
UPTR: a simple parse tree representation format

J.J. Vinju
Jurgen.Vinju@cwi.nl

Parsers are important parts of software transformation systems. The sur-
prise is that two different parsers for the same language are notoriously hard to
compare on speed or correctness. One of the reasons is that we have no standard
representation for the output of parsers.

This abstract describes the Universal Parse Tree Representation exchange
format (UPTR). It is a simple, extremely verbose, versatile, efficient, lexer and
parser technology independent format. Appendix A contains a full description
of the format. I propose to accept this format as a broader standard in the
software transformation community, and possibly beyond.

UPTR is not new. It is an adaptation of AsFix, which is an existing parse
tree exchange and manipulation format introduced by the Meta-Environment
[3]. This format was simplified by Visser [9]. UPTR removes some ideosyn-
crasies, adds character encoding as a parameter, and adds a representation for
cyclic derivations.

AsFix has been in use by other software systems since 1999, including Strat-
egoXT [10], and Elan [2]. It is used as an exchange format between front-ends
and back-ends of software transformation systems, as well as a back-to-back ve-
hicle for source code transformations. It is extensively used in both batch tools
and interactive tools for source code transformation. AsFix is applied in both
academic and industrial contexts.

UPTR avoids abstraction. A parse tree (PT) is an exact representation
of a specific derivation tree1 of a specific sentence for a specific context-free
grammar (CFG) for a specific language (L). A parse forest (PF) is a collection
of alternative parse trees for the same sentence using the same CFG. A PT is
by definition acyclic, a PF need not be acyclic2. An abstract syntax tree (AST)
is any arbitrary tree-shaped abstraction of a parse tree.

Any abstraction from a PT may result in the loss of valuable information (e.g.
source code comments) [8]. The original source code may not be reconstructable
from an AST. Having no abstraction at all guarantees that there is less implicit
semantics hidden in the output of a parser. A PT is just a derivation, nothing
more and nothing less. This is the foremost property of UPTR.

1A proper definition of a derivation tree can be found in Sudkamp [7] on page 49.
2A cyclic derivation reaches a non-terminal twice without consuming any terminal symbols.

1



UPTR supports the construction of the entire derivation, including lexical
structure [9, 8]. It can represent character classes and regular expressions, so
anything lexical analysis produces may be represented.

UPTR supports the construction of parse forests. It can effectively represent
many derivations in a single data structure. All forms of generalized parsers
that produce several derivations are therefore serviced. The use of the forest
constructor in UPTR does not enforce a minimal forest representation, it can
be used to encode any choice point in a derivation tree. Even cyclic derivations
may be represented using UPTR.

UPTR is efficient despite its verbosity. UPTR is intentionally verbose.
A print-out of a parse tree of the string true and false over a grammar for
Booleans will pretty much fill your screen. The verbosity makes the format
simple and informative, but is this an efficient enough representation? Not
without some tricks.

The syntax of the format (Appendix A) strictly follows the ATerm syntax [4].
Therefore, any parse tree is an ATerm. ATerms are an efficient data exchange
format with a choice for either efficient or readable serialization. ATerms are
implemented using maximal sharing. This annihilates most of the overhead of
the verbosity of our format, since every unique Prod, Sym, or Tree is represented
at a single memory location. ATerms are used much more widely than only for
parse trees [5]. Using ATerms as the implementation vehicle, the parse tree
format can be both verbose and efficient. Another benefit of the ATerm library
is that it comes with automatic garbage collection in C.

The efficiency of programming remains to be discussed. A functional-style
API is provided in C and Java to hide to ATerm implementation layer. Further-
more, if you have a fixed CFG, a code generator may be used to hide the UPTR
layer behind a language specific API [6]. The resulting effect is an AST-like
interface hiding a PT representation.

Apart from verbosity, XML does not offer any of the features that ATerms
offer to make UPTR trees efficient. If you insist, any ATerm may be mapped
to an XML document. For now, there is evidence that XML will not suffice for
representing source code [1]. More analysis of the relationship between ATerms
and XML can be found in [5].

UPTR is versatile. It offers three extension points for arbitrary markup
of the information it contains. Firstly, any production may have an arbitrary
number of attributes of arbitrary shape attached to it. Secondly, every tree
may have an arbitrary number of annotations. Finally, the list of symbols is in
principle open-ended. These extension points make it possible to store enough
information in a PT such that ample communication is possible between a parser
front-end and a particular back-end. Finally, UPTR is parameterized by the
character encoding.

2



Conclusion. The UPTR proposal would be a step towards robust comparison,
validation and more reuse of parsers. We would be able to analyze the output of
a parser without first reverse engineering the formalism in which the structures
are expressed.

It would allow us fixate both parser input and parser output. So, comparing
the speed of parser algorithms and implementations would become more honest
and more precise.

Each tree would contain the grammar that was used to construct it. So,
comparing the actual structure of parse trees could be done without first reverse
engineering the grammar. This would also allows users to compare parsers
independent of the way they are constructed (generated).

Appendix A. Annotated BNF of the parse forest format. 3 4 5

Tree ::= Integer A leaf node with a character value.
| appl(Prod,Args) One node in a derivation.
| amb(Args) Choice of derivations.
| cycle(Sym,Integer) A cut link of a cyclic derivation.
| Tree "{" Annos "}" Every tree can be annotated.

Args ::= "[" {Tree ","}* "]" List of trees.
Prod ::= prod(Syms,Sym,Attrs) Representation of one alternative.

| list(Symbol) Abstraction for list productions.
Syms ::= "[" {Sym ","}* "]" List of symbols
Sym ::= "empty" The empty terminal symbol

| sort(String) A non-terminal name.
| lit(String) Literal (terminal).
| seq(Syms) Sequence constructor.
| opt(Sym) Optional constructor.
| alt(Syms) Alternative constructor.
| iter-plus(Sym) Non-empty list constructor.
| iter-star(Sym) List constructor.
| iter-plus-sep(Sym,Sym) Non-empty separated list constructor.
| iter-star-sep(Sym,Sym) Separated list constructor.
| var(Sym) Meta variables.
| char-class(Code,Ranges) Character classes
| ... Extensible here!

Code ::= String Name of encoding table (”ASCII”)
Ranges ::= "[" {Range ","}* "]" List of ranges.
Range ::= Integer Single character value.

| range(Integer,Integer) Inclusive range of characters.
Attrs ::= "[" {Attr ","}* "]" List of production attributes.
Attr ::= ATerm Any ATerm is an attribute
Annos ::= "[" {Anno ","}* "]" List of tree annotations.
Anno ::= "["ATerm "," ATerm"]" ATerm key/value pair.

3Notation: “foo(Bar,Rab)” abbreviates “"foo" "(" Bar "," Rab ")"”.
4Notation: “{A B}*” is a list of A’s separated by B’s.
5Notation: “Integer”, “String”, and “ATerm” are not defined here but fixed anyway.

3



References

[1] P. Anderson. The performance penalty of XML for program intermediate
representations. In J. Krinke and G. Antoniol, editors, Fifth IEEE Inter-
national Workshop on Source Code Analysis and Manipulation (SCAM),
September 2005.

[2] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen.
An overview of ELAN. In Claude Kirchner and Hélène Kirchner, editors,
WRLA, volume 15 of ENTCS. Elsevier Sciences, 1998.

[3] M.G.J. van den Brand et al. The ASF+SDF Meta-Environment: a
Component-Based Language Development Environment. In R. Wilhelm,
editor, CC’01, volume 2027 of LNCS, pages 365–370. Springer-Verlag, 2001.

[4] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient
Annotated Terms. Software, Practice & Experience, 30(3):259–291, 2000.

[5] M.G.J. van den Brand and P. Klint. ATerms for manipulation and exchange
of structured data: it’s all about sharing! In Special issue on information
and software technology. Elsevier, 2006. To appear.

[6] H. A. de Jong and P. A. Olivier. Generation of abstract programming inter-
faces from syntax definitions. Journal of Logic and Algebraic Programming,
59(1-2):35–61, 2004.

[7] T.A. Sudkamp. Languages and Machines an Introduction to the Theory of
Computer Science. Addison Wesley, June 1994.

[8] J.J. Vinju. Analysis and Transformation of Source Code by Parsing and
Rewriting. PhD thesis, Universiteit van Amsterdam, November 2005.

[9] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, Uni-
versity of Amsterdam, 1997.

[10] E. Visser. Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9. In C. Lengauer, editor, Domain-
Specific Program Generation, volume 3016 of Lecture Notes in Computer
Science, pages 216–238. Springer-Verlag, June 2004.

4


