset (Sthis->{Svar} [Skey]);
}
}

Figure 5: Variable Variables and Properties.

slowly, with even figures well below 0.5 representing high
inequality. For instance, if 5 files each have 1 occurence, and
1 has 2, this yields a Gini of 0.12; if 5 files have 1 and 1 has
5, this is 0.33; if 5 files have 1 and 1 has 10, this is 0.5; and if
5 have 2 and 1 has 20, this gives a Gini of 0.51. Looking at
Table 4, systems such as Kohana have a high Gini, meaning
that the distribution of dynamic includes is quite uneven,
while a system like SquirrelMail has a low Gini, with the
dynamic includes distributed much more evenly. The details
bear this out: in Kohana, 15 files have 1 dynamic include, 1
has 2, 1 has 3, and 1 has 24, while in SquirrelMail 10 files
have 1 dynamic include and 3 have 2.

6.2 Variable Constructs

PHP includes a number of variable constructs, which allow a
variable that can be used as a string to be used in place of an
identifier. Commonly used variants include variable variables;
variable function and method calls, where the function or
method name is a variable; variable class instantiations,
where the class name given in a new expression is a variable;
and variable properties, where the property name is a variable.
In conjunction with reflective functions in the PHP library,
these constructs allow for reflection in PHP code, and also
provide a method to apply the same code to a number of

as $var) {

features in PHP pose an obvious challenge for static analysis
tools. Reads and writes through variable variables could be
reads and writes to any variable in scope, including global
variables; invocations of variable methods could be calls to
any method supported by the target object; and so forth.
Certain scenarios, like taking a reference through a variable
variable, could introduce may-aliases between any of the
variables in scope.

Figure 5 presents several examples of PHP variable constructs
in use. In the first snippet (lines 1-5), variable variables are
used as a code saving device, allowing the same logic to
be applied to two variables, Scolumns and $indexes, by
applying it instead to ${$var}, with S$Svar assigned the
name of each variable in turn as part of the foreach loop. In
the second snippet (lines 7-9), variable variables are again
used, but here over a list of names returned by a call to
method Router: :getNamedExpressions (). In the third
snippet (lines 11-16), variable properties are used to apply
the same code over the list of properties given in the array,
specifically in the calls to array_search and unset.

6.2.1 Findings

Table 5 provides details on the use of the variable constructs
mentioned above. The first two columns show the name of
the system and the number of source files. Usage information
on variable variables, function calls, method calls, property
fetches, and instantiations is then shown with two columns
each, showing the number of files that contain one or more
uses of the feature as well as the total number of uses of the
feature across all files (e.g., CakePHP has 20 variable variable
uses distributed over 7 files). The final four columns show
usage details for all variable constructs in PHP, including
those shown in the columns to the left plus several not listed
here. The first and third of these columns again show the
number of files containing a variable feature and the number
of uses across all files, as was given for the individual features
to the left. The second of the four columns then shows the
number of files that include at least one variable feature if we
take file inclusion into account. For instance, in MediaWiki

System Variable-Variable Uses
Derivable Names Other Total
CakePHP 19 1 20
Codelgniter 16 4 20
Drupal 1 0 1
Gallery 2 5 7
Joomla 0 2 2
Kohana 5 2 7
MediaWiki 5 6 11
Moodle 29 10 39
osCommerce 0 89 89
PEAR 1 0 1
phpBB 62 20 82
phpMyAdmin 86 26 112
SilverStripe 1 2 3
Smarty 38 2 40
SquirrelMail 10 14 24
WordPress 28 9 37
ZendFramework 5 2 7

Across all systems, 61.35% of the uses have derivable
names. In those systems that use PHP5, 76.8% of the
uses have derivable names.

Table 6: Derivability of Variable-Variable Names.

125 files contain at least one variable feature; this grows
to 282 if we also count files that do not contain variable
features, but (transitively) include files that do. One threat
to validity with this number, here and in the remainder of
this section, is that dynamic includes could indirectly bring
large numbers of dynamic features into even those files that
currently show few or no uses of them. Our work on statically
resolving these includes, which we have used in calculating
these numbers, helps to lessen this threat. The final column
shows the Gini coefficient, computed across the distribution
of variable features in those files that contain at least one.

From the data, it is clear that uses of PHP’s variable features
are not rare, but they also are not a generally used feature
that is regularly encountered in program files. This seems
to be especially true as the system gets larger: in the five
largest systems (by file count), fewer than 10% of the files
directly contain variable features. Uses of the features also
tend to cluster: 11 of the systems have a Gini of at least 0.5,
while 17 have a Gini of at least 0.4, and the lowest is still a
fairly high 0.30.

6.2.2 Variable Variable Usage Patterns

To get a better idea of how variable variables are used in PHP

programs, we looked at all 502 occurrences shown in Table 5.

Our goal was to determine whether, at each usage site, the set
of variables possibly referenced through the variable variable
could be computed statically. We consider this set to be
statically computable when the variable names it contains
are all specified (i.e., bound as the value of the variable
used as a variable variable) in one of the following ways: as
string literals in an array used in a foreach statement; as
a string literal in an equality comparison in a conditional;
as the case condition in a case in a switch/case statement;
or as a string literal (including with the above cases) built
with a constrained set of string operations (e.g., a literal
appended with a number between 1 and 5, or a substring
of a literal). An example of where the set of names can
be computed statically was shown in Figure 5 in the first
snippet: at each use of the variable variable Svar, it must

System Files Magic Methods GC
MM WI S G I U C sC
CakePHP 18 18 5 12 7 0 10 0 0.28
Codelgniter 4 5 1 5 0 0 1 0 0.32
DoctrineORM 4 4 1 1 0 0 3 0 0.15
Drupal 2 13 0 1 0 0 1 0 0.00
Gallery 26 26 4 15 2 1 15 0 024
Joomla 10 10 2 7 1 1 4 0 0.26
Kohana 2 2 2 2 2 2 0 0 0.00
MediaWiki 14 14 2 3 0 0 14 0 0.21
Moodle 61 1,030 27 41 9 3 31 0 0.26
osCommerce 0 0 0 0 0 0 O 0 N/A
PEAR 1 1 0 0 0 0 1 0 N/A
phpBB 0 0 0 0 0 0 o0 0 N/A
phpMyAdmin 2 2 1 1 0 0 1 0 0.17
SilverStripe 9 9 3 5 1 0 9 0 037
Smarty 7 8 5 6 0 0 1 0 0.12
SquirrelMail 0 0 0O 0 0 0 o0 0 N/A
Symfony 6 6 2 1 0 0 4 0 0.12
WordPress 4 9 2 3 2 0 0 0 025
ZendFramework 133 134 55 75 37 24 81 0 0.32

Table 7: Usage of Overloading (Magic Methods).

refer to either variable $columns or variable $indexes, as
these are given as literals in the array which provides the
values for $var, and Svar is not otherwise defined.

The summary of our findings is shown in Table 6. The system
name and total number of variable variable uses are given in
the first and fourth columns, respectively, and are identical
to those shown in Table 5. The second and third columns
show the number of cases where the set of variable names is
statically computable, or, respectively, is not. In total, we
found that, in roughly 61% of the variable variable uses in
the corpus, and in roughly 76% of the uses in systems that
require PHP5, the actual variables referenced using variable
variables are statically determinable. Many of these uses are
to reduce code repetition. By contrast, many of the cases
where the names cannot be statically determined are for truly
reflective operations, such as clearing the values out of all
global variables representing form POST data (related to the
deprecated PHP register_globals feature) or checking
to see if all the variables in a list of variable names are set.

6.3 Overloading

In PHP, overloading allows specially-named methods, called
magic methods, to support uses of properties and methods
that have not been defined or are not visible (e.g., are declared
private). Magic methods used for overloading include
__get, to read a property; __set, to write a property;
__isset, to see if a property has been set; __unset, to
unset a property; __call, to invoke an instance method;
and __callStatic, to invoke a static method.

Table 7 provides an overview of the occurrence of overloading
definitions in the corpus. Column MM shows the number of
files that contain one or more magic methods; column WI
then extends this to consider includes, as was done above for
variable features (and including the same caveats). Columns
S, G, I, U, C, and SC then show the number of instances
of the __set, _ _get, __isset, _ _unset, __call, and
__callstatic methods, respectively. Finally, column Gini
shows the Gini coefficient calculated over the distribution of
magic methods in files containing at least one, providing a
measure of how evenly these are distributed in implementing

System Files Total Uses Gini
Total EV WI
CakePHP 640 3 3 5/1 0.33
Codelgniter 147 2 2 3/0 0.17
DoctrineORM 501 0 0 0/0 N/A
Drupal 268 1 1 1/0 N/A
Gallery 505 5 7 1/4 0.00
Joomla 1,481 6 7 7/1 0.21
Kohana 432 3 3 1/2 0.00
MediaWiki 1,480 5 5 4/1 0.00
Moodle 5,367 39 1,077 34/30 0.30
osCommerce 529 4 4 4/0 0.00
PEAR 74 7 7 2/6 0.11
phpBB 269 7 24 14/1 0.40
phpMyAdmin 341 8 8 9/6 0.38
SilverStripe 514 24 34 26/7 0.22
Smarty 126 13 15 15/0 0.11
SquirrelMail 276 1 1 1/0 N/A
Symfony 2,137 8 8 8/0 0.00
WordPress 387 8 41 0/11 0.22
ZendFramework 4,342 5 5 13/2 0.53

Table 8: Usage of eval and create_function.

files. “N/A” means there was not enough data to compute
this—at least two files with occurrences are needed.

From the table, several points are clear. First, overloading
is not commonly implemented in typical PHP programs. 3
of the corpus systems do not implement overloading at all,
while another 11 define magic methods in fewer than 10
files. The Zend Framework is an obvious outlier, with more
magic methods defined in some categories than all the other
systems combined, as is Moodle with at least one commonly
imported class defining at least one magic method, as can be
seen from the WI column. Second, the most common magic
methods used for overloading appear to be property gets and
method calls, with property sets coming in a close third. On
the other hand, unset and isset appear to be defined rarely,
with static method call support rarer yet—mno system in the
corpus implements it. Third, definitions of magic methods
appear to be distributed fairly evenly, which makes sense
intuitively—assumedly, classes that implement ___set are
more likely to implement __get (and vice versa).

While this covers definitions of magic methods, it does not
cover actual uses of these methods. To detect uses, a type
inference analysis of the PHP code is needed.

6.4 The eval Expression

Like many other dynamic languages, PHP provides an eval
expression that allows arbitrary code, provided as strings, to
be executed. As was shown in Table 2, eval is not commonly
used—in fact, in the entire corpus it appears only 148 times.
Similar functionality is provided by the create_function
function, which, given the function parameters and the func-
tion body as strings, creates a uniquely named function and
returns it as a value. This appears in the corpus 72 times.

Table 8 shows the distribution of these uses across the various
systems in the corpus. Column Total shows the total number
of files, with E'V showing the number that have at least
one eval or create_function call. As with overloading,
column WI then extends this to also consider resolved in-
cludes. In most cases this has little to no impact, although in
several systems this does show that a significant number of

System Files VDefs VCalls LCalls Gini
Total VA WI

CakePHP 640 213 227 36 2,543 830 0.64
Codelgniter 147 24 26 6 106 106 0.62
DoctrineORM 501 112 112 35 316 303 0.44
Drupal 268 99 108 23 503 268 0.51
Gallery 505 166 170 24 722 199 0.52
Joomla 1,481 999 1,048 15 8,537 419 0.59
Kohana 432 67 67 17 178 88 0.47
MediaWiki 1,480 656 688 90 5,036 1,081 0.63
Moodle 5,367 2,002 2,410 86 11,168 2,716 0.62
osCommerce 529 84 106 0 201 201 0.42
PEAR 74 48 48 1 643 136 0.47
phpBB 269 155 165 6 1,291 973 0.55
phpMyAdmin 341 148 148 5 1,135 858 0.70
SilverStripe 514 328 334 39 994 626 0.54
Smarty 126 26 29 0 109 109 0.53
SquirrelMail 276 74 94 5 388 319 0.64
Symfony 2,137 698 700 38 2,061 1,566 0.49
WordPress 387 287 297 61 5,050 1,513 0.61
ZendFramework 4,342 1,156 1,178 88 4,266 1,014 0.63

Table 9: Usage of Variadic Functions.

files are impacted through includes. Moodle is especially an
outlier here, with 39 files directly containing one of the two
features but with the includes analysis revealing there are
at least an additional 1038 files impacted. The Total Uses
column shows both the number of uses of eval (to the left
of the /) and of create_function (to the right). Finally,
the Gini coefficient shows how clustered uses of eval and
create_function are in the files where one or both actu-
ally appear. For instance, in MediaWiki the 5 uses appear in
5 different files, giving a Gini of 0.00 (perfect equality), while
in the Zend Framework 11 of the 15 uses are in the same file,
and in CakePHP 4 of the 6 uses are in just a single file.

Unlike with variable variables, discussed above, there are
no obvious usage patterns that can be leveraged for static
analysis. While two eval expressions in Codelgniter declare
a new class using a string literal with no embedded variables,
the other eval expressions, and all the create_function
calls, use a combination of embedded variables, string con-
catenation, and other expressions to build the code string
to be evaluated. In some cases it may be possible to ignore
eval based on how it is used—for instance, MediaWiki ap-
pears to only use it in testing and maintenance code, not on
the user-facing part of the site. However, given the number
of files with at least one of these features in systems like
Moodle, it is not possible to assume, in general, that normal
user code will not make use of these features. Another option
may be to apply static, or hybrid static/dynamic analysis
techniques, to try to transform the code into more easily
analyzed static code with fewer evals [9, 13, 17].

6.5 Variadic Functions

In PHP, every function is potentially variadic—additional
parameters can always be passed to a function, which can
ignore them, and it is not an error to pass fewer parameters
to a function than it expects (although this does generate a
warning). Library functions include a special . .. parameter
in the documentation to indicate that they are variadic, while
user functions use library functions to process variadic pa-
rameters: func_num_args to get the number of arguments
passed, func_get_arg to retrieve a specific argument, and
func_get_args to get all arguments as an array.

System Files CUF CUFA CUM CUMA Gini
Total Inv Inc
CakePHP 640 28 34 9 30 0 0 017
Codelgniter 147 6 9 5 3 0 0 0.17
DoctrinefORM 501 10 10 3 9 0 0 0.15
Drupal 268 24 40 10 30 0 0 030
Gallery 505 20 22 28 23 0 0 0.46
Joomla 1,481 25 30 26 25 0 0 041
Kohana 432 8 8 5 7 0 0 017
MediaWiki 1,480 89 250 69 80 0 0 029
Moodle 5,367 87 1,073 95 69 0 1 031
osCommerce 529 2 2 2 0 1 0 017
PEAR 74 10 10 20 10 0 0 045
phpBB 269 11 44 9 13 0 0 031
phpMyAdmin 341 5 5 0 6 0 0 0.13
SilverStripe 514 27 27 32 21 0 0 031
Smarty 126 7 8 4 8 0 0 029
SquirrelMail 276 3 36 2 2 0 0 017
Symfony 2,137 60 62 39 34 0 0 0.15
WordPress 387 39 82 44 50 0 0 041
ZendFramework 4,342 92 92 73 86 0 0 034

Table 10: Usage of Invocation Functions.

Table 9 shows uses of functions intended to be variadic in
the corpus—we do not show calls to functions with too few
arguments, or calls where the extra arguments are always
ignored. VA shows the number of files where a call to a vari-
adic function is made directly, while WI shows this number
taking account of file inclusion. VDefs shows the number
of variadic functions declared in the system, determined by
looking for calls to the functions used to access the vari-
adic arguments. VCalls shows the actual number of calls to
variadic functions, while LCalls restricts this just to calls of
functions from the PHP library, giving an idea of the balance
between calls to user-defined variadic functions and library
functions. Finally, Gini shows the Gini for each system. The
Gini is high for each system, meaning that calls are generally
grouped in the same files. Given the frequency of these calls,
any attempts at inferring the types in a PHP script will need
to take variadic functions into account.

6.6 Dynamic Invocation

Along with variable functions and methods, discussed above,
PHP provides several functions that allow other functions
and methods to be invoked by name: call_user_func,
call_user_func_array, call_user_method, and
call_user_method_array (the latter two deprecated since
PHP 4.1.0). Two examples are shown in Figure 6. The
first, from MediaWiki, shows the invocation of a static
method. On line 3, an array of two elements is created,
with the first element holding the name of the class repre-
senting the current page, and the second holding the name
of the method to invoke on the class, newFromID. Line
5 then invokes this method using call_user_func, pass-
ing the array indicating what to call as the first parameter
and the argument to the static method as the second. In
the second example (lines 8 through 10) from WordPress,
call_user_func_array is instead used, with the name
of the function, wp_widget_control, given as the first
argument, and an array containing the parameters to pass
to the function given as the second.

Table 10 provides information on uses of these functions in
the corpus. Columns inv and inc are familiar from the prior
tables, showing the number of files using at least one of these
functions, and then extending this to also account for in-

1

>

if ($this->mPage->getID ()
{
S$function = array(get_class($this->mPage),’newFromID’);
Sthis->mPage =
call_user_func($function, $this->mRevision->getPage());

!= $this->mRevision->getPage ())

}

Sargs = wp_list_widget_controls_dynamic_sidebar (
array (0 => $args, 1 => $widget[’params’][0]));
call_user_ func_array (’'wp_widget_control’, $args);

Figure 6: Dynamic Invocation.

cluded files. CUF, CUFA, CUM, and CUMA then show usage
counts for call_user_func, call_user_func_array,
call_user_method,and call_user_method_array, re-
spectively. While the first two are used infrequently, the last
two, deprecated for years, are almost never used. The last
column, Gini, again shows the distribution. Unlike with vari-
adic functions, in many cases here the calls are distributed
more regularly through the files in which they appear.

7. CONCLUSIONS

PHP provides a number of dynamic, flexible language fea-
tures, such as dynamic file inclusion, handlers for unimple-
mented methods or fields, an eval expression for executing
arbitrary PHP code at runtime, and variadic functions. Al-
though powerful, features such as these can make programs
harder to understand. At the same time, they also make
static analysis challenging, hindering development of the
code analysis and transformation tools that could most help
PHP developers.

As part of our work on developing program analysis tools
for PHP, we set out to answer a number of questions about
how PHP is used in practice, looking specifically to provide
guidance, for ourselves and others, towards building such
tools. Using a corpus of large open-source PHP systems, we
explored usage of the language in general, showing the distri-
bution of file sizes in the corpus, the distribution of language
features in these files, and the frequency with which various
language features appear. We also provided information on
which features would need to be included in a core language
to ensure that most actual PHP files could still be processed,
showing that a number of features are used very rarely (in
the corpus, sometimes not at all) in real PHP programs.

We then looked specifically at the dynamic parts of the lan-
guage, investigating how a number of the dynamic features
of PHP are used in actual PHP code. We examined dynamic
includes, variable constructs, overloading with magic meth-
ods, eval, variadic functions, and dynamic function and
method invocation in our analysis, showing how often these
features are used and how they are distributed through the
code. We also looked in detail at both dynamic includes
and variable variables, showing that many of the former are
actually static, while many of the latter are used in patterns
that can be exploited by static analysis tools.

We believe there are still additional opportunities for applying
empirical analysis such as this to PHP, creating a virtuous
cycle where improved analysis leads to more precise empirical
results, which can again be used to improve the analysis
further. Looking for further usage patterns which can be
exploited by analysis tools should be especially fruitful.

8.
1]

[10]

[11]

[12]

REFERENCES

Count Lines of Code Tool.
http://cloc.sourceforge.net.

PHP Language Homepage. http://www.php.net.
PHP Usage on GitHub.
https://github.com/languages/PHP.

PHP Usage Statistics. http://w3techs.com/
technologies/details/pl-php/all/all.
TIOBE Programming Community Index.
http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html.

G. Baxter, M. R. Frean, J. Noble, M. Rickerby,

H. Smith, M. Visser, H. Melton, and E. D. Tempero.
Understanding the Shape of Java Software. In
Proceedings of OOPSLA’06, pages 397-412. ACM,
2006.

C. S. Collberg, G. Myles, and M. Stepp. An empirical
study of Java bytecode programs. Software: Practice
and Ezperience, 37(6):581-641, 2007.

M. D. Ernst, G. J. Badros, and D. Notkin. An
Empirical Analysis of C Preprocessor Use. [EEE
Transactions on Software Engineering,
28(12):1146-1170, 2002.

M. Furr, J. hoon (David) An, and J. S. Foster.
Profile-Guided Static Typing for Dynamic Scripting
Languages. In Proceedings of OOPSLA’09, pages
283-300. ACM, 2009.

M. Furr, J. hoon (David) An, J. S. Foster, and M. W.
Hicks. Static Type Inference for Ruby. In Proceedings
of SAC’09, pages 1859-1866. ACM, 2009.

A. Garrido. Program Refactoring in the Presence of
Preprocessor Directives. PhD thesis, University of
Illinois at Urbana-Champaign, 2005.

B. Hackett and A. Aiken. How is Aliasing Used in
Systems Software? In Proceedings of FSE’06, pages
69-80. ACM, 2006.

S. H. Jensen, P. A. Jonsson, and A. Mgller. Remedying
the eval that men do. In Proceedings of ISSTA’12,
pages 34-44. ACM, 2012.

P. Klint, T. van der Storm, and J. J. Vinju. RASCAL:
A Domain Specific Language for Source Code Analysis
and Manipulation. In Proceedings of SCAM’09, pages
168-177. IEEE, 2009.

D. E. Knuth. An Empirical Study of FORTRAN
Programs. Software: Practice and Experience,
1(2):105-133, 1971.

J. Liebig, S. Apel, C. Lengauer, C. Késtner, and

M. Schulze. An Analysis of the Variability in Forty
Preprocessor-Based Software Product Lines. In
Proceedings of ICSE’10, pages 105-114. ACM, 2010.
F. Meawad, G. Richards, F. Morandat, and J. Vitek.
Eval Begone!: Semi-Automated Removal of Eval from
JavaScript Programs. In Proceedings of OOPSLA’12,
pages 607-620. ACM, 2012.

F. Morandat, B. Hill, L. Osvald, and J. Vitek.
Evaluating the Design of the R Language - Objects and
Functions for Data Analysis. In Proceedings of
ECOOP’12, volume 7313 of LNCS, pages 104-131.
Springer, 2012.

G. Richards, C. Hammer, B. Burg, and J. Vitek. The
Eval That Men Do - A Large-Scale Study of the Use of

(20]

(21]

Eval in JavaScript Applications. In Proceedings of
ECOOP’11, volume 6813 of LNCS, pages 52-78.
Springer, 2011.

G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
Analysis of the Dynamic Behavior of JavaScript
Programs. In Proceedings of PLDI’10, pages 1-12.
ACM, 2010.

M. Sridharan, J. Dolby, S. Chandra, M. Schéfer, and
F. Tip. Correlation Tracking for Points-To Analysis of
JavaScript. In Proceedings of ECOOP’12, LNCS, pages
435-458. Springer, 2012.

