Language Design for Meta-Programming in the
Software Composition Domain

Paul Klint, Jurgen Vinju, Tijs van der Storm

Centrum voor Wiskunde en Informatica (CWI)
and
Informatics Institute, University of Amsterdam

Abstract. How would a language look like that is specially designed
for solving meta-programming problems in the software composition do-
main? We present requirements for and design of Rascal, a new language
for solving meta-programming problems that fit the Extract-Analyze-
SYnthesize (EASY) paradigm.

1 Introduction

The question how to compose software is as old as computer science itself. For
each approach one has to face several realities when applying it in practice:

— How to incorporate existing software in the composition framework?
— How to deal with the plethora of languages and intermediate formats that
systems use to implement functionality and to exchange data?

Composition techniques can be placed on a linear scale. On the left-hand
side of the scale are static, invasive, techniques as proposed by Assmann [1]
that view the component as a white box and use meta-programming to adapt
components to the composition framework. Invasive composition tools are static
meta-programs that analyse and modify specific components before compilation
time such that they are connected and can be integrated into a new software
system. On the right-hand side are techniques that can dynamically combine
existing components at the binary level without any software modification. We
have, for instance, applied this with success in the TOOLBUS architecture [2].
The idea is that a process script defines the legal tool cooperations and that
the binary program remains a black box and is encapsulated in a wrapper to
let it satisfy the requirements of the ToOLBUS framework. Many composition
techniques can be placed somewhere in the middle of this scale.

Composition of heterogeneous components that use different languages and
intermediate formats requires an approach called grammarware engineering that
we have introduced in [3]. It should be part of any meta-programming framework.
The process of component adaptation can be seen as an instance of the Extract-
Analyze-SYnthesize (EASY) paradigm and is shown in Figure 1. We start with
the original components and extract information from them and record this



Component 1 XX Component N

'

Composed System

Fig. 1. The Extract-Analyze-SYnthesize Paradigm applied to Software Composition

in an internal representation. The latter is analyzed repeatedly until sufficient
information is available to synthesize the composed system. It may even happen
that requirements for synthesis lead to the necessity to extract more information
from the original components. Many meta-programming systems take the syntax
tree as internal representation and use tree transformation to achieve their goal.

The general theme of this paper is to explore the requirements for a meta-
programming language to express invasive software composition of heterogeneous
software components. We will now first explore requirements (Section 2) and
then we describe the progress of the design of a new language called Rascal that
satisfies these requirements (Section 3).

2 Requirements

The challenge of composing heterogeneous software components can be solved if
we have the following functionality at our disposal:

— Definition of grammars for arbitrary languages and data formats and parsing
of source code or data described by these grammars resulting in syntax trees.

— Semantic analysis of syntax trees.

— Transformation of syntax trees and code generation using results of analysis.

This spans the universe from parser generators and attribute grammars to
software query languages and term rewriting systems. Each of these approaches
is good at solving a part of the problem, but how can we solve the whole prob-
lem? To integrate these techniques is a non-trivial software composition problem
in its own right. Maslow’s saying that “if all you have is a hammer, everything



looks like a nail” [4] is also true in this domain. Attribute grammars are good for
analysis but they are stretched beyond recognition when also used for transfor-
mation. Term rewriting is good for transformation but becomes artificial when
used for software analysis. Relational calculus is good for querying source code
facts but is unusable for transformation. What we need is an integrated view on
the problem that uses the optimal technique for each subdomain. Here is our
shortlist of essential techniques:

— Generalized LR or LL parser generation and parsing for syntax analysis.
— Relational calculus for semantic analysis.
— Term rewriting for transformation and code generation.

Remains the question how to integrate these techniques?

3 Rascal

The goals of Rascal are: (a) to remove the cognitive and computational over-
head of integrating analysis and transformation tools, (b) to provide a safe and
interactive environment for constructing and experimenting with large and com-
plicated source code analyses and transformations such as needed for software
composition, refactoring, code generation and renovation and (c) to be easily
understandable by a large group of computer programming experts. We briefly
review its main features.

Values, Datatypes and Types Rascal is a value-oriented language. This means
that values are immutable and are always freshly constructed from existing parts
and that sharing and aliasing problems are completely avoided. The language
provides a rich set of datatypes. From Booleans, infinite precision integers and
reals to strings and source code locations. From lists, (optionally labelled) tuples
and sets to maps and relations. From untyped tree structures to fully typed
abstract datatypes. Syntax trees that are the result of parsing source files are
represented as abstract datatypes. There is a wealth of built-in operators and
library functions available on the standard datatypes.

Pattern matching Pattern matching is the mechanism for case distinction in
Rascal. We provide string matching based on regular expressions, list (associa-
tive) and set (associative, commutative, identity) matching, matching of abstract
datatypes, and matching of concrete syntax patterns. All these forms of matching
can be used in a single pattern. Patterns may contain variables that are bound
when the match is successful. Patterns can also be used in an explicit match op-
erator and can then be part of larger boolean expressions. Since a pattern match
may have more than one solution, local backtracking over the alternatives of a
match is provided.



Comprehensions, Generators, Enumerators and Tests Generators are used in
comprehensions for lists, sets and maps and come in two flavours: tests and
enumerators. The former test the validity of including a value in the result of a
comprehension, the latter enumerate the values in a given (finite) domain, be it
the elements in a list, the substrings of a string, or—and this is a novelty—all
the nodes in a tree. Each value that is enumerated is first matched against a
pattern before it is included in the results of the enumerator.

Visiting and Transforming Visiting the elements of a datastructure—in partic-
ular syntax trees—is one of the most common operations in our domain and
we give it first class support by way of visit expressions. A visit expression con-
sists of an expression that may yield an arbitrarily complex subject value and
a number of cases. All the elements of the subject are visited and when one of
the cases matches the statements associated with that case are executed. These
cases may: (a) cause some side effect; (b) replace the current element; (c) fail
and thereby undoing all side-effects due to the successful match itself and the
execution of the statements sofar. The value of a visit expression is the original
subject value with all replacements made as dictated by matching cases and thus
forms the basis for software synthesis and code generation. The visit order can
be explicitly defined by the programmer.

4 Concluding Remarks

Rascal is intended for the complete meta-programming domain and can therefore
also be applied in various phases of the software composition or adaptation
process. An initial version of the language has been designed and implemented®
and experiments in various cases are in progress. We welcome feedback from the
software composition community.

References
1. U. Assmann. Invasive Software Composition. Springer, 2003.
2. J.A. Bergstra and P. Klint. The discrete time ToolBus — a software coordination

architecture. Science of Computer Programming, 31(2-3):205-229, July 1998.

3. P. Klint, R. Ldmmel, and C. Verhoef. Toward an engineering discipline for gram-
marware. ACM Trans. Softw. Eng. Methodol., 14(3):331-380, 2005.

4. A. H. Maslow. The Psychology of Science: A Reconnaissance. Harper & Row (1966)
and Maurice Basset (2002), 1966.

' A command-line version and an Eclipse version are available from http://www.
meta-environment.org



