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Term rewriting is in the intersection of our interests and physical distance has never
been large. Nonetheless we seem to be living at opposite ends of the term rewriting
galaxy. Here is a story from the other side of that galaxy.

Abstract. We explore the connection between term rewriting systems (TRS) and
aspect-oriented programming (AOP). Term rewriting is a paradigm that is used
in fields such as program transformation and theorem proving. AOP is a method
for decomposing software, complementary to the usual separation into programs,
classes, functions, etc. An aspect represents code that is scattered across the com-
ponents of an otherwise orderly decomposed system. Using AOP, such code can
be modularized into aspects and then automatically weaved into a system.
Aspect weavers are available for only a handful of languages. Term rewriting
can offer a method for the rapid prototyping of weavers for more languages. We
explore this claim by presenting a simple weaver implemented as a TRS.

We also observe that TRS can benefit from AOP. For example, their flexibility
can be enhanced by factoring out hardwired code for tracing and logging rewrite
rules. We explore methods for enhancing TRS with aspects and present one ap-
plication: automatically connecting an interactive debugger to a language speci-
fication.

1 Introduction

Software engineering is about conquering the complexity of real life software systems.
Can large systems be organized such that they remain manageable? Many solutions
have been tried from structured programming to abstract data types, modules, objects,
components and agents. In specific areas some of these approaches have been success-
ful but the problem of structuring and organizing software remains mostly open for re-
search. In more recent years, aspects, concerns or dimensions of software systems have
been investigated [19]. These approaches aim at encapsulating functionality that cuts
across boundaries of conventional modularization. In this way, software would become
composable along different axes and the desired flexibility and composability could
be achieved. While providing potential solutions to the software composition problem,
they pose new problems as well: how can such new methods of modularization be com-
bined with existing languages and how can they be supported by tools?



Term rewriting [30] is a well-known paradigm used in program transformation, and
thus a natural candidate for developing language-oriented tool support. We first give
quick introductions to aspect-oriented programming (Sect. 1.1) and applications of term
rewriting (Sect. 1.2) and then we explain why it is interesting to explore connections
between these two fields and how they can benefit from each other (Sect. 1.3).

The contributions of the paper can be summarized as follows:

— Itraises the awareness that term rewriting techniques can be relevant for the imple-
mentation of aspect-oriented programming (Sect. 2).

— It explores the application of aspect-oriented techniques to term rewriting systems
themselves (Sect. 3 & 4).

— It formulates research questions in the field of term rewriting that are brought for-
ward by the previous two points (Sect. 5).

1.1 Aspect-Oriented Programming

One of the most important principles in software engineering is the principle of separa-
tion of concerns. Separating concerns in modules (e.g., functions, classes etc.) promotes
maintainability and reuse, because the dependencies between modules are loose and ex-
plicit.

There are, however, concerns that cannot be adequately modularized using con-
ventional mechanisms. Typical examples of these so-called crosscutting concerns are
profiling, tracing, debugging, error handling, origin tracking, caching, and transaction
management. In all these cases, the code to implement these concerns occurs in many
modules since all these modules are affected by the concern in question. This situation
is referred to as code scattering.

Aspect-Oriented Programming (AOP) [19] is an approach to ameliorate this situa-
tion by introducing a new modularization concept: aspects. An important characteristic
of AOP is quantification [11]. For example, “whenever condition C arises in program
P, do X is a quantified statement over program P. The scattering of code for crosscut-
ting concerns is avoided by automatically weaving the aspect code X in places where
condition C holds.

In many AOP implementations, quantification over a program is achieved by speci-
fying pointcuts. A pointcut is an addressing mechanism for the static or dynamic iden-
tification of execution points in the base program. These execution points are called
Jjoinpoints since at these points in the source code, the aspect code is joined with the
base code.

To illustrate the notion of a pointcut, consider the example in the upper left part of
Fig. 1 expressed in Aspect] [18], the aspect language for Java. The pointcut crea-
tingFoo captures all calls to constructors of class Foo, disregarding the argument
signature.

Advice specifications describe how the aspect code should be weaved at the join-
points captured by a certain pointcut. There are three kinds of advice: before, after or
around. Figure 1 contains an example of around advice. The directive proceed () is
used to continue the delayed execution of the joinpoint, in this case constructing a new
Foo-object. Figure 1 also shows on the left an example program and on the right the
result of applying the given pointcut and advice to it.



Pointcut specification Result of aspect weaving
pointcut creatingFoo () : import foo.*;

call (Foo.new(..)) public class Bar {
private boolean flag;

public void doBar () {

Advice code

ziirfou?gl;))! creatingFoo { Foo foo;
dg if (flag) {
proceed () ; foo = new Fool();
else } else {
throw throw new
new Exception("No flag!"); Exception("No flag!");
} }
Initial Program }
import foo.*; }

public class Bar {
private boolean flag;
public void doBar () {
Foo foo = new Fool();

}
}

Fig. 1. Pointcut and advice are used to weave code into a small program.

1.2 Applications of Term Rewriting

In this paper we consider term rewriting to be a programming paradigm. The concept
of term rewriting systems is used in many application areas, such as functional pro-
gramming, program transformation, theorem proving, and language semantics [14, 30].
From the viewpoint of these application areas term rewriting systems are programs [21].

To cater for different kinds of applications, most rewriting implementations extend
basic rewrite rules with additional features. Such features include, for instance, concrete
(mixfix) syntax [22], conditional rewrite rules [4], ordered rules [2], list matching and
AC matching [10], traversal functions [31], strategies [6] and more. For this paper, the
conditional rewrite rules are essential, while concrete syntax and traversal functions are
practical utilities for the application we present.

A conditional rewrite rule is a normal rewrite rule, extended with a list of predi-
cates. Now a redex must also satisfy all such predicates, before it can be contracted.
Different kinds of predicates are allowed. For example, in our system we only allow
(in)equality between two terms that are first normalized, or an (un)successful match
between a normalized term and an open term.

A full account of the theoretical foundations of term rewriting and of systems im-
plementing it is given in [30]. We will give examples using the notation found in the
ASF+SDF META-ENVIRONMENT [7, 22].

1.3 Connections Between the Two Fields

Why is it interesting to explore the connections between AOP and term rewriting?



Aspect-Oriented Programming Can Profit from Term Rewriting. The ideas for AOP
contribute to software composition and maintenance and have been applied to main-
stream programming languages (Java [18], C/C++ [28], C# [20], SmallTalk [15], Caml
[29], Cobol [24]). In all these cases language-specific tool support has been developed.
It is worthwhile to wonder whether AOP is applicable in the context of other languages,
such as Perl, PHP, legacy languages, or even domain specific languages. The question,
then, is how to develop tool support to evaluate such hypotheses. Term rewriting is used
in other kinds of program transformation, so it would be natural to apply it to aspect
weaving as well. In Sect. 2 we will investigate whether term rewriting is a good choice
for rapidly implementing aspect weavers for new languages.

Term Rewriting Can Profit from Aspect-Oriented Programming. In many applications
the side-effects of term rewriting systems are important. However, such side-effects are
usually hardwired into a particular term rewriting engine. For example, each engine
typically implements one kind of reduction tracing or debugging. We propose to sep-
arate these hard-wired aspects from the engine, and promote them to programmable
aspects on the term rewrite system level. The result is that the application of existing
engines can be made much more flexible and reusable. In Sect. 3 we explore a way to
add reusable side-effects to an ASF+SDF term rewriting system, by employing aspect-
oriented programming.

2 Aspect-Oriented Programming Can Profit from Term Rewriting

Since term rewriting is well equipped to deal with program transformation, aspect weav-
ing is also a natural application area. This section provides an example of how to use
term rewriting to implement aspect weavers.

The view that aspect weaving is a kind of program transformation is not new. For
example, in [12] a case is made for a term rewriting approach to weaving aspects. Us-
ing special pattern-matching operators the authors are able to succinctly specify how
aspects should be weaved. Graph writing for aspect weaving is discussed in [1]. It is
argued that graph rewriting is more suitable than term rewriting because the base lan-
guage consists of class graphs. Semantic information can be stored naturally in graphs,
so more complex pointcuts may be expressible.

In most approaches that use rewriting for aspect weaving, rewrite rules directly
function as the aspect weaving language. In [13] the authors present an aspect-oriented
programming language for ObjectPascal which is implemented on top of DMS [3].
DMS contains a term rewriting component that forms the basis of their weaving al-
gorithm, but this fact is hidden from the user. The strong motivation for using term
rewriting is rapid development of aspect weavers for legacy languages.

In this section we adopt the latter approach, and demonstrate the implementation of
a simple aspect-oriented programming language called pAspect]. It consists of a very
simple weaver written in ASF+SDF. It is able to weave advice similar to the exam-
ple of Fig. 1. After this example, we will evaluate the fitness of term rewriting in this
application area.



Input term

weave (
import foo.*;

public class Bar {
private boolean flag;
public void doBar () {
Foo foo = new Foo();

Output term
import foo.*;
public class Bar {
private boolean flag;
public void doBar () {

Foo foo;
if (flag) {

} foo = new Fool();
} } else {
L throw new
around(): Foo.new(..) { Exception ("No f£lag!™);:
if (flag) { ! P g!");
proceed() ; }
} else { }
throw new
Exception("No flag!");
}
}

Fig. 2. Weaving is rewriting: a uAspect] program is weaved by reducing the weave symbol.

2.1 Implementing a Weaver for uAspect]J

The expected behavior of uAspect] on the example from the introduction is displayed
in Fig. 2. The function weave is applied to two arguments: a Java compilation unit and
an advice specification (shown on the left). The result is a new Java compilation unit
that is the result from weaving the advice in the original Java code (shown on the right).

This weaver can be defined in one module of ASF+SDF code, which we present
here. ASF+SDF modules consist of two parts. The syntactic part defines the types of
input terms and functions. These types are defined using context-free syntax produc-
tions. The semantic part contains equations between terms expressed in concrete syntax.
These equations are rewrite rules when read from left to right.

The definition of uAspect] consists of three parts: the syntax of pointcuts and advice
(Fig. 3), the signature of the weave traversal function (Fig. 4), and the equations defining
this function (Fig. 5). The module MuAspectJ imports the syntax of Java and a generic
parameterized module for substitution. In the syntax section, the syntax of very simple
advices is defined. For the sake of brevity, we only allow pointcuts that capture arbitrary
constructor invocations. The pointcuts follow the syntax of Aspect]. Advice consists of
a kind (before, after or around), a pointcut and a Java statement block.

The weave function maps a compilation unit together with an advice specification
to a compilation unit with the advice weaved in. To avoid writing a lot of boiler-plate
code for traversing a compilation unit, the weave function is defined as traversal func-
tion [31]. Weave matches lists of statements containing a constructor invocation for
classes that match the pointcut contained in the advice. For each kind of advice the
associated advice code is weaved in accordingly. In these equations, pattern variables
such as S*, Class, and Type are used to capture lists of statements, class names and
type identifiers, respectively.



module MuAspectd
imports Java Substitute[Statement Statements]
exports context-free syntax

AdviceKind " ("™ ")" PointCut ":" Block — Advice
"before" | "after" | "around" — AdviceKind
"call"™ " (" Signature ")" — PointCut
Class "‘" "new" "(" "‘ ." ")" — Signature

Fig. 3. uAspect]: syntax of pointcuts and advices.

weave (CompilationUnit, Advice) — CompilationUnit {traversal}

Fig. 4. uAspect]: signature of the weave traversal function.

Consider equation [1] in Fig. 5 which matches Java statements of the form
“Type Id = new Class (Param*)” inthe context of a list of statements and ap-
plies a before advice to it. Note that the name of the class (variable Class) in the
statement and the advice should be the same (non-left-linearity).

In the resulting code on the right-hand side of the rewrite rule, the body of the
advice, which is matched by the variable S *, is placed just before the original statement.
The other equations work in a similar fashion.

2.2 The Fitness of Term Rewriting for Aspect Weaving

The example shows some characteristics of aspect weaving. It needs at least complex
pattern matching, pattern construction, tree traversal, and non-local information (the
advice code) at redex positions. The first two features are provided by basic term rewrite
rules, the last two features emerge from using traversal functions [31]. As an alternative,
traversal strategies and dynamic rewrite rules could be used to implement the same
behavior [33]. Matching modulo associativity (list matching) in ASF+SDF, makes the
weaver deal easily with lists of statements.

The example does not show how to scale up to more advanced pointcut specifica-
tions, such as exist in Aspect]. Such specifications need name space resolution, or even
control flow information. Any aspect weaver implemented using term rewriting will
therefore have to be preceded by a static semantic analysis phase to collect additional
context information for matching pointcuts, and take this as an extra argument to the
weave function. Alternatively, code could be generated to dynamically resolve semantic
issues, but this may have significant repercussions on run-time efficiency.

3 Term Rewriting Can Profit from Aspect-Oriented Programming

We now shift perspective and explore whether aspect-orientation can contribute to term
rewriting. There are at least two directions in which aspect-oriented term rewriting can
be considered:



equations

[1] weave(S*1l Type Id = new Class(Param*); S*2,
before() : call(Class.new(..)) { s* }) =
S*1 S* Type Id = new Class(Param*); S*2

[2] weave(S*1l Type Id = new Class(Param*); S*2,
after() : call(Class.new(..)) { s* }) =
S*1 Type Id = new Class (Param*); S* S*2

[3] S*’ := substitute(proceed();, Id = new Class(Param*);, S*)

weave (S*1 Type Id = new Class (Param*); S*2,
around () : call(Class.new(..)) { s* }) =
S*1 Type Id; S*’ S*2

Fig. 5. Equations defining uAspect] weaving.

— Starting from pure term rewriting systems we can identify the crosscutting concerns
in large sets of rewrite rules and factor them out as programmable rewrite rule
aspects.

— Starting from the applications of term rewriting systems, we notice that crosscutting
concerns already occur naturally in the form of side-effects. Usually the implemen-
tation of these side-effects is hardwired in the rewriting engine that is used.

The first direction is particularly interesting in the field of language definitions. In
this field we try to define rewriting based semantics for programming languages. The
combination of aspect orientation and programming language definitions has received
some attention. This has mainly focused on making language definitions more modular
and extensible.

For example, in [32] the idea of implementing language extensions as aspects is ex-
plored in the context of attribute grammars. A similar strategy is explored in [23]. In this
paper, declarative language definitions (e.g., in SOS) are evolved by transforming the
semantic rules. This allows for the incremental addition of language facets (e.g., state,
input/output, exception handling, etc.) to some base language. Primitives to achieve
this include adding parameters to semantic functions, adding conditions to conditional
rewrite rules, and the like.

The second direction is interesting in many applications of term rewriting. Figure
6 (Step 1) displays the process of rewriting a term. An engine takes a TRS and a term,
and produces a normal form and some side-effects. Typical side-effects of the rewriting
process include:

— Tracing: an exported trace of a reduction sequence represents a proof. Each reduc-
tion step contained in this trace is an equational deduction step.

— Profiling: measure the execution behavior (frequency, call graph, timings) of the
term rewriting system.

— Debugging: instrument the term rewriting system with debugging information and
interaction.



Step 1. Basic rewriting architecture Step 2. Introduction of plug-ins

Term Rewriting System

Term Rewriting System
l Tracing calls [ Debugging calls l

Rewriting Engine
Plug-in architecture |
~— 7 x_—

Rewriting Engine

Normalform
N —

Step 3. Engine state as plug-in Step 4. Use aspect weaving
Tracin Debuggin

Term Rewrite System

Term Rewriting System Term
Rewriting
System

Tracing calls ‘ Debugging calls

Engine state calls

Rewriting Engine
—~—_ 7 Fx_——

Normalform

Tracing calls l Debugging calls

Engine state calls

Rewriting Engine

i
Plug-in architecture
— < —

Fig. 6. From a rewriting engine with hardwired side-effects, to a completely decoupled engine
with pluggable side-effects.

For some applications of term rewriting, the side-effects are even more important than
the normal form. Depending on the domain, or on a specific application, in which a
term rewriting engine is applied, these side-effects are specialized in different ways.

For example, a term rewriting engine that is used in concert with a proof assistant
(e.g., Elan with Coq [25, 16]) generates a trace that communicates with a specific deduc-
tion process. Specializing the rewriting engine to emit such a trace makes an otherwise
generic term rewriting system less applicable in a different context, let alone in another
domain. For example, if we want to connect the same engine to a different brand of
proof assistant, a large part of its implementation must be adapted. In [25], this prob-
lem is also recognized, and attacked by providing a separate translation scheme from a
canonical representation to the specific proof term syntax of the proof assistant. In this



paper, we try to generalize this separation of concerns, and make it available for other
aspects of term rewriting besides tracing.

Another problem with hardwired side-effects is the lack of control available to the
user. For example, execution traces can be huge, but the user might be only interested
in a localized section of a term rewriting system. In terms of space efficiency, such lack
of control can lead to a lack of scalability. The possibilities that open up when the user
could specialize side-effects for specific term rewriting applications are significant. In
Sect. 4 we will present how a language specific debugger is obtained by adding debug-
ging side-effects to a term rewriting system that implements the operational semantics
of a language (i.e., a language interpreter).

We know of one instance of weaving side-effects into a language definition. In [34]
a debugging aspect is weaved into an ANTLR [27] language definition of a domain
specific language. Our example also shows how to weave in debugging support, but we
use a dedicated aspect language instead of a general purpose transformation language
(the authors of [34] use DMS). Note that a debugging feature does not change the
semantics of a programming language, so there is no need to evolve the signatures
of semantic functions.

3.1 From Hardwired Side-effects to Programmable Aspects

Figure 6 depicts how a term rewriting engine can be refactored from an architecture
with hardwired side-effects to a flexible plug-in architecture with programmable side-
effects. We will discuss each step in turn.

Step 1 represents a basic implementation of term rewriting. Side-effects such as
debugging, profiling and tracing are hardwired into the implementation. All side-effects
are initiated by the term rewriting engine itself.

Step 2 represents the case that a TRS can be extended with explicit calls to library
functions that might have side-effects. In line with the convention in other frameworks,
we call these library functions plug-ins and add a plug-in architecture to the rewrite
engine. This is achieved by adding a plug-in API (Application Programming Interface)
to the engine to communicate a large part of the engine’s state information to a plug-
in. The engine will now be able to communicate with arbitrary plug-ins and achieve
arbitrary side-effects. Unlike the situation in Step 1, side-effects are no longer initiated
by the engine, but explicit calls to plug-ins must be added to the original term rewriting
system.

Step 3 deals with the fact that interaction between different plug-ins is largely de-
termined by the engine state. Therefore, we separate the engine state as a new plug-in.
The engine state can now be queried from a term rewriting system dynamically. This
information can then be used to trigger tracing, debugging or any other side-effect in a
user-defined manner.

Step 4 introduces an aspect language and separates all calls to plug-ins into separate
aspects. Note that the original term rewriting system of Step 1 is back as a separate
input. By weaving in several aspects we automatically obtain the complete rewriting
system of Step 3. From now on, libraries of reusable side-effects can be provided for
the general use-cases of a term rewriting engine, while at the same time user-defined
specializations can be created without much effort.



We have now separated hardwired functionality, and replaced it by plug-ins and
aspect weaving. By doing this we have gained flexibility and reusability. For example,
the syntax of a reduction trace can be adapted to the input syntax of a particular proof
assistant, and a language semantics can be used with and without debugging support.
In both examples, the original term rewriting system does not have to be changed, but
only aspects have to be weaved in.

3.2 Introducing AspectASF

The aspect weaver in Fig. 6 has been introduced for a reason. Side-effects often repre-
sent crosscutting concerns: many, if not all, rules of a TRS should be modified to include
calls to the library of plug-ins. Take for instance the tracing of a reduction sequence: all
firing rewriting rules have to communicate context information to the tracing plug-in.
This would mean adding plug-in calls to all rules.

It would be advantageous if one could quantify over the set of rules and thus declar-
atively specify which rules should be adapted to incorporate the side-effect in question.
For the tracing functionality, one would then say something like “add a call to trace to
every rule”. The actual adaptation of rewrite rules is subsequently enacted by automat-
ically transforming the TRS.

This section introduces a simple aspect language for aspect-oriented programming
in ASF+SDF. Using this language, the calls to the plug-ins can be specified separately.
Invasive modifications of the TRS are not needed. Moreover, aspects have the additional
advantage that we can now use a TRS with and without side-effects, or even add side-
effects to parts of the TRS.

The next paragraphs will focus on how the declaration of these aspects would look
like in a language called AspectASF. Firstly we will define pointcut patterns that are
used for identifying sets of equations. Secondly, we show how these patterns are used
in specifying pointcuts and advice.

AspectStratego [17] is another experiment in adding aspects to rewriting. That lan-
guage allows much more complex pointcut specifications for inserting code along a
reduction sequence. AspectASF, however, aims to primarily illustrate the viability of
combining TRS with aspect-oriented techniques.

Pointcut Patterns The pointcut pattern language is a pattern matching language on the
structure of equations!. The examples in Fig. 7 illustrate the approach. The _ pattern
functions as a placeholder for concrete terms that are not of interest. The * pattern is a
wild-card for quantifying over parts of literals.

For the sake of exposition we only allow pattern matching on labels of equations
and left-hand sides. Patterns are expressed in concrete syntax. They do not contain any
meta-variables. So, in the third example, Env matches with a regular ASF variable
named Env; no binding is taking place at weaving time.

Note that this pointcut pattern language can be made more expressive by adding, for
example, higher order matching, meta-variables, associative matching on conditions,

! Pointcut patterns are referred to as signatures in the Aspect] community. We avoid this term
for clarity.

10



1 _ captures all equations

[_] eval(_,_) ... with outermost symbol eval

[_] eval(_, Env) ... with 2nd arg an Env variable
[int*] _ ... with label like int..

[int*] _ or [real*] _ ... with label like int.. or real..

Fig.7. A number of example pointcut patterns in AspectASF.

sort assertions etc. For this presentation, we restrict ourselves to first-order matching
and simple boolean connectives (and and or) for constructing composite patterns.

Pointcuts and Advice Pointcut patterns are used in the definition of pointcuts. We
identify two kinds of pointcuts in AspectASF: entering an equation (after a successful
match of the left-hand side), and exiting an equation (just before returning the right-
hand side). In an equation without conditions, entering and exiting are equivalent. The
pointcut

entering [_] eval(_)

captures the points in the reduction sequence where the left-hand side of an equation
with outermost function symbol eval has been matched successfully against a redex.
The exiting pointcut is interpreted similarly.

Pointcuts are used in advice specifications. The kinds of advice that are allowed,
exactly correspond to the kinds of pointcuts: after entering an equation, and before
exiting an equation. Note that before entering and after exiting are meaningless, since
such expressions do not correspond to identifiable points in the code.

As is common in aspect languages, the host language is reused for specifying advice
code. In our case this language is the language of ASF conditions. To weave conditions
after entering means prepending the advice conditions to the list of conditions of the
equation that is matched by the pointcut. Similarly, advice before exiting corresponds
to appending the advice conditions to the list of conditions of the subject equation.

Advice code can benefit from access to the context of the equation that it is weaved
in. This information is provided in part by the weaver (e.g., the equation name), in part
by calls to the library of plug-ins in the advice conditions itself (e.g., to obtain the depth
of the evaluation stack). In the next section we will see an example of a call to such a
library plug-in.

4 Applying Aspect-Oriented Term Rewriting

In this section we apply aspect-oriented programming to an ASF+SDF-specification
of a small programming language. As a small case-study a plug-in for debugging side-
effects was constructed. This plug-in sends and receives messages from a generic visual
debugging tool called Tide [26]. With this plug-in, we can instrument term rewriting
systems such that they stop at certain points in the execution and allow inspection of

11



[1] Env’ := evst(Stat, Env),
Env’’ := evs(Stat*, Env’)

evs (Stat ; Stat*, Env) = Env’’/

[2] eve(Exp, Env) != 0

evst (1f Exp then Seriesl else Series2 fi, Env) =
evs (Seriesl, Env)

[3] eve(Exp, Env) == 0

evst (1f Exp then Seriesl else Series2 fi, Env) =
evs (Series2, Env)

Fig. 8. Fragment of the original Pico interpreter

the current state. To avoid the pollution of the term rewriting system with calls to the
debugging plug-in, our goal is to automatically add such calls to the specification.

Starting from a term rewriting system that implements the semantics of the toy
programming language Pico, we can now easily obtain an interactive debugger. We are
interested in two functions of this semantics definition: evs (Series, Env) ->
Env (used for evaluating series of statements) and evst (Stat, Env) -> Env
(used for evaluating a single statement). For the sake of brevity we omit some of the
equations that define these functions. The equations are displayed in Fig. 8.

Recall that ASF+SDF allows matching on terms in concrete syntax. So in the first
equation, the string evs (Stat ; Stat*, Env) is the redex pattern. Variables in
these patterns start with an uppercase character (Stat, Stat*, Env, etc.).

Communication with the Tide debugger occurs via one library function, called
tide-step. It receives one argument, which represents the source location of the
active element of the Pico program. The source code location of the active element is
obtained by calling the function get-location. This function is implemented as
a separate plug-in. In a similar fashion one could query for other aspects of the term
rewriting engine state.

Setting a breakpoint on a statement or conditional expression (in while- and if-
statements) has the effect of pausing the execution. To obtain this functionality for the
Pico language, the equation for statement sequencing, as well as the equations dealing
with if and while statements, should include a call to tide—step.

The aspect declaration in Fig. 9 is used to weave in calls to the debugging side-
effect at the points of interest. The pointcut statementStep captures the points of
entry of the equation for statement sequencing. Pointcut conditionStep matches
the evst equations defining the if- and while-statements. Both pointcuts are used in
advice specifications, which ensure that a t ide—step is executed at the appropriate
places. Note how the advice uses some of the variables from the pointcut definitions.

The result of weaving this aspect into the Pico interpreter TRS is shown in Fig.
10. Each equation is appended with a special (tautological) condition that communi-

12



pointcut statementStep: entering [_] evs(Stat ; Stat*, Env)
pointcut conditionStep:
entering [_] evst(if Exp then Seriesl else Series2 fi, Env)
or [_] evst(while Exp do Series od, Env)
after: statementStep tide-step(get-location(Stat))
after: conditionStep tide-step(get-location (Exp))

Fig. 9. A debugging aspect for the Pico semantics.

[1] tide-step(get-location(Stat)),

Env’ := evst(Stat, Env),
Env’’ := evs(Stat*, Env’)
evs (Stat ; Stat*, Env) = Env’'/

[2] tide-step(get—-location(Exp)),
eve (Exp, Env) != 0

evst (1f Exp then Seriesl else Series2 fi, Env) =
evs (Seriesl, Env)

[3] tide-step(get—-location(Exp)),
eve (Exp, Env) == 0

evst (1f Exp then Seriesl else Series2 fi, Env) =
evs (Series2, Env)

Fig. 10. Pico interpreter fragment with debugging support automatically weaved in.

cates with the Tide debugger. Any previously existing condition is evaluated after the
debugger is informed. A screen-shot of the resulting interactive debugger is shown in
Fig. 11.

We conclude that the original Pico interpreter (Fig. 8) remains completely separated
from the debugging aspect (Fig. 9) and that the Pico interpreter with debugging support
(Fig. 10) can be generated fully automatically. The example clearly shows the benefits
of aspect-oriented programming. Firstly, the concerns for evaluation (base TRS) and de-
bugging (aspect) are completely separated. Secondly, the scattering of calls is avoided:
two aspects affect five equations. In larger specifications this ratio (2/5) is expected to
be even better.

5 Discussion and Further Research

What can we conclude from these explorations of the connection between term rewrit-
ing and aspect-oriented programming? We have shown that term rewriting is a natural
choice for implementing aspect weavers as has been illustrated in the yAspect] case
(Sect. 2). This regards primarily the transformations carried out by a weaver. Another
source of complexity in weavers is the amount of type information that is needed for
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3 declare

4 input : natural,

5 output ; natural,
[ repnr: natural,
7
g

rep: natural;

9 input := 8;
10 output := 1;
11 while jnput - 1 do

12 rep i= output;

13 repnr = input;

14 while repnr - 1 do

15 OUTRUT = output + rep;
16 repnr = repnr - 1

17 od;

18 input = dnput - 1

19 od

20 end

Fig. 11. A screen-shot of the generated Pico debugger in action.

the weaving process, like, for instance name resolution. Here, term rewriting has no
particular advantage over other techniques.

Another conclusion is that the application of aspect-orientation to term rewriting
itself opens up several new possibilities and research questions as has been illustrated
by the AspectASF case (Sect. 3).

On the theoretical side, the composition of term rewriting systems has been studied
for the relatively simple case of taking the union of rule sets. Aspect weaving, however,
introduces a composition operation with more computational power thus decreasing the
chances of predicting properties of the weaving result. Questions are:

— Is it possible to impose restrictions on the weaving TRS such that properties of the
weaving result can be guaranteed? For instance, if the original TRS has a certain
property (e.g. confluence, termination) how should the weaving TRS be restricted
in order to guarantee certain properties of the weaving result?

— Can AOP be helpful to restructure an existing TRS in such a way that it becomes
easier to proof properties of the AOP version?

On the practical side, other questions abound:

— Is it possible to design a sufficiently flexible aspect language for term rewriting
systems or should one resort to full meta-programming as provided in, for instance,
Maude [8]? Instead of the pointcuts and advices used in this paper, one can then use
the full expressive power of term rewriting by transforming complete (collections
of) rewrite rules.

14



What are the implications of static versus dynamic weaving? In the former case,
the initial TRS is changed by the weaver before rewriting. In the latter case, the
weaving is done during rewriting. The meaning and implications of weaving during
rewriting are unexplored.

In the examples given in this paper, side-effects play a crucial role in the definition
of the various aspects. Is it the case that AOP is the manner of introducing side-
effects in a TRS without completely disturbing the underlying rewriting semantics,
or are there alternatives?

In most AOP implementations, origin information is lost. That is, if a weaved pro-
gram is compiled or executed and there is an error, finding the source of this error
is hard: is it in the base code, the advice code, or the interaction of the two? Ori-
gin tracking for term rewriting is a well-researched subject [9, 5] and provides a
solution for this problem. Aspect weaving may, however, require specialization or
extension of that technique.

Another question is related to origin tracking as well. As the authors of [9] state,
different applications of origin tracking, such as program animation, error handling
and debugging, require different notions of origin tracking. It would be interesting
to investigate whether the code to propagate origins could be weaved in the TRS
using aspect-oriented techniques.

All these questions show that cross-fertilization between the areas of term rewriting and
aspect-oriented programming is possible and desirable.
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