TIDE: A Generic Debugging Framework
— Tool Demonstration —

M.G.J. van den Brand !

Department of Software Engineering
Centrum voor Wiskunde en Informatica
Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands
and
Institute for Information Technology
Hogeschool van Amsterdam
Weesperzijde 190, NL-1097 DZ Amsterdam, The Netherlands

B. Cornelissen? P.A. Olivier* J.J. Vinju?

Department of Software Engineering
Centrum voor Wiskunde en Informatica
Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands

Abstract

A language specific interactive debugger is one of the tools that we expect in
any mature programming environment. We present applications of TIDE: a generic
debugging framework that is related to the ASF+SDF Meta-Environment. TIDE
can be applied to different levels of debugging that occur in language design.

Firstly, TIDE was used to obtain a full-fledged debugger for language specifica-
tions based on term rewriting. Secondly, TIDE can be instantiated for any other
programming language, including but not limited to domain specific languages that
are defined and implemented using ASF+SDF.

We demonstrate the common debugging interface, and indicate the amount of
effort needed to instantiate new debuggers based on TIDE.

Key words: Generic debugging, rewriting, language specifications

Email: Mark.van.den.Brand@cwi.nl
Email: sgmcorne@science.uva.nl
Email: Jurgen.Vinju@cwi.nl

Email: pieter@gamesquare.nl

[

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

vaaury LN AUy VAW HLLVO ANy S LV AL ALYV NI Y

1 Introduction

The development of mature programming environments for small languages,
such as domain specific languages, is in general not feasible due to the develop-
ment and maintenance overhead. The construction of a parser, an interpreter
or a compiler already involves a tremendous amount of effort. The ASF4+SDF
Meta-Environment [1] supports the prototyping of (domain specific) languages
on both the syntactic and semantic level. Given the developed specification,
tools such as parsers, interpreters and pretty printers are derivable.

In addition to these tools, a generic debugging framework called TIDE [4]
complements the ASF+SDF Meta-Environment with the possibility for easily
obtaining interactive debuggers as well. Note that TIDE is independent of the
ASF+SDF Meta-Environment, and can be applied to debugging of any other
(formal) language.

In this demonstration we introduce the concepts of this generic debugging
framework, and demonstrate its usage on two levels of debugging:

e Debugging a specification of a domain specific language.

* Debugging programs written in this domain specific language.

1.1 ASF+SDF Meta-Environment

The ASF+SDF Meta-Environment [1] is a language definition and program
manipulation environment. It can be used interactively to define languages
and to generate tools from these definitions. A language specification in
ASF+SDF [3] typically includes a definition of the syntax, pretty-printing,
type-checking, and execution of programs of the target language.

For this demonstration we will concentrate on the ASF formalism. ASF is
a declarative formalism based on conditional rewrite rules. It is a first-order
strongly typed language which provides functionality for list matching and a
tree traversal mechanism. Furthermore, ASF is strongly connected with SDF
in the sense that ASF reuses the syntax defined in the SDF part to obtain
user defined (concrete) syntax.

1.2 TIDE

A language specific interactive debugger is useful when developing programs
for a specific language, but creating it usually involves a lot of work. TIDE
[4] remedies this fact by providing a generic debugging framework based on a
language independent and extensible debugging interface.

For instance, when an interpreter communicates with TIDE’s interface
during execution of a program, TIDE will present a full-fledged interactive
debugger to the user. Besides facilities for stepping through the program at
hand TIDE also provides facilities to set breakpoints, and inspect variables
and stack frames. Depending on the specific language that is debugged, more

2

vaaury LN AUy VAW HLLVO ANy S LV AL ALYV NI Y

or less features of TIDE are applicable.

1.8 Implementing a debugger for a new language

To extend a run-time system of a language, there are few requirements. TIDE
uses a simple communication protocol, which is implemented by libraries that
are available in C and Java. Using these libraries, an expert should build the
interface between TIDE and the run-time system of a language. This interface
we refer to as a TIDFE adapter. The following is an abstract overview of his
agenda:

e Start TIDE in a separate process, and initialize the connection to TIDE.

e Identify the logical breakpoints, the steps, at which execution may be in-
terrupted during debugging. They identify all possible breakpoints during
execution that are logical from the programmer’s perspective. In conven-
tional debuggers logical breakpoints are often defined just before execution
of a line of code, a single statement, or evaluation of a subexpression. A
call to TIDE’s interface is added at each of these points.

o At these breakpoints at least the source location of the current point of exe-
cution must be known, and passed to the TIDE library. For more features,
the nesting depth (i.e. the stack depth) and a serialized representation of a
variable environment can also be passed to TIDE.

e Finally, a number of debugging rules should be defined, that state which
debugging actions are available at which logical breakpoints. General rules
are registered with TIDE at initialization time, which may be edited by
either the user or the run-time system at any time during debugging.

After completing the above tasks, a basic debugging interface that offers
source inspection, breakpoints, watchpoints and variable inspection facilities
is ready for use. More specialized behavior, such as language specific visu-
alizations, require extending TIDE’s implementation in Java. A number of
interfaces and abstract classes are available to service the integration of new
components into TIDE.

The TIDE protocol ensures that debugging is not limited to single threaded
applications. Even heterogeneous, parallel and distributed applications can
communicate with a single TIDE server, allowing the user to simultaneously
debug communicating processes. The only requirement is that all source code
must be locally available.

2 Demonstration of TIDE debuggers

2.1 Debugging a language specification

ASF is used to define the semantics of (programming) languages by means
of conditional equations. These equations can either be directly interpreted

3

vaaury LN AUy VAW HLLVO ANy S LV AL ALYV NI Y

[EdMetzEnvironment =0 %
ile Cache Tools

]

debug-adapter¢l06) : E StackViewer: ASF+5DF
1 - ASF+SDF [@] S [Tc6a) :

4 [Fihnermost”]
3 [Tc3a)

2 [*innermost*]
7 [Tc3a] toitsiId:Type, Id-type*, Tenw) = tcits{Id-typely [Tel)

E 5
0 [* T
9 [Tc3b] toits{, Tenv) = Tenw [Finnermost]

10
11 [Tc4a] lookup(Tenw, Id) == not-in-table

13 toit{Id:Type, Tenu) = store{Tenv, Id, Twpe)

14

15 [Tcdb] Tookup(Tenw, Idd l= not-in-tahle
15
17 toit(Id:Type, Tenvd = Tenv

18

13 [Tc3a] tcsistat ; Star*, Tenw) =

20 tost{Stat,Tenw) & tos{Stat®,Tenv)
z1

- Rl e " PR
> Rld="input"| [pg12

[Tcaa] tﬂst(ld i= Exp, Tenw) = compatihlef{tce{Id,Tenv), tcelExp,Tenv]))

25
26 [TcRb]

alue of Id at 24,12 = "input”

" Errars | Info
29 Mov 16:54:45: Module languages/pice/typechecker/ Fico-typecheck has not changed, parsing and checking not done,

tee(Exp, Tenv) == natural

Rewriting

Fig. 1. The main user-interface of the ASF+SDF Meta-Environment running TIDE.

or compiled to efficient C code [2]. In debugging mode, the ASF interpreter
communicates with TIDE using the aforementioned adapter API.

Figure 1 shows a screen dump of the user-interface of the ASF+SDF Meta-
Environment with an integrated TIDE widget. The specification being de-
bugged is a type-checker for the toy programming language Pico. The user
added a breakpoint on line 24 in the module Pico-typecheck.asf and in-
spected both the variables Id and Exp.

The ASF interpreter defines 21 logical breakpoints during interpretation
of a specification. For example, two breakpoints logically identify rewrite
rule application: one before matching the left-hand side, and another just
before constructing the right-hand side. The marshalling of the ASF value
environment to TIDE is implemented in 350 lines of C code. That is enough
to obtain a full-fledged ASF debugger.

2.2 Debugging programs written in domain specific languages

When a language is already defined in ASF+SDF, it should not be hard
to obtain a TIDE-based debugger for this language. We provide a generic
ASF+SDF module that encapsulates and hides the TIDE adapter API. Now
we can instrument an ASF+SDF specification by adding calls to this module
in any language specification. For example, the language specification of Pico
was extended with calls to the tide-step function, obtaining a debugger that

4

vaaury LN AUy VAW HLLVO ANy S LV AL ALYV NI Y

supports stepping through a Pico program and setting breakpoints.

Naturally, this route does not offer the full expressivity that can be ob-
tained by writing a TIDE adapter manually. Indeed, the interface offered is
abstract but functional. The design of the ASF+SDF debugging module is a
trade-off between automation (less coding for the user) and expressivity (more
coding for the user).

As an aside, we would like to point to the work of Wu et al. [5] which
is highly related. It offers debuggers for domain specific languages using the
Eclipse framework.

3 Conclusion

TIDE provides a flexible interactive debugging framework which allows a rapid
development of a debugger for any language. We showed a debugger for the
ASF formalism, and how ASF+SDF can be used to automatically obtain a
TIDE-based debugger from a language specification.

Future work includes the development of more TIDE adapters: e.g. for
other parsers, for some general purpose languages (C and Java), and for several
domain specific languages.

References

[1] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de
Jonge, T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J.J. Vinju,
E. Visser, and J. Visser. The ASF+SDF Meta-Environment: a Component-
Based Language Development Environment. In R. Wilhelm, editor, CC’01,
volume 2027 of LNCS, pages 365-370. Springer-Verlag, 2001.

[2] M.G.J. van den Brand, J. Heering, P. Klint, and P.A. Olivier. Compiling
language definitions: The asf+sdf compiler. ACM Transactions on Programming
Languages and Systems, 24(4):334-368, 2002.

[3] A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping: An
Algebraic Specification Approach, volume 5 of AMAST Series in Computing.
World Scientific, 1996.

[4] P. A. Olivier. A Framework for Debugging Heterogeneous Applications. PhD
thesis, Universiteit van Amsterdam, 2000.

[5] H. Wu J. Gray S. Roychoudhury and M. Mernik. Weaving a debugging aspect
into domain-specific language grammars. In ACM Symposium for Applied
Computing (SAC), March 2005.

	Introduction
	ASF+SDF Meta-Environment
	TIDE
	Implementing a debugger for a new language

	Demonstration of TIDE debuggers
	Debugging a language specification
	Debugging programs written in domain specific languages

	Conclusion
	References

