Environments for Term Rewriting Engines
for Free!

Mark van den Brand!:3, Pierre-Etienne Moreau?, and Jurgen Vinju'

1 CWI, Kruislaan 413,
NL-1098 SJ Amterdam, The Netherlands
{Mark.van.den.Brand, Jurgen.Vinju}@cwi.nl

2 LORIA-INRIA, 615, rue du Jardin Botanique,
BP 101, 54602 Villers-les-Nancy Cedex France
Pierre-Etienne.Moreau@loria.fr

3 Vrije Universiteit, De Boelelaan 1081A,
NL-1081 HV Amsterdam, The Netherlands

Abstract. Term rewriting can only be applied if practical implementa-
tions of term rewriting engines exist. New rewriting engines are designed
and implemented either to experiment with new (theoretical) results or
to be able to tackle new application areas. In this paper we present the
Meta-Environment: an environment for rapidly implementing the syn-
tax and semantics of term rewriting based formalisms. We provide not
only the basic building blocks, but complete interactive programming
environments that only need to be instantiated by the details of a new
formalism.

1 Introduction

Term rewriting can only be applied if practical implementations of term rewrit-
ing engines exist. New rewriting engines are designed and implemented either to
experiment with new (theoretical) results or to be able to tackle new applica-
tion areas, e.g., protocol verification, software renovation, etc. However, rewrite
engines alone are not enough to implement real applications.

An analysis of existing applications of term rewriting, e.g. facilitated by for-
malisms like AsSF+SDF [11], ELAN [3], MAUDE [9], RRL [14], STRATEGO [18],
TXL [10], reveals the following four required aspects:

— a formalism that can be executed by a rewriting engine.

— parsers to implement the syntax of the formalism and the terms.
— a rewriting engine to implement the semantics of the formalism.
— a programming environment for supporting user-interaction.

A formalism introduces the syntactic notions that correspond to the operational
semantics of the rewriting engine. This allows the user to write readable specifi-
cations. The parsers provide the connection from the formalism to the rewriting
engine via abstract syntax trees. The programming environment can be either

a set of practical command line tools, an integrated system with a graphical
user-interface, or some combination. It offers a user-interface tailored towards
the formalism for interacting with the rewriting engine. For a detailed overview
of rewriting-based systems we refer to [12].

Implementing the above four entities is usually a major research and software
engineering effort, even if we target only small but meaningful examples. It is a
long path from a description of a term rewriting engine, via language design for
the corresponding formalism, to a usable programming environment.

In this paper we present the Meta-Environment: An open architecture of
tools, libraries, user-interfaces and code generators targeted to the design and
implementation of term rewriting environments.

We show that by using the Meta-Environment a mature programming en-
vironment for a new term rewriting formalism can be obtained in a few steps.
Our approach is based on well-known software engineering concepts: standard-
ization (of architecture and exchange format), software reuse (component based
development), source code generation and parameterization.

1.1 Requirements

Real-world examples of term rewriting systems are to be found in many ar-
eas, including the following ([12]): rewriting workbenches, computer algebra,
symbolic computation, functional programming, definition of programming lan-
guages, theorem proving, and generation, analysis, and transformation of pro-
grams.

These application areas are quite different, which explains the existence of
several formalisms each tailored for a certain application domain. Each area
influences the design and implementation of a term rewriting environment in
several ways. We identify the following common requirements:

— Openness. Collaboration with unforseen components is often needed. It asks
for an open architecture to facilitate communication between the environ-
ment, the rewriting engine, and foreign tools.

— Readable syntaz. Syntax is an important design issue for term rewriting for-
malisms. Although conceptually syntax might be a minor detail, a formalism
that has no practical and readable syntax is not usable.

— Scalability. Most real-world examples lead to big specifications or big terms.
Scalability means that the implementation is capable of handling such prob-
lems using a moderate amount of resources.

— Graphical User Interface. A GUI with editors is needed. It automates as
much of the browsing, editing and testing, of specifications as possible.

The above four issues offer no deep conceptual challenges, but still they stand
for a considerable design and engineering effort. We offer immediately usable
solutions concerning each of those issues in this paper. This paves the way for the
application of new experiments concerning term rewriting that would otherwise
have cost months to implement. In that sense, this paper contributes to the
promotion and the development of rewriting techniques and their applications.

Generic Meta—Environment Protocol ‘ ASF Specific Protocol
TOOLBUS ‘ ,,,,,,,,,,,,,,,,,

eess

LA

Text Structure Parser Tooln | |GUI | ASF ASF
Editor Editor H | Compiler Interpreter
: .

ASF Checke

Fig.1. A complete environment consisting of a generic part and an ASF specific part

2 Architecture for an open environment

In Section 3 we discuss the specific components of the Meta-Environment that
can be used to implement a new term rewriting environment. An example envi-
ronment is implemented in Section 4. Here we discuss the general architecture
of the Meta-Environment.

The main issue is to separate computation from communication. This sepa-
ration is achieved by means of a software coordination architecture and a generic
data exchange format. An environment is obtained by plugging in the appropri-
ate components into this architecture.

ToolBus. To prevent entangling of coordination with computation in compo-
nents we introduce a software coordination architecture, the ToolBus [1]. It is a
programmable software bus based on Process Algebra. Coordination is expressed
by a formal description of the cooperation protocol between components while
computation is expressed inside the components that may be written in any
language. Figure 1 visualizes a ToolBus application (to be discussed below).

Separating computation from communication means that each of these com-
ponents is made as independent as possible from the others. Each component
provides a certain service to the other components via the software bus. They
interact with each other using messages. The organization of this interaction is
fully described using a script that corresponds to a collection of process algebra
expressions.

ATERMS. Coordination protocol and components have to share data. We use
ATERMS [5] for this purpose. These are normal prefix terms with optional an-
notations added to each node. The annotations are used to store tool-specific
information such as text coordinates or proof obligations. All data that is com-
municated via the ToolBus is encoded as ATERMS. ATERMS are comparable to
XML, both are generic data representations. Although there are tools for con-
versions between these formats, we prefer ATERMS for efficiency reasons. They
can be linearized using either a readable representation or a very dense binary
encoding.

ATERMS can not only be used as a generic data exchange format but also
to implement an efficient term data structure in rewriting engines. The ATERM
library offers a complete programming interface to the term data structure. It
is used to implement term rewriting interpreters or run-time support for com-
piled rewriting systems. The following three properties of the ATERM library
are essential for term rewriting:

— Little memory usage per node.
— Maximal sub-term sharing.
— Automatic garbage collection.

Maximal sharing has proven to be a very good method for dealing with large
amounts of terms during term rewriting [4,18]. It implies that term equality
reduces to pointer equality. Automatic garbage collection is a very practical
feature that significantly reduces the effort of designing a new rewriting engine
or compiler.

Meta-Environment Protocol. The ToolBus and ATERMS are more widely ap-
plicable than just for term rewriting environments. To instantiate this generic
architecture, the Meta-Environment ToolBus scripts implement a coordination
protocol between its components. Together with the tools, libraries and program
generators this protocol implements the basic functionality of an interactive en-
vironment.

The Meta-Environment protocol makes no assumptions about the rewriting
engine and its coordination with other tools. In order to make a complete term
rewriting environment we must complement the generic protocol with specific
coordination for every new term rewriting formalism.

For example, the architecture of the ASF+SDF Meta-Environment is shown
in Figure 1. The ToolBus executes the generic Meta-Environment protocol, de-
picted by the circles in the left-hand side of the picture. It communicates with
external tools, depicted by squares. The right-hand side of the picture shows a
specific extension of the Meta-Environment protocol, in this example it is de-
signed for the ASF+SDF rewriting engines. It can be replaced by another protocol
in order to construct an environment for a different rewriting formalism.

Hooks. The messages that can be received by the generic part are known in
advance, simply because this part of the system is fixed. The reverse is not true,
the generic part can make no assumptions about the other part of the system.

We identify messages that are sent from the generic part of the Meta-Envir-
onment to the rewriting formalism part as so-called hooks. Each instance of an
environment should at least implement a receiver for each of these hooks. Ta-
ble 1 shows the basic Meta-Environment hooks. The first four hooks instantiate
parameters of the GUI and the editors. The last four hooks are events that need
to be handled in a manner that is specific for the rewriting formalisms.

Hook Description

environment-name (Name) The main GUI window will display this name
extensions(Sig, Sem, Term) Declares the extensions of different file types
stdlib-path(Path) Sets the path to a standard library
semantics-top-sort (Sort) Declares the top non-terminal of a specification
rewrite(Sig, Sem, Term) Rewrite a term using a specification
pre-parser-generation(Sig) Manipulate the syntax before parser generation
rename-semantics(Sig,Binds,Sem) Implement module parameterization
pre-rewrite(Sig,Spec) Actions to do before rewriting

Table 1. The Meta-Environment hooks: the hooks that parameterize the GUI (top
half), and events concerning the syntax and semantics of a term rewriting formalism
(bottom half).

3 Reusable components

In this section we present reusable components to implement each aspect of
the design of a term rewriting environment. The components are either tools,
libraries or code generators. In Section 4 we explain how to use these compo-
nents to create a programming environment using an example term rewriting
formalism.

3.1 Generalized Parsing for a readable formalism

We offer generic and reusable parsing technology. An implementation of parsing
usually consists of a syntax definition formalism, a parser generator, and run-
time support for parsing. Additionally, automated parse tree construction and
abstract syntax tree construction are offered. Table 2 shows a list of components
related to parsing.

Syntaz. SDF is a declarative syntax definition formalism used to define modular
context-free grammars. Both lexical syntax and context-free syntax can be ex-
pressed in a uniform manner. Among other disambiguation constructs, notions
for defining associativity and relative priority of operators are present.

Furthermore, SDF offers a simple but effective parameterization mechanism.
A module may be parameterized by formal parameters attached to the module
name. Using the import mechanism of SDF this parameter can be bound to an
actual non-terminal.

Programs that deal with syntax definitions can use the SDF library. It pro-
vides a complete high-level programming interface for dealing with syntax defi-
nitions.

Concrete syntar. Recall that a syntax definition can serve as a many-sorted
signature for a term rewriting system. The grammar productions in the defi-
nition are the operators of the signature and the non-terminals are the sorts.

Tool Type Description

pgen SDF — Table Generates a parse table from a syntax definition
sglr TablexStr— AsFix parses an input string and yields a derivation
implode AsFix — ATerm Maps a parse tree to an abstract term

posinfo AsFix — AsFix Adds line and column annotations

unparse AsFix — Str Yields the string that is derived by a parse tree

Table 2. A list of the most frequently used components for SDF and ASFIX

The number of non-terminals used in a grammar production is the arity of an
operator.

Concrete syntax for any term rewriting formalism can be obtained by simply
expressing both the fixed syntax of the formalism and the user defined syntax
of the terms in SDF. A parameterized SDF module is used to describe the fixed
syntax. This module can be imported for every sort in the user-defined syntax.
An example is given in Section 4.

SGLR. To implement the SDF formalism, we use scannerless generalized LR
parsing [7]. The result is a simple parsing architecture, but capable of handling
any modular context-free grammar.

AsFix. SGLR produces parse trees represented as ATERMS. This specific class
of ATERMS is called ASFix. Every ASFIX parse tree explains exactly, for each
character of the input, which SDF productions were applied to obtain a deriva-
tion. A library is offered to be able to create components that deal with ASFIx.

3.2 Establishing the connection between parsing and rewriting

The SDF library and the ASFIX library can be used to implement the connection
between the parser and a rewriting engine. Furthermore, we can also automati-
cally generate new libraries specifically tailored towards the rewriting formalism
that we want to implement [13].

We use an SDF definition of the new formalism to generate C or Java libraries
that hide the actual ATERM representation of a parse tree of a specification
behind a typed interface. The generated interfaces offer: reading in parse trees,
constructors, getters and setters for each operator of the new formalism. Apart
from saving a lot of time, using these code generators has two major advantages:

— The term rewriter can be developed at a higher level of abstraction.
— Programming errors are prevented by the strictness of the generated types.

3.3 Graphical User Interface

MetaStudio. The Meta-Environment contains a user-interface written in Java
(Figure 2). It can be used to browse modules. Every module has a number
of actions that can be activated using the mouse. The actions are sent to the
ToolBus. MetaStudio has parameters to configure the name of the environment,
the typical file extensions, etc.

@ sa|

EEGICIE] e

Layout
Pico-Booleans
rs

.......

Types
IValue- environments
Values

‘Pim—lden(lflarsl ‘Fim—lnmgzrs‘ ‘Pl(u—Smngs
‘nm—snnleans

No module

info |imports | Imperted by |

Opening Pico-1 =]

Fig. 2. GUI of the Meta-Environment displaying an import relation.

Editors. Editing of specifications and terms is done via XEmacs!. To implement
structure-editing capabilities, XEmacs communicates with another component
that holds a tree representation of the edited text.

Utilities. Among other utilities, we offer file I/O and in-memory storage that
aid in the implementation of an interactive environment.

4 A new environment in a few steps

In this section we show the steps involved in designing a new environment.
We take a small imaginary formalism called “RHO” as a running example. It
is a subset of the p-calculus [8], having first-class rewrite rules and an explicit
application operator. The recipe to create a RHO environment is:

Instantiate the parameters of the GUI.
Define the syntax of RHO.

Write some small RHO specifications.
Implement and connect a RHO interpreter.
Connect other components.

Gl W

1. Instantiate the parameters of the GUI: We start from a standard Tool-
Bus script that implements default behavior for all the hooks of Table 1. We
can immediately bind some of the configuration parameters of the GUIL In
the case of RHO, we can instantiate two hooks: environment-name ("The RHO
Environment") and extensions(".sdf",".rho",".trm").

Using the RHO Meta-Environment is immediately possible. It offers the user
three kinds of syntax-directed editors that can be used to complete the rest of
the recipe: SDF editors, editors for the (yet unspecified) RHO formalism, and
term editors.

! http://www.xemacs.org

& Cemacs: Rho,sdf = &% & Cemacs: Rho-lexical,sdf =G %
File Edit Hule HApps Dptionz Buffers Tools Heta-Environnen |File Edit Hule HApps DOptions Buffers Tools Heta—Enuironnen{
module Rho[Term] ~ | module Rho-Lexical Al
imports Rho-Lexical exports
exXports lexicalllsyntaz
sorts Rho Decl Decls [2-Fa-z] [a—z&-E0-9]* - Id
contezt-free syntax [% %tin] —= LAYOUT
"rho!" Degl# —> Decls "EEY ~[hnlA Uyt —> LAYOUT
Id ":=" Rho -» Decl
Term | Id -> Rho
Bhe' "=5 Bho -B Rho {right}
Fho "." Rho —> Rho {left}

[[
I808-——-KEmacs: Rho.sdf {Fundamental He| I808-——-KEmacs: Rho-Lexical.sdf {Fundam|
Focus symbol: Producticn Focus symbol: Grammar

Fig. 3. A parameterized syntax definition of the formalism RHO.

2. Define the syntax of RHO: Figure 3 shows how the SDF editors can be used
to define the syntax of RHO?. It has some predefined operators like assignment
(":="), abstraction ("->") and application ("."), but also concrete syntax for
basic terms. So, a part of the syntax of a RHO term is user-defined. The pa-
rameterization mechanism of SDF is used to leave a placeholder (Term) at the
location where user-defined terms are expected®. The Term parameter will later
be instantiated when writing RHO specifications.

To make the syntax-directed editors for RHO files work properly we now have
to instantiate the following hook: semantic-top-sort("Decls"). The parame-
ter "Decls" refers to the top sort of the definition in Figure 3.

8. Write some small RHO specifications: We want to test the syntax of the new
formalism. Figure 4 shows how two editors are used to specify the signature and
some rules for the Boolean conjunction. Notice that the Rho module is imported
explicitly by the Booleans module, here we instantiate the Term placeholder
for the user-defined syntax. In Section 4 we explain how to add the imports
implicitly.

We can now experiment with the syntax of RHO, define some more operators,
basic data-types or start a standard library of RHO specifications. For the GUI,
the location of the library should be instantiated using the stdlib-path hook.

4. Implement and connect a RHO interpreter: As mentioned in Section 2, the
ATERM library is an efficient choice for a term implementation. Apart from that
we present the details of the connection between a parsed specification and an
implementation of the operational semantics of RHO. The algorithmic details of
evaluating RHO are left to the reader, because that changes with each instance
of a new formalism.

The rewrite hook connects a rewriting engine to the RHO environment:
rewrite (Syntax,Semantics,Term) From this message we receive the informa-
tion that is to be used by the rewriting engine. Note that this does not prohibit
to request any other information from other components using extra messages.
The input data that is received can be characterized as follows: Syntax is a list of

% For the sake of brevity, Figure 3 does not show any priorities between operators.
3 Having concrete syntax of terms is not obligatory.

) Tenaes: Booleans,sdr =8#)| & Cenacs: Hoaleans.rho. SO%

File Edit Hule Apps Dptionsz Buffers Tools Heta—Enuironnen{ |File Edit Hule Apps DOptions Buffers Tools Heta—Enuironnen{

module Booleans rho

imports RhoffBool]

exports sorts Bool conjl = true 8 B > B
contezt-free syntax conjZ := false & B -B false
"true" | "false" -> Bool
Bool "&" Bool —> Bool {left] test = conjl . true & false
wvariables "B -> Bool
I808—-+*-HEmacs: Booleans.sdf (Fundamentl I808-——-HEmacs: Booleans.rho (Fundament
Focus symbol: ModuleName Focus symbol: Rho

Fig. 4. A definition of the Boolean conjunction in SDF+RHO.

all SDF modules (the parse-trees of Rho.sdf and Booleans.sdf). Semantics is a
list of all RHO modules (the parse-tree of Booleans.rho). Term is the expression
that is to be normalized (for example a parse-tree of a file called test.trm).
Two scenarios are to be considered: either a RHO engine already exists, or
a new engine has to be designed from scratch. In the first case, the data-types
of the Meta-Environment will be converted to the internal representation of the
existing engine. In the second case, we can implement a new engine based on
the data-types of the Meta-Environment directly. In both cases the three data-
types of the Meta-Environment are important: SDF, ASFIX and ATERMS. The
libraries and generators ensure that these cases can be specified on a high level
of abstraction. We split the work into the signature and semantics parts of RHO.

Signature. To extract the needed information from the user-defined signature the
SDF modules should be analyzed. The SDF library is the appropriate mechanism
to inspect them in a straightforward manner.

Semantics. Due to having concrete syntax, the list of parse trees that repre-
sent RHO modules is not defined by a fixed signature. We can divide the set of
operators in two categories:

— A fized set of operators that correspond to the basic operators of the formal-
ism. Each fixed operator represents a syntactical notion that should be given
a meaning by the operational semantics. For RHO, assignment, abstraction,
and application are examples of fixed operators.

— Free terms occur at the location where the syntax is user-defined. In RHO
this is either as the right-hand side of an assignment or as a child of the
abstraction or application operators.

There is a practical solution for dealing with each of these two classes of
operators. Firstly, from an SDF definition for RHO we generate a library specif-
ically tailored for RHO. This library is used to recognize the operators of RHO
and extract information via an abstract typed interface. For example, one of the
C function headers in this generated library is: Rho getRuleLhs(Rho rule). A
RHO interpreter can use it to retrieve the left-hand side of a rule.

Secondly, the free terms can be mapped to simple prefix ATERMS using the
component implode, or they can be analyzed directly using the ASFix library.
The choice depends on the application area. E.g., for source code renovation

details such as white space and source code comments are important, but for
symbolic computation this information might as well be thrown away in favor
of efficiency.

In the case of an existing engine, the above interfaces are used to extract
information before providing it to the engine. In the case of a new engine, the
interfaces are used to directly specify the operational semantics of RHO.

5. Connect other components: There are some more hooks that can be instan-
tiated in order to influence the behavior of the Meta-Environment. Also, the
RHO part of the newly created environment might introduce other components
besides the rewriting engine.

We give two examples here. The pre-parser-generation hook can be used
to extend the user-defined syntax with imports of the RHO syntax automatically
for each non-terminal. Secondly, the pre-rewrite hook hook can be used to
connect an automatic verifier or prover like a Knuth-Bendix completion proce-
dure.

Adding unanticipated tools is facilitated at three levels by the Meta-Envir-
onment. Firstly, an SDF production can have any attribute to make it possible
to express special properties of operators for the benefit of new tools. An exam-
ple: B "&" B -> B { left, lpo—precedence(42) }. Secondly, any ATERM can be
annotated with extra information without affecting the other components. For
example: and(true,false){not-reduced}. Finally, all existing services of the
Meta-Environment are available to the new tool. It can for example open a new
editor to show its results using this message: new-editor (Contents)

5 Instantiations of the Meta-Environment

We now introduce the four formalisms we have implemented so far using the
above recipe. We focus on the discriminating aspects of each language.

Asr [11] is a term rewriting formalism based on leftmost-innermost normaliza-
tion. The rules are called equations and are written in concrete syntax. Equations
can have a list of conditions which must all evaluate to true before a reduction
succeeds. The operational semantics of ASF also introduces rewriting with layout
and traversal functions [6], operators that traverse the subterm they are applied
to.

The above features correspond to the application areas of ASF. It is mainly
used for design of the syntax and semantics of domain specific languages and
analysis and transformation of programs in existing programming languages.
From the application perspective ASF is an expressive form of first-order func-
tional programming. The Meta-Environment serves as a programming environ-
ment for ASF.

ELAN [3] is based on rewrite rules too. It provides a strategy language, allowing
to control the application of rules instead of leaving this to a fixed normalization
strategy. Primitive strategies are labelled rewrite rules, which can be combined

using strategy basic operators. New strategy operators can be expressed by defin-
ing them in terms of less complex ones. ELAN supports the design of theorem
provers, logic programming languages, constraint solvers and decision procedures
and offers a modular framework for studying their combination.

In order to improve the architecture, and to make the ELAN system more
interactive, it was decided to redesign the ELAN system based on the Meta-Envir-
onment. The instantiation of the ELAN environment involved the implementation
of several new components, among others an interpreter. Constructing the ELAN
environment was a matter of a few months.

The p-calculus [8] integrates in a uniform and simple setting first-order rewriting,
lambda-calculus and non-deterministic computations. Its abstraction mechanism
is based on the rewrite rule formation. The application operator is explicit,
allowing to handle sets of results explicitly.

The p-calculus is typically a new rewriting formalism which can benefit from
the the Meta-Environment. We have prototyped a workbench for the complete
p-calculus. After that, we connected an existing p-calculus interpreter. This ex-
periment was realized in one day.

The JITty interpreter [17] is a part of the uCRL [2] toolset. In this toolset
it is used as an execution mechanism for rewrite rules. JITty is not supported
by its own formalism or a specialized environment. However, the ideas of the
JITty interpreter are more generally applicable. It implements an interesting
normalization strategy, the so-called just-in-time strategy. A workbench for
the JITty interpreter was developed in a few hours that allowed to perform
experiments with the JITty interpreter.

6 Conclusions

Experiments with and applications of term rewriting engines are within much
closer reach using the Meta-Environment, as compared to designing and engi-
neering a new formalism from scratch.

We have presented a generic approach for rapidly developing the three major
ingredients of a term rewriting based formalism: syntax, rewriting, and an en-
vironment. Using the scalable technology of the Meta-Environment significantly
reduces the effort to develop them. We used our approach to build four envi-
ronments. Two of them are actively used by their respective communities. The
others serve as workbenches for new developments in term rewriting.

The Meta-Environment and its components can now support several term
rewriting formalisms. A future step is to build environments for languages like
Action Semantics [15] and ToM [16]. Apart from more environments, other future
work consists of even further parameterization and modularization of the Meta-
Environment. Making the Meta-Environment open to different syntax definition
formalisms is an example. The Meta-Environment can be downloaded via:
http://www.cwi.nl/projects/MetaEnv

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

J. Bergstra and P. Klint. The discrete time ToolBus — a software coordination
architecture. Science of Computer Programming, 31(2-3):205-229, July 1998.

S. Blom, W. Fokkink, J. Groote, I. van Langevelde, B. Lisser, and J. van de Pol.
BCRL: A toolset for analysing algebraic specifications. In G. Berry, H. Comon,
and A. Finkel, editors, CAV 2001, volume 2102 of LNCS, pages 250-254. Springer-
Verlag, 2001.

P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen. An
overview of ELAN. In C. Kirchner and H. Kirchner, editors, WRLA, volume 15 of
ENTCS. Elsevier Sciences, 1998.

M. v. d. Brand, J. Heering, P. Klint, and P. Olivier. Compiling language definitions:
The ASF+SDF compiler. ACM Transactions on Programming Languages and
Systems, 24(4):334-368, 2002.

M. v. d. Brand, H. d. Jong, P. Klint, and P. Olivier. Efficient Annotated Terms.
Software, Practice & Experience, 30:259-291, 2000.

M. v. d. Brand, P. Klint, and J. Vinju. Term rewriting with traversal functions.
Technical Report SEN-R0121, Centrum voor Wiskunde en Informatica, 2001.

M. v. d. Brand, J. Scheerder, J. Vinju, and E. Visser. Disambiguation Filters for
Scannerless Generalized LR Parsers. In R. N. Horspool, editor, Compiler Con-
struction (CC’02), volume 2304 of LNCS, pages 143-158. Springer-Verlag, 2002.
H. Cirstea, C. Kirchner, and L. Liquori. Matching Power. In A. Middeldorp, editor,
RTA’01, volume 2051 of LNCS, pages 77-92. Springer-Verlag, 2001.

M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, First international workshop on rewriting logic, volume 4,
Asilomar (California), 1996. ENTCS.

J. Cordy, C. Halpern-Hamu, and E. Promislow. TXL: A rapid prototyping system
for programming language dialects. Computer Languages, 16(1):97-107, 1991.

A. v. Deursen, J. Heering, and P. Klint, editors. Language Prototyping: An Al-
gebraic Specification Approach, volume 5 of AMAST Series in Computing. World
Scientific, 1996.

J. Heering and P. Klint. Term Rewriting Systems, chapter 15, pages 787-808.
Cambridge University Press, 2003.

H. d. Jong and P. Olivier. Generation of abstract programming interfaces from
syntax definitions. Technical Report SEN-R0212, Centrum voor Wiskunde en In-
formatica (CWI), Aug. 2002.

D. Kapur and H. Zhang. An overview of Rewrite Rule Laboratory (RRL). J.
Computer and Mathematics with Applications, 29(2):91-114, 1995.

S. Lassen, P. Mosses, and D. Watt. An introduction to AN-2, the proposed new
version of Action Notation. In Proc. 8rd International Workshop on Action Se-
mantics, volume NS-00-6 of Notes Series, pages 19-36. BRICS, 2000.

P.-E. Moreau, C. Ringeissen, and M. Vittek. A Pattern Matching Compiler for
Multiple Target Languages. In G. Hedin, editor, 12th Conference on Compiler
Construction, Warsaw (Poland), volume 2622 of LNCS, pages 61-76. Springer-
Verlag, May 2003.

J. v. d. Pol. JITty: a Rewriter with Strategy Annotations. In S. Tison, edi-
tor, Rewriting Techniques and Applications, volume 2378 of LNCS, pages 367-370.
Springer-Verlag, 2002.

E. Visser. Stratego: A language for program transformation based on rewriting
strategies. System description of Stratego 0.5. In A. Middeldorp, editor, RTA 01,
volume 2051 of LNCS, pages 357-361. Springer-Verlag, 2001.

