
Term Rewriting with Traversal Functions

MARK G.J. VAN DEN BRAND and PAUL KLINT and JURGEN J. VINJU

Centrum voor Wiskunde en Informatica

Term rewriting is an appealing technique for performing program analysis and program transfor-
mation. Tree (term) traversal is frequently used but is not supported by standard term rewriting.

We extend many-sorted, first-order term rewriting with traversal functions that automate tree

traversal in a simple and type safe way. Traversal functions can be bottom-up or top-down traver-
sals and can either traverse all nodes in a tree or can stop the traversal at a certain depth as soon

as a matching node is found. They can either define sort preserving transformations or mappings

to a fixed sort. We give small and somewhat larger examples of traversal functions and describe
their operational semantics and implementation. An assessment of various applications and a

discussion conclude the paper.

Categories and Subject Descriptors: D1.1 [Programming Techniques]: Applicative (functional)
programming; D3.3 [Programming Languages]: Language Constructs and Features—Polymor-

phism; Recursion

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Automated Tree Traversal, Term Rewriting, Types

1. INTRODUCTION

1.1 Background

Program analysis and program transformation usually take the syntax tree of a
program as starting point. Operations on this tree can be expressed in many ways,
ranging from imperative or object-oriented programs, to attribute grammars and
rewrite systems. One common problem that one encounters is how to express the
traversal of the tree: visit all nodes of the tree once and extract information from
some nodes or make changes to certain other nodes.

The kinds of nodes that may appear in a program’s syntax tree are determined
by the grammar of the language the program is written in. Typically, each rule in
the grammar corresponds to a node category in the syntax tree. Real-life languages
are described by grammars containing a few hundred up to over thousand grammar
productions. This immediately reveals a hurdle for writing tree traversals: a naive
recursive traversal function should consider many node categories and the size of
its definition will grow accordingly. This becomes even more dramatic if we realize
that the traversal function will only do some real work (apart from traversing) for

Authors’ address: Centrum voor Wiskunde en Informatica (CWI), Software Engineering De-
partment, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, Mark.van.den.Brand@cwi.nl,

Paul.Klint@cwi.nl and Jurgen.Vinju@cwi.nl
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2013 ACM 1529-3785/2013/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013, Pages 1–38.

2 · M.G.J. van den Brand et al.

very few node categories.
This problem asks for a form of automation that takes care of the tree traversal

itself so that the human programmer can concentrate on the few node categories
where real work is to be done. Stated differently, we are looking for a generic way
of expressing tree traversals.

From previous experience [Brand et al. 1996; Brand et al. 1996; 1998; Klint
2003] we know that term rewriting is a convenient, scalable technology for express-
ing analysis, transformation, and renovation of individual programs and complete
software systems. The main reasons for this are:

—Term rewriting provides implicit tree pattern matching that makes it easy to find
patterns in program code.

—Programs can easily be manipulated and transformed via term rewriting.

—Term rewriting is rule-based, which makes it easy to combine sets of rules.

—Efficient implementations exist that can apply rewrite rules to millions of lines
of code in a matter minutes.

In this paper we aim at further enhancing term rewriting for the analysis and
transformation of software systems and address the question how tree traversals
can be added to the term rewriting paradigm.

One important requirement is to have a typed design of automated tree traversals,
such that terms are always well-formed. Another requirement is to have simplicity
of design and use. These are both important properties of many-sorted first-order
term rewriting that we want to preserve.

1.2 Plan of the Paper

In the remainder of this introduction we will discuss general issues in tree traversal
(Section 1.3), briefly recapitulate term rewriting (Section 1.4), discuss why traversal
functions are necessary in term rewriting (Section 1.5), explain how term rewriting
can be extended (Section 1.6), and discuss related work (Section 1.7).

In Section 2 we present traversal functions in Asf+Sdf [Bergstra et al. 1989;
Deursen et al. 1996] and give various examples. Some larger examples of traversal
functions are presented in Section 3. The operational semantics of traversal func-
tions is given in Section 4 and implementation issues are considered in Section 5.
Section 6 describes the experience with traversal functions and Section 7 gives a
discussion.

1.3 Issues in Tree Traversal

A simple tree traversal can have three possible goals:

(G1) Transforming the tree, e.g., replacing certain control structures that use
goto’s into structured statements that use while statements.

(G2) Extracting information from the tree, e.g., counting all goto statements.

(G3) Extracting information from the tree and simultaneously transforming it,
e.g., extracting declaration information and applying it to perform constant
folding.

Of course, these simple tree traversals can be combined into more complex ones.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 3

Top-
down

Bottom-
up

f

g h

1 2 3 4

f

g h

1 2 3 4

f

g h

1 2 3 4

f

g h

1 2 3 4

Continue Break

Left-
to-

right

Right-
to-
left

Fig. 1. The “traversal cube”: principal ways of traversing a tree.

The goal of a traversal is achieved by visiting all tree nodes in a certain visiting
order and applying a rewrite rule to each node once.

General properties of tree traversal are shown in the “traversal cube” in figure 1.
On the first (vertical) axis, we distinguish the standard visiting orders top-down
(order: root, sub-trees) and bottom-up (order: sub-trees, root). Note that for
binary trees (as shown in the example) there is yet another way of visiting every
node once called in-order1 (order: one sub-tree, root, other sub-tree). In this paper
we target arbitrary tree structures and therefore do not further consider this special
case.

On the second (horizontal) axis, we distinguish traversals that break the recursion
at specific nodes and traversals that always continue until all nodes have been
visited. In the right half of figure 1, these breaks occur at the nodes g, 3, and 4.

On the third (depth) axis, we distinguish the direction of the traversal: visiting
nodes from left-to-right or from right-to-left.

The eight possibilities given in the traversal cube are obvious candidates for ab-
straction and automation. In this paper we will focus on the front plane of the
cube, i.e. left-to-right traversals since they are most prominently used in the appli-
cation areas we are interested in. An extension to the complete cube is, however,
straightforward.

During a tree traversal, a rewrite rule should be applied to some or all nodes
to achieve the intended effect of the traversal. The type of the traversal function
depends on the type of the input nodes, which can be one of the following:

—The nodes are untyped. This is the case in, for instance, Lisp or Prolog. Ease of
manipulation is provided at the expense of type safety.

—The nodes are typed and the tree is homogeneous, i.e., all nodes have the same

1In-order is called post-order in The Art of Computer Programming, Volume 1 [Knuth 1968],

nowadays post-order is used to indicate what is called end-order in that book.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

4 · M.G.J. van den Brand et al.

type. This is the case when, for instance, C or Java are used and nodes in the
tree are represented by a single “tree-node” data type. As with untyped nodes,
homogeneous trees are manipulated easily because every combination of nodes is
well typed.

—The nodes are typed and the tree is heterogeneous, i.e., nodes may have different
types. This is the case when, for instance, C or Java are used and a separate
data type is introduced for representing each construct in a grammar (e.g., “dec-
laration node”, “statement node”, “if node” and so forth).

In this paper we will focus on the traversal of typed, heterogeneous, trees. Various
aspects of traversal functions will be discussed:

—What is the type of their result value?

—What is the type of their other arguments?

—Does the result of the traversal function depend only on the current node that
is being visited or does it also use information stored in deeper nodes or even
information from a global state?

Obviously, tree traversals are heavily influenced by the type system of the pro-
gramming language in which they have to be expressed.

1.4 A Brief Recapitulation of Term Rewriting

A basic insight in term rewriting is important for understanding traversal functions.
Therefore we give a brief recapitulation of innermost term rewriting. For a full
account see [Terese 2003].

A term is a prefix expression consisting of constants (e.g., a or 12), variables
(e.g., X) or function applications (e.g., f(a, X, 12)). For simplicity, we will view
constants as nullary functions. A closed term (or ground term) is a term without
variables. A rewrite rule is a pair of terms T1 → T2. Both T1 and T2 may contain
variables provided that each variable in T2 also occurs in T1. A term matches
another term if it is structurally equal modulo occurrences of variables (e.g., f(a,
X) matches f(a, b) and results in a binding where X is bound to b). If a variable
occurs more than once in a term, a so-called non-left-linear pattern, the values
matched by each occurrence are required to be equal. The bindings resulting from
matching can be used for substitution, i.e., replace the variables in a term by the
values they are bound to.

Given a ground term T and a set of rewrite rules, the purpose of a rewrite
rule interpreter is to find a sub-term that can be reduced: the so-called redex. If
sub-term R of T matches with the left-hand side of a rule T1 → T2, the bindings
resulting from this match can be substituted in T2 yielding T ′

2. R is then replaced
in T by T ′

2 and the search for a new redex is continued. Rewriting stops when no
new redex can be found and we say that the term is then in normal form.

In accordance with the tree traversal orders described earlier, different methods
for selecting the redex may yield different results. In this paper we limit our atten-
tion to leftmost innermost rewriting in which the redex is searched in a left-to-right,
bottom-up fashion. Note that innermost rewriting corresponds to call-by-value in
a programming language like C.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 5

Algorithm 1 An interpreter for innermost rewriting.
function match(term, term) : bindings or no-match

function substitute(term, bindings) : term

function innermost(t: term, rules : list_of[rule]) : term

begin
var children, children’ : list-of[term];

var child, reduct, t’ : term;

var fn : function-symbol;

decompose term t as fn(children);

children’ := nil;

foreach child in children

do children’ := append(children’, innermost(child, rules)) od;
t’ := compose term fn(children’);

reduct := reduce(t’, rules);

return if reduct = fail then t’ else reduct fi
end

function reduce(t : term, rules : list-of[rule]) : term

begin

var r : rule;

var left, right : term;

foreach r in rules

do decompose rule r as left -> right;

var b : bindings;

b := match(t, left);

if b != no-match then return innermost(substitute(right, b), rules) fi

od

return fail

end

The operation of a rewrite rule interpreter is shown in more detail in Algorithm 1.
The functions match and substitute are not further defined, but have a meaning
as just sketched. We only show their signature. Terms can be composed from a top
function symbol and a list of children, and they can be decomposed into their sepa-
rate parts too. For example, if fn has as value the function-name f, and children

has as value the list of terms [a,b,c], then compose term fn(children) will
yield the term f(a,b,c). Decompose works in a similar fashion and also allows
more structured term patterns. For example, decompose term t into fn(child,

children) will result in the assignments fn := f; child := a, children :=

[b, c]. Rules are composed from a left-hand side and a right-hand side. They can
also be decomposed to obtain these distinct parts. The underlying term representa-
tion can be either typed or untyped. The compose and decompose functionality as
well as the functions match and substitute have to take this aspect into account.
We use an append function to append an element to the end of a list.

Observe how function innermost first reduces the children of the current term
before attempting to reduce the term itself. This realizes a bottom-up traversal of
the term. Also note that if the reduction of the term fails, it returns itself as result.
The function reduce performs, if possible, one reduction step. It searches all rules

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

6 · M.G.J. van den Brand et al.

module Tree-syntax

imports Naturals

exports
sorts TREE

context-free syntax

NAT -> TREE

f(TREE, TREE) -> TREE

g(TREE, TREE) -> TREE

h(TREE, TREE) -> TREE

variables

N[0-9]* -> NAT

T[0-9]* -> TREE

Fig. 2. Sdf grammar for a simple tree language.

module Tree-trafo1

imports Tree-syntax

equations
[t1] f(T1, T2) = h(T1, T2)

Fig. 3. Example equation [t1].

for a matching left-hand side and, if found, the bindings resulting from the successful
match are substituted in the corresponding right-hand side. This modified right-
hand side is then further reduced with innermost rewriting. In Section 4 we will
extend Algorithm 1 to cover traversal functions as well.

In the above presentation of term rewriting we have focused on the features
that are essential for an understanding of traversal functions. Many other features
such as, for instance, conditional rules with various forms of conditions (e.g., equal-
ity/inequality, matching conditions), list matching and the like are left undiscussed.
In an actual implementation (Section 5) they have, of course, to be taken care of.

1.5 Why Traversal Functions in Term Rewriting?

Rewrite rules are very convenient to express transformations on trees and one may
wonder why traversal functions are needed at all. We will clarify this by way of
simple trees containing natural numbers. figure 2 displays an Sdf grammar [Heering
et al. 1989] for a simple tree language. The leafs are natural numbers and the nodes
are constructed with one of the binary constructors f, g or h. Note that numbers
(sort NAT) are embedded in trees (sort TREE) due to the production NAT -> TREE.
This corresponds to a chain rule in a context-free grammar. The grammar also
defines variables over natural numbers (N, N0, N1, ...) and trees (T, T0, T1, ...).
Transformations on these trees can now be defined easily. For instance, if we want
to replace all occurrences of f by h, then the single equation [t1] shown in figure 3
suffices. Applying this rule to the term f(f(g(1,2),3),4) leads to a normal form
in two steps (using innermost reduction):

f(f(g(1,2),3),4) -> f(h(g(1,2),3),4) -> h(h(g(1,2),3),4)

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 7

module Tree-trafo2

imports Tree-syntax

equations
[t2] f(g(T1, T2), T3) = h(T1, h(T2, T3))

Fig. 4. Example equation [t2].

Similarly, if we want to replace all sub-trees of the form f(g(T1, T2), T3) by
h(T1, h(T2, T3)), we can achieve this by the single rule [t2] shown in figure 4.
If we apply this rule to f(f(g(1,2),3),4) we get a normal form in one step:

f(f(g(1,2),3),4) -> f(h(1,h(2,3)),4)

Note, how in both cases the standard (innermost) reduction order of the rewriting
system takes care of the complete traversal of the term. This elegant approach has,
however, three severe limitations:

—First, if we want to have the combined effect of rules [t1] and [t2], we get
unpredictable results, since the two rules interfere with each other: the combined
rewrite system is said to be non-confluent. Applying the above two rules to
our sample term f(f(g(1,2),3),4) may lead to either h(h(g(1,2),3),4) or
h(h(1,h(2,3)),4) in two steps, depending on whether [t1] or [t2] is applied
in the first reduction step. Observe, however, that an interpreter like the one
shown in Algorithm 1 will always select one rule and produce a single result.

—The second problem is that rewrite rules cannot access any context information
other than the term that matches the left-hand side of the rewrite rule. Especially
for program transformation this is very restrictive.

—Thirdly, in ordinary (typed) term rewriting only type-preserving rewrite rules
are allowed, i.e., the type of the left-hand side of a rewrite rule has to be equal
to the type of the right-hand side of that rule. Sub-terms can only be replaced
by sub-terms of the same type, thus enforcing that the complete term remains
well-typed. In this way, one cannot express non-type-preserving traversals such
as the (abstract) interpretation or analysis of a term. In such cases, the original
type (e.g., integer expressions of type EXP) has to be translated into values of
another type (e.g., integers of type INT).

A common solution to the above three problems is to introduce new function
symbols that eliminate the interference between rules. In our example, if we intro-
duce the functions trafo1 and trafo2, we can explicitly control the outcome of
the combined transformation by the order in which we apply trafo1 and trafo2 to
the initial term. By introducing extra function symbols, we also gain the ability to
pass data around using extra parameters of these functions. Finally, the function
symbols allow to express non-type-preserving transformations by explicitly typing
the function to accept one type and yield another. This proposed change in speci-
fication style does not yield a semantically equivalent rewriting system in general.
It is used as a practical style for specifications, for the above three reasons.

So by introducing new function symbols, three limitations of rewrite rules are
solved. The main down side of this approach is that we loose the built-in facility
of innermost rewriting to traverse the input term without an explicit effort of the

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

8 · M.G.J. van den Brand et al.

module Tree-trafo12

imports Tree-syntax

exports
context-free syntax

trafo1(TREE) -> TREE

trafo2(TREE) -> TREE

equations

[0] trafo1(N) = N

[1] trafo1(f(T1, T2)) = h(trafo1(T1), trafo1(T2))

[2] trafo1(g(T1, T2)) = g(trafo1(T1), trafo1(T2))

[3] trafo1(h(T1, T2)) = h(trafo1(T1), trafo1(T2))

[4] trafo2(N) = N

[5] trafo2(f(g(T1,T2),T3)) = h(trafo2(T1),

h(trafo2(T2), trafo2(T3)))

[6] trafo2(g(T1, T2)) = g(trafo2(T1), trafo2(T2))

[7] trafo2(h(T1, T2)) = h(trafo2(T1), trafo2(T2))

Fig. 5. Definition of trafo1 and trafo2.

programmer. Extra rewrite rules are needed to define the traversal of trafo1 and
trafo2 over the input term, as shown in figure 5. Observe that equations [1] and
[5] in the figure correspond to the original equations [t1] and [t2], respectively.
The other equations are just needed to define the tree traversal. Defining the
traversal rules requires explicit knowledge of all productions in the grammar (in
this case the definitions of f, g and h). In this example, the number of rules per
function is directly related to the size of the Tree language. For large grammars
this is clearly undesirable.

1.6 Extending Term Rewriting with Traversal Functions

We take a many-sorted, first-order, term rewriting language as our point of depar-
ture. Suppose we want to traverse syntax trees of programs written in a language
L, where L is described by a grammar consisting of n grammar rules.

A typical tree traversal will then be described by m (m usually less than n)
rewrite rules, covering all possible constructors that may be encountered during a
traversal of the syntax tree. The value of m largely depends on the structure of the
grammar and the specific traversal problem. Typically, a significant subset of all
constructors needs to be traversed to get to the point of interest, resulting in tens
to hundreds of rules that have to be written for a given large grammar and some
specific transformation or analysis.

The question now is: how can we avoid writing these m rewrite rules? There are
several general approaches to this problem.

Higher-order term rewriting. One solution is the use of higher-order term rewriting
[Huet and Lang 1978; Felty 1992; Heering 1992]. This allows writing patterns in
which the context of a certain language construct can be captured by a (higher-
order) variable thus eliminating the need to explicitly handle the constructs that
occur in that context. We refer to [Heering 1996] for a simple example of higher-
order term rewriting.

Higher-order term rewriting is a very powerful mechanism, which can be used to

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 9

avoid expressing entire tree traversals. It introduces, however, complex semantics
and implementation issues. It does not solve the non-confluence problems discussed
earlier (see Section 1.5). Another observation is that the traversal is done during
matching, so for every match the sub-terms might be traversed. This might be very
expensive.

Generic traversal or strategy primitives One can extend the rewriting language
with a set of generic traversal or strategy primitives as basic operators that enable
the formulation of arbitrary tree traversals. Such primitives could for instance be
the traversal of one, some or all sub-trees of a node, or the sequential composition,
choice or repetition of traversals. They can be used to selectively apply a rewrite
rule at a location in the term. Generic traversal primitives separate the application
of the rewrite rule from the traversal of the tree as advocated in strategic program-
ming. See, for instance, [Visser 2001b] for a survey of strategic programming in the
area of program transformations.

The genericity provided by generic traversals is hard to handle by conventional
typing systems [Visser 2000; Lämmel 2003]. The reason for this is that the type of a
traversal primitive is completely independent of the structures that it can traverse.
In [Lämmel 2003] a proposal is made for a typing system for generic traversal
primitives which we will further discuss in Section 1.7.

Having types is relevant for static type checking, program documentation, and
program comprehension. It is also beneficial for efficient implementation and opti-
mization. In ordinary (typed) term rewriting only type-preserving rewrite rules are
allowed, i.e., the type of the left-hand side of a rewrite rule has to be equal to the
type of the right-hand side of that rule. Sub-terms can only be replaced by sub-
terms of the same type, thus enforcing that the complete term remains well-typed.
Type-checking a first-order many-sorted term rewriting system simply boils down
to checking if both sides of every rewrite rule yield the same type and checking if
both sides are well-formed with respect to the signature.

Traversal functions.
Our approach is to allow functions to traverse a tree automatically, according to

a set of built-in traversal primitives. In our terminology, such functions are called
traversal functions. They solve the problem of the extra rules needed for term
traversal without loosing the practical abilities of functions to carry data around
and having non-sort-preserving transformations.

By extending ordinary term rewriting with traversal functions, the type-system
can remain the same. One can provide primitives that allow type-preserving and
even a class of non-type-preserving traversals in a type-safe manner without even
changing the type-checker of the language.

1.7 Related Work

1.7.1 Directly Related Work. We classify directly related approaches in tigure I
and discuss them below.

ELAN [Borovanský et al. 1998] is a language of many-sorted, first-order, rewrite
rules extended with a strategy language that controls the application of individ-
ual rewrite rules. Its strategy primitives (e.g., “don’t know choice”, “don’t care

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

10 · M.G.J. van den Brand et al.

Table I. Classification of traversal approaches.

Untyped Typed

Strategy primitives Stratego [Visser 2001a] ELAN [Borovanský et al.

1998]
Built-in strategies Renovation Factories [Brand

et al. 2000]

Traversal Functions, TXL

[Cordy et al. 1991]

choice”) allow formulating non-deterministic computations. Currently, ELAN does
not support generic tree traversals since they are not easily fitted in with ELAN’s
type system.

Stratego [Visser 2001a] is an untyped term rewriting language that provides user-
defined strategies. Among its strategy primitives are rewrite rules and several
generic strategy operators (such as, e.g., sequential composition, choice, and repe-
tition) that allow the definition of any tree traversal, such as top-down and bottom-
up, in an abstract manner. Therefore, tree traversals are first class objects that can
be reused separately from rewrite rules. Stratego provides a library with all kinds
of named traversal strategies such as, for instance, bottomup(s), topdown(s) and
innermost(s).

Transformation Factories [Brand et al. 2000] are an approach in which Asf+Sdf
rewrite rules are generated from language definitions. After the generation phase,
the user instantiates an actual transformation by providing the name of the transfor-
mation and by updating default traversal behavior. Note that the generated rewrite
rules are well-typed, but very general types have to be used to obtain reusability
of the generated rewrite rules.

Transformation Factories provide two kinds of traversals: transformers and ana-
lyzers. A transformer transforms the node it visits. An analyzer is the combination
of a traversal, a combination function and a default value. The generated traversal
function reduces each node to the default value, unless the user overrides it. The
combination function combines the results in an innermost manner. The simulation
of higher-order behavior again leads to very general types.

TXL [Cordy et al. 1991] TXL is a typed language for transformational program-
ming [Cordy et al. 1991]. Like Asf+Sdf it permits the definition of arbitrary
grammars as well as rewrite rules to transform parsed programs. Although TXL is
based on a form of term rewriting, its terminology and notation deviate from stan-
dard term rewriting parlance. TXL has been used in many renovation projects.

1.7.2 Discussion. Traversal functions emerged from our experience in writing
program transformations for real-life languages in Asf+Sdf. Both Stratego and
Transformation Factories offer solutions to remedy the problems that we encoun-
tered.

Stratego extends term rewriting with traversal strategy combinators and user-
defined strategies. We are more conservative and extend first-order term rewriting
only with a fixed set of traversal primitives. One contribution of traversal functions
is that they provide a simple type-safe approach for tree traversals in first-order
specifications. The result is simple, can be statically type-checked in a trivial
manner and can be implemented efficiently. On the down-side, our approach does
not allow adding new traversal orders: they have to be simulated with the given,

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 11

built-in, traversal orders. See [Klint 2001] for a further discussion of the relative
merits of these two approaches.

Recently, in [Lämmel 2003] another type system for tree traversals was proposed.
It is based on traversal combinators as found in Stratego. While this typing system
is attractive in many ways, it is more complicated than our approach. Two generic
types are added to a first-order type system: type-preserving (TP) and type-unifying
(TU(τ)) strategies. To mediate between these generic types and normal types an
extra combinator is offered that combines both a type-guard and a type lifting op-
erator. Extending the type system is not needed in our traversal function approach,
because the tree traversal is joined with the functional effect in a single traversal
function. This allows the interpreter or compiler to deal with type-safe traver-
sal without user intervention. As is the case with traversal functions, in [Lämmel
2003] traversal types are divided into type-preserving effects and mappings to a
single type. The tupled combination is not offered.

Compared to Transformation Factories (which most directly inspired our traver-
sal functions), we provide a slightly different set of traversal functions and reduce
the notational overhead. More important is that we provide a fully typed ap-
proach. At the level of the implementation, we do not generate Asf+Sdf rules,
but we have incorporated traversal functions in the standard interpreter and com-
piler of Asf+Sdf. As a result, execution is more efficient and specifications are
more readable, since users are not confronted with generated rewrite rules.

Although developed completely independently, our approach has much in com-
mon with TXL, which also provides type-safe term traversal. TXL rules always
apply a pre-order search over a term looking for a given pattern. For matching
subterms a replacement is performed. TXL rules are thus comparable with top-
down transformers. A difference is that transformers perform only one pass over
the term and do not visit already transformed subtrees. TXL rules, however, also
visit the transformed subtrees. In some cases, e.g., renaming all variables in a pro-
gram, special measures are needed to avoid undesired, repeated, transformations.
In TXL jargon, traversal functions are all one-pass rules. Although TXL does not
support accumulators, it has a notion of global variables that can be used to collect
information during a traversal. A useful TXL feature that we do not support is the
ability to skip subterms of certain types during the traversal.

1.7.3 Other Related Work. Apart from the directly related work already men-
tioned, we briefly mention related work in functional languages, object-oriented
languages and attribute grammars.

Functional languages. The prototypical traversal function in the functional setting
are the functions map, fold and relatives. map takes a tree and a function as
argument and applies the function to each node of the tree. However, problems arise
as soon as heterogeneous trees have to be traversed. One solution to this problem
are fold algebras as described in [Lämmel et al. 2000]: based on a language definition
traversal functions are generated in Haskell. A tool generates generic folding over
algebraic types. The folds can be updated by the user. Another way of introducing
generic traversals in a functional setting is described in [Lämmel and Visser 2002].

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

12 · M.G.J. van den Brand et al.

Object-oriented languages. The traversal of arbitrary data structures is captured
by the visitor design pattern described in [Gamma et al. 1994]. Typically, a fixed
traversal order is provided as framework with default behavior for each node kind.
This default behavior can be overruled for each node kind. An implementation
of the visitor pattern is JJForester [Kuipers and Visser 2001]: a tool that gener-
ates Java class structures from Sdf language definitions. The generated classes
implement generic tree traversals that can be overridden by the user. The tech-
nique is related to generating traversals from language definitions as in Transforma-
tion Factories, but is tailored to and profits from the object-oriented programming
paradigm. In [Visser 2001c] this approach is further generalized to traversal com-
binators.

Attribute grammars. The approaches described so far provide an operational view
on tree traversals. Attribute grammars [Alblas 1991] provide a declarative view:
they extend a syntax tree with attributes and attribute equations that define rela-
tions between attribute values. Attributes get their values by solving the attribute
equations; this is achieved by one or more traversals of the tree. For attribute gram-
mars tree traversal is an issue for the implementation and not for the user. Attribute
grammars are convenient for expressing analysis on a tree but they have the limi-
tation that tree transformations cannot be easily expressed. However, higher-order
attribute grammars [Vogt et al. 1989] remedy this limitation to a certain extent. A
new tree can be constructed in one of the attributes which can then be passed on
as an ordinary tree to the next higher-order attribute function.

Combining attribute grammars with object orientation. JastAdd [Hedin and Mag-
nusson 2001] is recent work in the field of combining reference attribute gram-
mars [Hedin 1992] with visitors and class weaving. The attribute values in reference
attributes may be references to other nodes in the tree. The implicit tree traversal
mechanism for attribute evaluation is combined with the explicit traversal via vis-
itors. This is convenient for analysis purposes but it does not solve the problems
posed by program transformations.

2. TRAVERSAL FUNCTIONS IN ASF+SDF

We want to automate tree traversal in many-sorted, first-order term rewriting. We
present traversal functions in the context of the language Asf+Sdf [Bergstra et al.
1989; Deursen et al. 1996], but our approach can be applied to any term rewriting
language. No prior knowledge of Asf+Sdf is required and we will explain the
language when the need arises.

The reason for choosing Asf+Sdf is that it is a well-known language in the
term rewriting community and that it is supported by an interactive development
environment that is widely available2. In addition, there are many industrial ap-
plications that can be used as test cases for language extensions.

Asf+Sdf uses context-free syntax for defining the signature of terms. As a
result, terms can be written in arbitrary user-defined notation. This means that
functions can have free notation (e.g., move ... to ... rather than move(...,

...)) and that the complete text of programs can be represented as well. The

2www.cwi.nl/projects/MetaEnv

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 13

context-free syntax is defined in Sdf3. Terms are used in rewrite rules defined in
Asf4. For the purpose of this paper, the following features of Asf are relevant:

—Many-sorted (typed) terms.

—Unconditional and conditional rules. Conditions are comparisons between two
terms which come in three flavors: equality between terms, inequality between
terms, and so-called assignment conditions that introduce new variables. In the
first two flavors, no new variables may be introduced on either side. In the last
form only one side of the condition may contain new variables, which are bound
while matching the pattern with the other side of the condition.

—Default rules that are tried only if all other rules fail.

—Terms are normalized by leftmost innermost reduction.

The idea of traversal functions is as follows. The programmer defines functions
as usual by providing a signature and defining rewrite rules. The signature of a
traversal function has to be defined as well. This is an ordinary declaration but it
is explicitly labeled with the attribute traversal. We call such a labeled function
a traversal function since from the user’s perspective it automatically traverses a
term: the rewrite rules for term traversal do not have to be specified anymore since
they are provided automatically by the traversal attribute. The specification
writer only has to give rewrite rules for the nodes that the traversal function will
actually visit.

The rewrite rules provided by the traversal attribute thus define the traversal
behavior while rewrite rules provided by the user define the visit behavior for nodes.
If during innermost rewriting a traversal function appears as outermost function
symbol of a redex, then that function will first be used to traverse the redex before
further reductions occur.

Conceptually, a traversal function is a shorthand for a possibly large set of rewrite
rules. For every traversal function a set of rewrite rules can be calculated that im-
plements both the traversal and the actual rewriting of sub-terms. Expanding a
traversal function to this set of rewrite rules is a possible way of defining the se-
mantics of traversal functions, which we do not further pursue here (but see [Brand
et al. 2001]).

We continue our discussion in Section 1.6 on how to type generic traversals.
The question is what built-in traversals we can provide in our fully typed setting.
We offer three types of traversal functions (Section 2.1) and two types of visiting
strategies (Section 2.2) which we now discuss in order. In Section 2.3 we present
examples of traversal functions. The merits and limitations of this approach are
discussed in Section 7.

2.1 Kinds of Traversal Functions

We distinguish three kinds of traversal functions, defined as follows.

Transformer A sort-preserving transformation, declared as:
f(S1, . . . , Sn)→ S1 {traversal(trafo)}

3Syntax Definition Formalism.
4Algebraic Specification Formalism.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

14 · M.G.J. van den Brand et al.

Accumulator A mapping to a single type, declared as:
f(S1, S2, . . . , Sn)→ S2 {traversal(accu)}

Accumulating
Transformer

A sort preserving transformation that accumulates information si-
multaneously, declared as:
f(S1, S2, . . . , Sn)→ S1#S2 {traversal(accu, trafo)}

A Transformer will traverse its first argument. Possible extra arguments may
contain additional data that can be used (but not modified) during the traversal.
Because a transformer always returns the same sort, it is type-safe. A transformer
is used to transform a tree and implements goal (G1) discussed in Section 1.3.

An Accumulator will traverse its first argument, while the second argument keeps
the accumulated value. After each application of an accumulator, the accumulated
argument is updated. The next application of the accumulator, possibly somewhere
else in the term, will use the new value of the accumulated argument. In other
words, the accumulator acts as a global, modifiable state during the traversal.

An accumulator function never changes the tree, it only changes its accumu-
lated argument. Furthermore, the type of the second argument has to be equal
to the result type. The end-result of an accumulator is the value of the accumu-
lated argument. By these restrictions, an accumulator is also type-safe for every
instantiation.

An accumulator is meant to be used to extract information from a tree and
implements goal (G2) discussed in Section 1.3.

An Accumulating Transformer is a sort preserving transformation that accumulates
information while traversing its first argument. The second argument maintains
the accumulated value. The return value of an accumulating transformer is a tuple
consisting of the transformed first argument and the accumulated value.

An accumulating transformer is used to simultaneously extract information from
a tree and transform it. It implements goal (G3) discussed in Section 1.3.

Transformers, accumulators, and accumulating transformers may be overloaded
to obtain visitors for heterogeneous trees. Their optional extra arguments can carry
information down and their defining rewrite rules can extract information from their
children by using conditions. So we can express analysis and transformation using
non-local information rather easily.

2.2 Visiting Strategies

Having these three types of traversals, they must be provided with visiting strategies
(recall figure 1). Visiting strategies determine the order of traversal. We provide
the following two strategies for each type of traversal:

Bottom-up First recur down to the children, then try to visit the current node. The
annotation bottom-up selects this behavior.

Top-down First try to visit the current node and then traverse to the children.
The annotation top-down selects this behavior.

Without an extra attribute, these strategies define traversals that visit all nodes in
a tree. We add two attributes that select what should happen after a successful

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 15

module Tree-trafo12-trav

imports Tree-syntax

exports
context-free syntax

trafo1(TREE) -> TREE {traversal(trafo,top-down,continue)}
trafo2(TREE) -> TREE {traversal(trafo,top-down,continue)}

equations

[tr1’] trafo1(f(T1, T2)) = h(T1,T2)

[tr2’] trafo2(f(g(T1,T2),T3)) = h(T1,h(T2,T3))

in trafo1(

trafo2(f(f(g(1,2),3),4)))

out h(h(1,h(2,3)),4)

Fig. 6. trafo1 and trafo2 from figure 5 now using top-down traversal functions.

module Tree-inc

imports Tree-syntax

exports

context-free syntax

inc(TREE) -> TREE {traversal(trafo,bottom-up,continue)}
equations

[1] inc(N) = N + 1

in inc(f(g(f(1,2), 3),

g(g(4,5), 6)))

out f(g(f(2,3), 4),

g(g(5,6), 7))

Fig. 7. Transformer inc increments each number in a tree.

visit.

Break Stop visiting nodes on the current branch after a successful visit. The
corresponding annotation is break.

Continue Continue the traversal after a successful visit. The corresponding an-
notation is continue.

A transformer with a bottom-up strategy resembles standard innermost rewrit-
ing; it is sort preserving and bottom-up. It is as if a small rewriting system is defined
within the context of a transformer function. The difference is that a transformer
function inflicts one reduction on a node, while innermost reduction normalizes a
node completely.

To be able to break a traversal is a powerful feature. For example, it allows the
user to continue the traversal under certain conditions.

2.3 Examples of Transformers

In the following subsections, we give some trivial examples of transformers, ac-
cumulators, and accumulating transformers. All examples use the tree language
introduced earlier in figure 2. In Section 3 we show some more elaborate examples.

2.3.1 The trafo example from the introduction revised. Recall the definition of
the transformations trafo1 and trafo2 in the introduction (figure 5). They looked
clumsy and cluttered the intention of the transformation completely. Figure 6 shows
how to express the same transformations using two traversal functions.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

16 · M.G.J. van den Brand et al.

module Tree-incp

imports Tree-syntax

exports
context-free syntax

incp(TREE, NAT) -> TREE {traversal(trafo,bottom-up,continue)}
equations
[1] incp(N1, N2) = N1 + N2

in incp(f(g(f(1,2), 3),

g(g(4,5), 6)),

7)

out f(g(f(8, 9), 10),

g(g(11,12), 13))

Fig. 8. Transformer incp increments each number in a tree with a given value.

module Tree-frepl

imports Tree-syntax

exports
context-free syntax

i(TREE, TREE) -> TREE

frepl(TREE) -> TREE {traversal(trafo,bottom-up,continue)}
equations

[1] frepl(g(T1, T2)) = i(T1, T2)

in frepl(f(g(f(1,2), 3),

g(g(4,5), 6)))

out f(i(f(1,2), 3),

i(i(4,5), 6))

Fig. 9. Transformer frepl replaces all occurrences of g by i.

Observe how these two rules resemble the original rewrite rules. There is, how-
ever, one significant difference: these rules can only be used when the corresponding
function is actually applied to a term.

2.3.2 Increment the numbers in a tree. The specification in figure 7 shows the
transformer inc. Its purpose is to increment all numbers that occur in a tree. To
better understand this example, we follow the traversal and rewrite steps when
applying inc to the tree f(g(1,2),3):

inc(f(g(1,2),3)) ->

f(g(inc(1),2),3) ->

f(g(2,inc(2)),3) ->

f(inc(g(2,3)),3) ->

f(g(2,3),inc(3)) ->

inc(f(g(2,3),4)) ->

f(g(2,3),4)

We start by the application of inc to the outermost node, then each node is visited
in a left-to-right bottom-up fashion. If no rewrite rule is activated, the identity
transformation is applied. So, in this example only naturals are transformed and
the other nodes are left unchanged.

2.3.3 Increment the numbers in a tree (with parameter). The specification in fig-
ure 8 shows the transformer incp. Its purpose is to increment all numbers that occur
in a tree with a given parameter value. Observe that the first argument of incp is
traversed and that the second argument is a value that is carried along during the

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 17

module Tree-frepl2

imports Tree-syntax

exports
context-free syntax

i(TREE, TREE) -> TREE

frepl2(TREE) -> TREE {traversal(trafo, top-down, continue)}
equations

[1] frepl2(g(T1, T2)) = i(T1, T2)

in frepl2(f(g(f(1,2), 3),

g(g(4,5), 6)))

out f(i(f(1,2), 3),

i(i(4,5), 6))

Fig. 10. Transformer frepl2 replaces all occurrences of g by i.

module Tree-srepl

imports Tree-syntax

exports

context-free syntax
i(TREE, TREE) -> TREE

srepl(TREE) -> TREE {traversal(trafo, top-down, break)}
equations
[1] srepl(g(T1, T2)) = i(T1, T2)

in srepl(f(g(f(1,2), 3),

g(g(4,5), 6)))

out f(i(f(1,2), 3),

i(g(4,5), 6))

Fig. 11. Transformer srepl replaces shallow occurrences of g by i.

module Tree-drepl

imports Tree-syntax

exports
context-free syntax

i(TREE, TREE) -> TREE

drepl(TREE) -> TREE {traversal(trafo, bottom-up, break)}
equations

[1] drepl(g(T1, T2)) = i(T1, T2)

in drepl(f(g(f(1,2), 3),

g(g(4,5), 6)))

out f(i(f(1,2), 3),

g(i(4,5), 6))

Fig. 12. Transformer drepl replaces deep occurrences of g by i.

traversal. If we follow the traversal and rewrite steps for incp(f(g(1,2),3), 7),
we get:

incp(f(g(1,2),3),7) ->

f(g(incp(1,7),2),3) ->

f(g(8,incp(2,7)),3) ->

f(incp(g(8,9),7),3) ->

f(g(8,9),incp(3,7)) ->

incp(f(g(8,9),10),7) ->

f(g(8,9),10)

2.3.4 Replace function symbols. A common problem in tree manipulation is the
replacement of function symbols. In the context of our tree language we want to

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

18 · M.G.J. van den Brand et al.

module Tree-sum

imports Tree-syntax

exports
context-free syntax

sum(TREE, NAT) -> NAT {traversal(accu,bottom-up,continue)}
equations
[1] sum(N1, N2) = N1 + N2

in sum(f(g(f(1,2), 3),

g(g(4,5), 6)),

0)

out 21

Fig. 13. Accumulator sum computes the sum of all numbers in a tree.

replace occurrences of symbol g by a new symbol i. Replacement can be defined in
many flavors. Here we only show three of them: full replacement that replaces all
occurrences of g, shallow replacement that only replaces occurrences of g that are
closest to the root of the tree, and deep replacement that only replaces occurrences
that are closest to the leafs of the tree.

Full replacement is defined in figure 9. We specified a bottom-up traversal that
continues traversing after a reduction. This will ensure that all nodes in the tree
will be visited. Note that in this case we could also have used a top-down strategy
and get the same result as is shown in figure 10.

Shallow replacement is defined in figure 11. In this case, traversal stops at each
outermost occurrence of g because break was given as an attribute. In this case,
the top-down strategy is essential. Observe that a top-down traversal with the
break attribute applies the traversal function at an applicable outermost node
and does not visit the sub-trees of that node. However, the right-hand side of a
defining equation of the traversal function may contain recursive applications of the
traversal function itself! In this way, one can traverse certain sub-trees recursively
while avoiding others explicitly.

We use the combination of a bottom-up strategy with the break attribute to
define deep replacement as shown in figure 12. As soon as the rewrite rule applies
to a certain node, the traversal visits no more nodes on the path from the reduced
node to the root. In this case, the bottom-up strategy is essential.

2.4 Examples of Accumulators

So far, we have only shown examples of transformers. In this section we will give
two examples of accumulators.

2.4.1 Add the numbers in a tree. The first problem we want to solve is comput-
ing the sum of all numbers that occur in a tree. The accumulator sum in figure 13
solves this problem. Note that in equation [1] variable N1 represents the current
node (a number), while variable N2 represents the sum that has been accumulated
so far (also a number).

2.4.2 Count the nodes in a tree. The second problem is to count the number of
nodes that occur in a tree. The accumulator cnt shown in figure 14 does the job.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 19

module Tree-cnt

imports Tree-syntax

exports
context-free syntax

cnt(TREE, NAT) -> NAT {traversal(accu,bottom-up,continue)}
equations
[1] cnt(T, N) = N + 1

in cnt(f(g(f(1,2), 3),

g(g(4,5), 6)),

0)

out 11

Fig. 14. Accumulator cnt counts the nodes in a tree.

module Tree-pos

imports Tree-syntax

exports
context-free syntax

pos(TREE, NAT) -> TREE # NAT

{traversal(accu, trafo,bottom-up,continue)}
equations

[1] pos(N1, N2) = <N1 * N2, N2 + 1>

in pos(f(g(f(1,2), 3),

g(g(4,5), 6)),

0)

out <f(g(f(0,2), 6),

g(g(12,20), 30)),

6>

Fig. 15. Accumulating transformer pos multiplies numbers by their tree position.

2.5 Examples of Accumulating Transformers

We conclude our series of examples with one example of an accumulating trans-
former.

2.5.1 Multiply by position in tree. Our last problem is to determine the position
of each number in a top-down traversal of the tree and to multiply each number
by its position. This is achieved by the accumulating transformer pos shown in
figure 15. The general idea is to accumulate the position of each number during
the traversal and to use it as a multiplier to transform numeric nodes.

3. LARGER EXAMPLES

Now we give some less trivial applications of traversal functions. They all use
the small imperative language PICO whose syntax is shown in figure 16. The toy
language PICO was originally introduced in [Bergstra et al. 1989] and has been used
as running example since then. A PICO program consists of declarations followed
by statements. Variables should be declared before use and can have two types:
natural number and string. There are three kinds of statements: assignment, if-
statement and while-statement. In an assignment, the types of the left-hand side
and the right-hand side should be equal. In if-statement and while-statement the
condition should be of type natural. The arguments of the numeric operators + and
- are natural. Both arguments of the string-valued operator || are strings.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

20 · M.G.J. van den Brand et al.

module Pico-syntax

imports Pico-whitespace

exports
sorts PROGRAM DECLS ID-TYPE ID DECLS STAT STATS EXP

sorts NAT-CON STR-CON

lexical syntax
[a-z] [a-z0-9]* -> ID

[0-9]+ -> NAT-CON

"\"" ~[\"\n]* "\"" -> STR-CON

context-free syntax

"begin" DECLS STATS "end" -> PROGRAM

"declare" ID-TYPES ";" -> DECLS

ID ":" TYPE -> ID-TYPE

"natural" | "string" -> TYPE

{ID-TYPE ","}* -> ID-TYPES

ID ":=" EXP -> STAT

"if" EXP "then" STATS "else" STATS "fi" -> STAT

"while" EXP "do" STATS "od" -> STAT

{STAT ";"}* -> STATS

ID -> EXP

NAT-CON -> EXP

STR-CON -> EXP

EXP "+" EXP -> EXP {left}
EXP "-" EXP -> EXP {left}
EXP "||" EXP -> EXP {left}
"(" EXP ")" -> EXP {bracket}

context-free priorities

EXP "||" EXP -> EXP >

EXP "-" EXP -> EXP >

EXP "+" EXP -> EXP

Fig. 16. Sdf grammar for the small imperative language PICO.

3.1 Type-checking

The example in figure 17 defines a type-checker for PICO in a style described in
[Heering 1996]. The general idea is to reduce type-correct programs to the empty
program and to reduce programs containing type errors to a program that only
contains the erroneous statements. This is achieved by using the information from
declarations of variables to replace all variable occurrences by their declared type
and by replacing all constants by their implicit type. After that, all type-correct
statements are removed from the program. As a result, only type-correct programs
are normalized to the empty program.

This approach is interesting from the perspective of error reporting when rewrit-
ing is augmented with origin tracking, a technique that links back sub-terms of the
normal form to sub-terms of the initial term [Deursen et al. 1993]. In this way,
the residuals of the type-incorrect statements in the normal form can be traced
back to their source. See [Tip and Dinesh 2001] for applications of this and similar
techniques.

The example in figure 17 works as follows. First, it is necessary to accommodate

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 21

module Pico-typecheck

imports Pico-syntax

exports
context-free syntax

type(TYPE) -> ID

replace(STATS, ID-TYPE) -> STATS {traversal(trafo,bottom-up,break)}
replace(EXP , ID-TYPE) -> STATS {traversal(trafo,bottom-up,break)}

equations

[0] begin declare Id-type, Decl*; Stat* end =

begin declare Decl*; replace(Stat*, Id-type) end

[1] replace(Id , Id : Type) = type(Type)

[2] replace(Nat-con, Id : Type) = type(natural)

[3] replace(Str-con, Id : Type) = type(string)

[4] type(string) || type(string) = type(string)

[5] type(natural) + type(natural) = type(natural)

[6] type(natural) - type(natural) = type(natural)

[7] Stat*1; if type(natural) then Stat*2 else Stat*3 fi ; Stat*4

= Stat*1; Stat*2; Stat*3; Stat*4

[8] Stat*1; while type(natural) do Stat*2 od; Stat*3

= Stat*1; Stat*2; Stat*3

[9] Stat*1; type(Type) := type(Type); Stat*2

= Stat*1; Stat*2

in begin declare x : natural,

s : string;

x := 10; s := "abc";

if x then x := x + 1

else s := x + 2

fi;

y := x + 2;

end

out begin

declare;

type(string) :=

type(natural);

end

Fig. 17. A type-checker for PICO.

the replacement of variables by their type, in other words, we want to replace x

:= y by type(natural) := type(natural), assuming that x and y have been
declared as natural. This is achieved by extending the syntax of PICO with the
context-free syntax rule

type(TYPE) -> ID

The actual replacement of variables by their declared type is done by the trans-
former replace. It has to be declared for all sorts for which equations for replace
are defined, in this case STATS and EXP. It is a bottom-up, breaking, transformer.
The second argument of replace is an (identifier, type) pair as it appears in a
variable declaration.

Note that for more complex languages a bottom-up breaking transformer might
not be sufficient. For example, when dealing with nested scopes it is imperative that
the type-environment can be updated before going into a new scope. A top-down
breaking transformer is used in such a case which stops at the entrance of a new

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

22 · M.G.J. van den Brand et al.

scope and explicitly recurs into the scope after updating the type-environment.
In equation [0] a program containing a non-empty declaration section is replaced

by a new program with one declaration less. In the statements all occurrences of the
variable that was declared in the removed declaration are replaced by its declared
type. replace is specified in equations [1], [2] and [3]. It simply replaces
identifiers, natural constants and string constants by their type.

Next, all type correct expressions are simplified (equations [4], [5] and [6]).
Finally, type-correct statements are removed from the program (equations [7], [8]
and [9]). As a result, a type correct program will reduce to the empty program and
a type incorrect program will reduce to a simplified program that precisely contains
the incorrect statements. The example that is also given in figure 17 shows how
the incorrect statement s := x + 2 (both sides of an assignment should have the
same type) is reduced to type(string) := type(natural).

The traversal order could be both top-down and bottom-up, since replace only
matches leafs in [1], [2] and [3]. However, bottom-up and break make this
traversal more efficient because once a leaf has been visited none of its ancestors is
visited anymore. This example shows that traversal functions can be used for this
style of type-checking and that they make this approach feasible for much larger
languages.

Equations [7] through [9] use associative matching (called list matching in
Asf+Sdf) to concisely express operations on lists of statements. For instance, in
[8], the list variables Stat*1 and Stat*3 represent the statements surrounding a
while statement and Stat*2 represents the list of statements in the body of the while
statement. On the right-hand side of the equation these three lists of statements
are concatenated thus effectively merging the body of the while statement with its
surroundings.

3.2 Inferring Variable Usage

The second example in figure 18 computes an equivalence relation for PICO vari-
ables based on their usage in a program. This technique is known as type-
inference [Cardelli 1997] and can be used for compiler optimization and reverse
engineering. Examples are statically inferring variable types in a dynamically typed
language such as Smalltalk or in a weakly typed language such as COBOL ([Deursen
and Moonen 1998]).

The analysis starts with the assumption that the input program is correct. Based
on their usage in the program variables are related to each other by putting them
in the same equivalence class. Finally, the equivalence classes are completed by
taking their transitive closure. Variables of the same type that are used for different
purposes will thus appear in different classes. In this way one can, for example,
distinguish integer variables used for dates and integer variables used for account
numbers.

In the specification, notation is introduced for sets of expressions (SET) and sets of
such sets (SETS). The accumulator infer-type is then declared that collects iden-
tifier declarations, expressions and assignments and puts them in separate equiva-
lence classes represented by SETS. This is expressed by equations [0] and [1]. In
[0] an assignment statement generates a new set consisting of both sides of the
assignment. In [1] an expression generates a new set on its own. In equations [2]

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 23

module Pico-usage-inference

imports Pico-syntax

exports
sorts SET SETS

context-free syntax

"{" EXP* "}" -> SET

"[" SET* "]" -> SETS

infer-use(PROGRAM,SETS) -> SETS {traversal(accu,top-down,break)}
infer-use(STAT ,SETS) -> SETS {traversal(accu,top-down,break)}
infer-use(EXP ,SETS) -> SETS {traversal(accu,top-down,break)}

variables

"Set"[0-9]* -> SET

"Set*"[0-9]* -> SET*

"Exp*"[0-9]* -> EXP*

equations

[0] infer-use(Id := Exp, [Set*]) = [{ Id Exp } Set*]

[1] infer-use(Exp , [Set*]) = [{ Exp } Set*]

[2] { Exp*1 Exp Exp*2 Exp Exp*3 } = { Exp*1 Exp Exp*2 Exp*3 }
[3] { Exp*1 Exp1 + Exp2 Exp*2 } = { Exp*1 Exp1 Exp2 Exp*2 }
[4] { Exp*1 Exp1 - Exp2 Exp*2 } = { Exp*1 Exp1 Exp2 Exp*2 }
[5] { Exp*1 Exp1 || Exp2 Exp*3 } = { Exp*1 Exp1 Exp2 Exp*3 }

[6] [Set*1 { Exp*1 Id Exp*2 } Set*2

{ Exp*3 Id Exp*4 } Set*3] =

[Set*1 { Exp*1 Id Exp*2 Exp*3 Exp*4 } Set*2 Set*3]

in infer-use(

begin declare x : natural,

y : natural,

z : natural;

x := 0;

if x then y := 1

else y := 2 fi;

z := x + 3; y := 4

end, [])

out [{ y 4 2 1 } { z x 3 0 }]

Fig. 18. Inferring variable usage for PICO programs.

through [5], equivalence sets are simplified by breaking down complex expressions
into their constituting operands. Finally, equation [6] computes the transitive
closure of the equivalence relation.

Note that equations [2] through [6] use list matching to concisely express oper-
ations on sets. For instance, in [2] the list variables Exp*1, Exp*2 and Exp*3, are
used to match elements that surround the two occurrences of the same expression
Exp. On the right-hand side of the equation, they are used to construct a new list
of expressions that contains only a single occurrence of Exp. In fact, this equation
defines that SET actually defines sets! figure 18 also shows an example of applying
infer-use to a small program.

3.3 Examples of Accumulating Transformers

We leave examples of accumulating transformers to the reader. They can be found
in two directions. Either transformation with side-effects or a transformations with

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

24 · M.G.J. van den Brand et al.

state. A trivial example of the first is to generate a logfile of a transformation.
Log entries are added to the accumulated argument while the traversed argument
is transformed. This functionality can sometimes be split into first generating
the logfile and then doing the transformation, but that inevitably leads to code
duplication and degregation of performance.

An instance of the second scenario is a transformer that assigns a unique iden-
tification to some language constructs. The accumulated argument is used to keep
track of the identifications that were already used. It is impossible to split this
behaviour into a separate transformer and accumulator.

Algorithm 2 An interpreter for transformers, Part 1.
function traverse-trafo(t : term, rules : list-of[rule]) : term

begin

var trfn : function-symbol;

var subject : term;

var args : list-of[term];

decompose term t as trfn(subject,args)

return visit(trfn, subject, args, rules);

end

function visit(trfn : function-symbol, subject : term, args : list-of[term],

rules : list-of[rule]) : term

begin
var subject’, reduct : term;

if traversal-strategy(trfn) = top-down

then subject’ := reduce(typed-compose(trfn, subject, args), rules);

if subject’ = fail

then return visit-children(trfn, subject, args, rules)

else if traversal-continuation(trfn) = break

then return subject’

else reduct := visit-children(trfn, subject’, args, rules)

return if reduct = fail then subject’ else reduct fi

fi
fi

else /* bottom-up */

subject’ := visit-children(trfn, subject, args, rules);

if subject’ = fail

then reduct = reduce(typed-compose(trfn, subject, args), rules)

else if traversal-continuation(trfn) = break

then return subject’

else reduct = reduce(typed-compose(trfn, subject’,args), rules)

return if reduct = fail then subject’ else reduct fi
fi

fi
fi

end

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 25

Algorithm 3 An interpreter for transformers, Part 2.
function visit-children(trfn : function-symbol, subject : term,

args : list-of[term], rules : list-of[rule]) : term

begin

var children, children’ : list-of[term];

var child, reduct : term;

var fn : id;

var success : bool;

decompose term subject as fn(children);

success := false;

foreach child in children

do reduct := visit(trfn, child, args, rules);

if reduct != fail

then children’ := append(children’, reduct);

success := true;

else children’ := append(children’, child)

fi
od;

return if success = true then compose the term fn(children’) else fail fi

end
function typed-compose(trfn : function-symbol, subject : term,

args : list-of[term]) : term

begin
var τ1, τ2, ..., τn, τsubject : type;

var rsym : function-symbol;

var fn : id;

τsubject := result-type-of(subject);

decompose function-symbol trfn as fn:τ1 × τ2 × ... × τn -> τ1;
rsym := compose function-symbol fn: τsubject × τ2 × ... × τn -> τsubject
return compose term rsym(subject, args);

end

4. OPERATIONAL SEMANTICS

Now we will describe an operational semantics for traversal functions. We assume
that we have a fully typed term representation.

This means that with every function name a first order type can be associated.
For example, a function with name f could have type f : τ1 × · · · × τn → τr. If
n = 0, f is a constant of type f :→ τr. If n > 0, f is either a constructor or a
function with its arguments typed by τ1, ..., τn respectively. We will call this fully
typed version of a function name a function symbol and assume that terms only
contain function symbols. Of course, the term construction and destruction and
matching functionality should be adapted to this term representation.

Note that the typed-term representation is an operational detail of traversal
functions. It is needed to match the correct nodes while traversing a tree. However,
a definition of a traversal function can be statically type-checked (Section 2) to
ensure that its execution never leads to an ill-formed term.

4.1 Extending Innermost

We start with normal innermost rewriting as depicted earlier in Algorithm 1 (see
Section 1.4). The original algorithm first normalizes the children of a term and
relies on reduce to reduce the term at the outermost level.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

26 · M.G.J. van den Brand et al.

In the modified algorithm, the call to the function reduce is replaced by a case
distinction depending on the kind of function: a normal function (i.e., not a traversal
function), a transformer, an accumulator, or an accumulating transformer. For
these cases calls are made to the respective functions reduce, traverse-trafo,
traverse-accu, or traverse-accu-trafo. Note that we describe the three kinds
of traversal functions here by means of three different functions. This is only done
for expository purposes (also see the discussion in Section 4.5).

4.2 Transformer

The function traverse-trafo and its auxiliary functions are shown in Algorithms 2
and 3. Function traverse-trafo mainly decomposes the input term into a function
symbol (the traversal function), the subject term to be traversed and optional
arguments. It then delegates actual work to the function visit.

Function visit distinguishes two major cases: top-down and bottom-up traver-
sal. In both cases the break/continue behavior of the traversal function has to be
modeled. If an application of a traversal function has not failed the recursion either
continues or breaks, depending on the annotation of the traversal function. If the
application has failed it always continues the recursion.

We apply the traversal function by reusing the reduce function from the basic
innermost rewriting algorithm (see Algorithm 1). It is applied either before or
after traversing the children, depending on the traversal strategy (bottom-up or
top-down). visit depends on visit-children for recurring over all the children
of the current node. If none of the children are reduced visit-children returns
fail, otherwise it returns the list of new children.

In order to be type-safe, the type of the traversal function follows the type of
the term is being traversed. Its type always matches the type of the node that is
currently being visited. This behavior is encoded by the typed-compose function.
Transformers are type-preserving, therefore the type of the first argument and the
result are adapted to the type of the node that is currently being visited. Note that
using this algorithm this we can reuse the existing matching functionality.

The following auxiliary functions are used but not defined in these algorithms:

—traversal-strategy(fn : function-symbol) returns the traversal strategy of
the given function symbol fn, i.e., top-down or bottom-up.

—traversal-continuation(fn : function-symbol) returns the continuation
style of the given function symbol fn, i.e., break or continue.

—result-type-of(t : term) returns the result type of the outermost function
symbol of the given term t.

4.3 Accumulator

The function traverse-accu and its auxiliary functions are shown in Algorithms 4
and 5. The definitions largely follow the same pattern as for transformers, with the
following exceptions:

—traverse-accu not only separates the traversed subject from the arguments of
the traversal function. It also identifies the second argument as the initial value
of the accumulator.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 27

Algorithm 4 An interpreter for accumulators, Part 1.
function traverse-accu(t : term, rules : list-of[rule]) : term

begin
var trfn : function-symbol;

var subject : term;

var args : list-of[term];

decompose term t as trfn(subject, accu, args)

return visit(trfn, subject, accu, args, rules);

end

function visit(trfn : function-symbol, subject : term, accu : term,

args : list-of[term], rules : list-of[rule]) : term

begin
var reduct, accu’ : term;

if traversal-strategy(trfn) = top-down
then accu’ := reduce(typed-compose(trfn, subject, accu, args), rules);

if accu’ = fail

then return visit-children(trfn, subject, accu, args, rules)

else if traversal-continuation(trfn) = break

then return accu’

else reduct = visit-children(trfn, accu’, reduct, args, rules)

return if reduct = fail then accu’ else reduct fi

fi
fi

else /* bottom-up */

accu’ := visit-children(trfn, subject, accu, args, rules);

if accu’ = fail

then reduct := reduce(typed-compose(trfn, subject, accu, args), rules);

else if traversal-continuation(trfn) = break
then return accu’

else reduct := reduce(typed-compose(trfn, subject, accu’, args), rules);

return if reduct = fail then accu’ else reduct fi
fi

fi
fi

end

—Both visit and visit-children have an extra argument for the accumulator.

—In typed-compose only the type of the first argument is changed while the type
of the accumulator argument remains the same.

—The traversal of children in function visit-children takes into account that the
accumulated value must be passed on between each child.

4.4 Accumulating Transformer

We do not give the details of the algorithms for the accumulating transformer
since they are essentially a fusion of the algorithms for accumulators and trans-
formers. Since an accumulating transformer has two input and output values (the
initial term and the current accumulator value, respectively, the transformed term
and the updated accumulator value), the types of visit, visit-children and
typed-compose have to be adjusted to manipulate a pair of terms rather than a

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

28 · M.G.J. van den Brand et al.

Algorithm 5 An interpreter for accumulators, Part 2.
function visit-children(trfn : function-symbol, subject : term, accu : term,

args : list-of[term], rules : list-of[rule]) : term

begin

var children : list-of[term];

var child, accu’, reduct : term;

var fn : id;

var success : bool;

decompose term subject as fn(children);

accu’ := accu; success := false;

foreach child in children

do reduct := visit(trfn, child, accu’, args, rules);

if reduct != fail then success = true; accu’ := reduct fi
od;

return if success = true then accu’ else fail fi

end

function typed-compose(trfn : function-symbol, subject : term, accu : term,

args : list-of[term]) : term

begin

var τ1, τ2, ..., τn, τsubject : type;

var rsym : function-symbol;

var fn : id;

τsubject := result-type-of(subject);

decompose function-symbol trfn as fn: τ1 × τ2 × ... × τn -> τ2 ;

rsym := compose function-symbol fn: τsubject × τ2 × ... × τn -> τ2;
return compose term rsym(subject, accu, args);

end

single term.

4.5 Discussion

In the above presentation we have separated the three cases transformer, accumula-
tor and accumulating transformer. In an actual implementation, these three cases
can be implemented by a single function that uses pairs of terms (to accommodate
accumulating transformers).

The algorithms become slightly more involved since the algorithms for trans-
former and accumulator now have to deal with term pairs and in several places
case distinctions have to be made to cater for the specific behavior of one of the
three algorithms.

5. IMPLEMENTATION ISSUES

The actual implementation of traversal functions in Asf+Sdf consists of three
parts:

—Parsing the user-defined rules of a traversal function (Section 5.1).

—An interpreter-based implementation of traversal functions (Section 5.2).

—A compilation scheme for traversal functions (Section 5.3).

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 29

5.1 Parsing Traversal Functions

The terms used in the rewrite rules of Asf+Sdf have user-defined syntax. In order
to parse a specification, the user-defined term syntax is combined with the standard
equation syntax of Asf. This combined syntax is used to generate a parser that
can parse the specification.

In order to parse the rewrite rules of a traversal function we need grammar rules
that define them.

A first approach (described in [Brand et al. 2001]) was to generate the syntax
for any possible application of a traversal function. This collection of generated
functions could be viewed as one overloaded function. This simple approach relieved
the programmer from typing in the trivial productions himself. In practice, this
solution had two drawbacks:

—The parse tables tended to grow by a factor equal to the number of traversal
functions. As a result, interactive development became unfeasible because the
parse table generation time was growing accordingly.

—Such generated grammars were possibly ambiguous. Disambiguating grammars
is a delicate process, for which the user needs complete control over the gram-
mar. This control is lost if generated productions can interfere with user-defined
productions.

An alternative approach that we finally adopted is to let the user specify the
grammar rule for each sort that is used as argument of the traversal function: this
amounts to rewrite rules defining the traversal function and applications of the
traversal function in other rules. The amount of work for defining or changing
a traversal function increases by this approach, but it is still proportional to the
number of node types that are actually being visited. The parse table will now
only grow proportionally to the number of visited node types. As a result the parse
table generation time will be acceptable for interactive development.

We have opted for the latter solution since we are targeting industrial size prob-
lems with traversal functions and solutions that work only for small examples are
not acceptable. The above considerations are only relevant for term rewriting with
concrete syntax. Systems that have fixed term syntax can generate the complete
signature without introducing any significant overhead.

5.2 Interpretation of Traversal Functions

The Asf interpreter rewrites parse trees directly (instead of abstract terms). The
parse trees of rewrite rules are simply matched with the parse trees of terms during
rewriting. A reduction is done by substituting the parse tree of the right-hand side
of a rule at the location of a redex in the term.

The Asf+Sdf interpreter implements the algorithms as presented in Section 4.

5.3 Compilation of Traversal Functions

In order to have better performance of rewriting systems, compiling them to C has
proven to be very beneficial. The Asf+Sdf compiler [Brand et al. 1999; Brand
et al. 2002] translates rewrite rules to C functions. The compiled specification
takes a parse tree as input and produces a parse tree as result. Internally, a more

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

30 · M.G.J. van den Brand et al.

dense abstract term format is used. After compilation, the run-time behavior of a
rewriting system is as follows:

(1) In a bottom-up fashion, each node in the input parse tree is visited and the
corresponding C function is retrieved and called immediately. This retrieval is
implemented by way of a pre-compiled dictionary that maps function symbols
to the corresponding C function. During this step the conversion from parse
tree to abstract term takes place. The called function contains a dedicated
matching automaton for the left-hand sides of all rules that have the function
symbol of this node as outermost symbol. It also contains an automaton for
checking the conditions. Finally there are C function calls to other similarly
compiled rewrite rules for evaluation of the right-hand sides.

(2) When an application of a C function fails, this means that this node is in
normal form. As a result, the normal form is explicitly constructed in memory.
Nodes for which no rewrite rules apply, including the constructors, have this as
standard behavior.

(3) Finally, the resulting normal form in abstract term format is translated back
to parse tree format using the dictionary.

Traversal functions can be fitted in this run-time behavior in the following man-
ner. For every defining rewrite rule of a traversal function and for every call to a
traversal function the type of the overloaded argument and optionally the result
type is turned into a single universal type. The result is a collection of rewrite rules
that all share the same outermost traversal function, which can be compiled using
the existing compilation scheme to obtain a matching automaton for the entire
traversal function.

Figure 19 clarifies this scheme using a small example. The first phase shows a
module containing a traversal function that visits two types A and B. This module is
parsed, type-checked and then translated to the next module (pretty-printed here
for readability). In this phase all variants of the traversal function are collapsed
under a single function symbol. The " " denotes the universally quantified type.

The traversal function in this new module is type-unsafe. In [2], the application
of the traversal function is guarded by the b constructor. Therefore, this rule is
only applicable to such terms of type B. The other rule [1] is not guarded by a
constructor. By turning the type of the first argument of the traversal function
universal, this rule now matches terms of any type, which is not faithful to the
semantics of Asf+Sdf.

The solution is to add a run-time type-check in cases where the first argument
of a traversal function is not guarded. For this we can use the dictionary that was
described above to look up the types of symbols. The new module is shown in
the third pane of figure 19. A condition is added to the rewrite rule, stipulating
that the rule may only succeed when the type of the first argument is equal to the
expected type. The type-of function encapsulates a lookup in the dictionary that
was described above. It takes the top symbol of the term that the variable matched
and returns its type. This module can now be compiled using the conventional
compiler to obtain a type-safe matching automaton for all defining rules of the
traversal function.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 31

module Example

exports

context-free syntax

a -> A

b (A) -> B

example(A) -> A {traversal(trafo,bottom-up,continue)}
example(B) -> B {traversal(trafo,bottom-up,continue)}

variables

"VarA" -> A

equations

[1] example(VarA) = ...

[2] example(b(VarA)) = ...

module Example

exports
context-free syntax

a -> A

b (A) -> B

example() -> {traversal(trafo,bottom-up,continue)}
variables

"VarA" -> A

equations

[1] example(VarA) = ...

[2] example(b(VarA)) = ...

module Example

exports

context-free syntax

a -> A

b (A) -> B

example() -> {traversal(trafo,bottom-up,continue)}
equations
[1] type-of(VarA) = A ===> example(VarA) = ...

[2] example(b(VarA)) = ...

ATerm example(ATerm arg0)

{
ATerm tmp0 = call kids trafo(example, arg0, NO EXTRA ARGS);

if (check symbol(tmp0, b symbol)) { /* [2] */

return ...;

}
if (term equal(get type(tmp0), type("A"))) { /* [1] */

return ...;

}

return tmp0;

}

Fig. 19. Selected phases in the compilation of a traversal function.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

32 · M.G.J. van den Brand et al.

To obtain the tree traversal behavior this automaton is now combined with calls
to a small run-time library. It contains functions that take care of actually travers-
ing the tree and optionally passing along the accumulated argument. The fourth
pane of figure 19 shows the C code for the running example.

Depending on the traversal type there is a different run-time procedure. In
this case it is a transformer, so call kids trafo is used. For a transformer the
function is applied to the children, and a new node is created after the children
are reduced. For an accumulator the library procedure, call kids accu, also takes
care of passing along the accumulated value between the children. Depending
on the traversal order the calls to this library are simply made either before or
after the generated matching automaton. The break and continue primitives are
implemented by inserting extra calls to the run-time library procedures surrounded
by conditionals that check the successful application or the failure of the traversal
function.

6. EXPERIENCE

Traversal functions have been applied in a variety of projects. We highlight some
representative ones.

6.1 COBOL Transformations

In a joint project of the Software Improvement Group (SIG), Centrum voor Wiskunde
en Informatica (CWI) and Vrije Universiteit (VU) traversal functions have been ap-
plied to the conversion of COBOL programs [Zaadnoordijk 2001; Veerman 2003].
This is based on earlier work described in [Sellink et al. 1999]. The purpose was to
migrate VS COBOL II to COBOL/390. An existing tool (CCCA from IBM) was
used to carry out the basic, technically necessary, conversions. However, this leaves
many constructions unchanged that will obtain the status “archaic” or “obsolete”
in the next COBOL standard. In addition, compiler-specific COBOL extensions
remain in the code and several outdated run-time utilities can be replaced by stan-
dard COBOL features.

Ten transformation rules were formalized to replace all these deprecated language
features and to achieve code improvements. Examples of rules are:

—Adding END-IF keywords to close IF-statements.

—Replace nested IF-statements with EVALUATE-statements.

—Replace outdated CALL utilities by standard COBOL statements.

—Reduce GO-TO statements: a goto-elimination algorithm that itself consists of
over 20 different transformation rules that are applied iteratively.

After formalization of these ten rules in Asf+Sdf with traversal functions, and
applying them to a test base of 582 programs containing 440000 lines of code, the
following results were obtained:

—17000 END-IFs were added.

—4000 lines were changed in order to eliminate CALL-utilities.

—1000 GO-TOs have been eliminated (about 65% of all GO-TOs).

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 33

module End-If-Trafo

imports Cobol

exports
context-free syntax

addEndIf(Program) -> Program {traversal(trafo,continue,top-down)}
variables
"Stats"[0-9]* -> StatsOptIfNotClosed

"Expr"[0-9]* -> L-exp

"OptThen"[0-9]* -> OptThen

equations

[1] addEndIf(IF Expr OptThen Stats) =

IF Expr OptThen Stats END-IF

[2] addEndIf(IF Expr OptThen Stats1 ELSE Stats2) =

IF Expr OptThen Stats1 ELSE Stats2 END-IF

Fig. 20. Definition of rules to add END-IFs.

Each transformation rule is implemented by means of a traversal function defined
by only a few equations. Figure 20 shows two rewrite rules which add the missing
END-IF keywords to the COBOL conditionals.

The complete transformation took two and a half hours using the ASF inter-
preter.5 The compiled version of traversal functions was not yet ready at the time
this experiment was done but it would reduce the time by a factor of at least 30–40
(see Section 6.3). The estimated compiled execution time would therefore be under
5 minutes. These results show that traversal functions can be used effectively to
solve problems of a realistic size.

6.2 Sdf Re-factoring

In [Lämmel and Wachsmuth 2001] a Framework for Sdf Transformations (FST) is
described that is intended to support grammar recovery (i.e., the process of recov-
ering grammars from manuals and source code) as well as grammar re-engineering
(transforming and improving grammars to serve new purposes such as information
extraction from legacy systems and dialect conversions). The techniques are applied
to a VS COBOL II grammar. The experience with traversal functions is positive.
To cite the authors:

“At the time of writing FST is described by 24 traversal functions with
only a few rewrite rules per function. The Sdf grammar itself has about
100 relevant productions. This is a remarkable indication for the use-
fulness of the support for traversal functions. In worst case, we would
have to deal with about 2400 rewrite rules otherwise.”

6.3 Sdf Well-formedness Checker

Sdf is supported by a tool-set6 containing among others a parse table generator and
a well-formedness checker. A considerable part of the parse table generator is spec-
ified in Asf+Sdf. The well-formedness checker is entirely specified in Asf+Sdf

5On a 333 MHz PC with 192 Mb of memory running Linux.
6www.cwi.nl/projects/MetaEnv

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

34 · M.G.J. van den Brand et al.

Table II. Performance of the Sdf checker.

Grammar # of productions Interpreted Compiled Ratio

(seconds) (seconds)

Sdf 200 35 0.85 42
Java 352 215 1.47 146

Action Semantics 249 212 2.00 106

COBOL 1251 1586 5.16 307

and makes extensive use of traversal functions. The well-formedness checker anal-
yses a collection of Sdf modules and checks, among others, for completeness of
the specification, sort declarations (missing, unused, and double), uniqueness of
constructors, and uniqueness of labels. The Sdf grammar consists of about 200
production rules, the Asf+Sdf specification consists of 150 functions and 186 equa-
tions, 66 of these functions are traversal functions and 67 of the equations have a
traversal function as the outermost function symbol in the left-hand side and can
thus be considered as ”traversal” equations.

An indication of the resulting performance is shown in Table II.7 It shows results
for Sdf, Java, Action Semantics and COBOL. For each grammar, the number of
grammar rules is given as well as execution times (interpreted and compiled) for the
Sdf checker. The last column gives the interpreted/compiled ration. These figures
show that traversal functions have a completely acceptable performance. They also
show that compilation gives a speed-up of at least a factor 40.

7. DISCUSSION

Traversal functions are based on a minimalist design that tries to combine type
safety with expressive power. We will now discuss the consequences and the limi-
tations of this approach.

7.1 Declarative versus Operational Specifications

Traversal functions are expressed by annotating function declarations. Understand-
ing the meaning of the rules requires understanding which function is a traversal
function and what visiting order it uses. In pure algebraic specification, it is con-
sidered bad practice to depend on the rewriting strategy (i.e., the operational se-
mantics) when writing specifications. By extending the operational semantics of
our rewrite system with traversal functions, we effectively encourage using opera-
tional semantics. However, if term rewriting is viewed as a programming paradigm,
traversal functions enhance the declarative nature of specifications. That is, without
traversal functions a simple transformation must be coded using a lot of “opera-
tional style” rewrite rules. With traversal functions, only the essential rules have to
be defined. The effort for understanding and checking a specification decreases sig-
nificantly. In [Brand et al. 2001] we show how traversal functions in Asf+Sdf can
be translated to specifications without traversal functions in a relatively straight-
forward manner. So, traversal functions can be seen as an abbreviation mechanism.

7On a 333 MHz PC with 192 Mb of memory running Linux.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 35

7.2 Expressivity

Recall from figure 1 the main left-to-right visiting orders for trees: top-down and
bottom-up combined with two stop criteria: stop after first application or visit all
nodes. All of these orders can be expressed by traversal functions using combina-
tions of bottom-up, top-down, break and continue. We have opted for a solution
that precisely covers all these possible visiting orders.

One may wonder how concepts like repetition and conditional evaluation, as used
in strategic programming (see Section 1.7), fit in. In that case, all control structures
are moved to the strategy language and the base language (rewrite rules, functions)
remains relatively simple. In our case, we use a base language (Asf+Sdf) that is
already able to express these concepts and there is no need for them to be added
to the set of traversal primitives.

7.3 Limited Types of Traversal Functions

Accumulators can only map sub-trees to a single sort and transformers can only
do sort preserving transformations. Is that a serious limitation?

One might argue that general non-sort-preserving transformations cannot be ex-
pressed conveniently with this restriction. Such transformations typically occur
when translating from one language to another and they will completely change
the type of every sub-term. However, in the case of full translations the advantage
of any generic traversal scheme is debatable, since translation rules have to be given
for any language construct anyway. A more interesting case are partial translations
as occur when, for instance, embedded language statements are being translated
while all surrounding language constructs remain untouched. In this case, the num-
ber of rules will be proportional to the number of translated constructs only and
not to the total number of grammatical constructs. Most of such partial trans-
formations can be seen as the combination of a sort-preserving transformation for
the constructs where the transformation is not defined and a non-sort-preserving
transformation for the defined parts. If the sort-preserving part is expressed as a
transformer, we have again a number of rewrite rules proportional to the number
of translated constructs. It is therefore difficult to see how a generic non-sort-
preserving traversal primitive could really make specifications of translations more
concise.

7.4 Reuse versus Type-safety

We do not separate the traversal strategy from the rewrite rules to be applied.
By doing so, we loose the potential advantage of reusing the same set of rewrite
rules under different visiting orders. However, precisely the combination of traver-
sal strategy and rewrite rules allows for a simple typing mechanism. The reason
is that the generic traversal attributes are not separate operators that need to
be type-checked. It allows us to ensure well-formedness in both type-preserving
transformations and in type-unifying computations without extending the typing
mechanisms of our first-order specification language.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

36 · M.G.J. van den Brand et al.

7.5 Conclusions

We have described term rewriting with traversal functions as an extension of
Asf+Sdf. The advantages of our approach are:

—The most frequently used traversal orders are provided as built-in primitives.

—The approach is fully type-safe.

—Traversal functions can be implemented efficiently.

Traversal functions are thus a nice compromise between simplicity and expressive
power.

The main disadvantage of our approach might manifest itself when dealing with
visiting orders that go beyond our basic model of tree traversal. Two escapes would
be possible in these cases: such traversals could either be simulated as a modification
of one of the built-in strategies (by adding conditions or auxiliary functions), or one
could fall back to the tedious specification of the traversal by enumerating traversal
rules for all constructors of the grammar.

In practice, these scenario’s have not occurred and experience with traversal
functions shows that they are extremely versatile when solving real-life problems.

ACKNOWLEDGMENTS

We received indispensable feedback from the users of traversal functions. Steven
Klusener (Software improvement Group) and Hans Zaadnoordijk (University of
Amsterdam) used them for COBOL transformations, and Ralf Lämmel (CWI and
Vrije Universiteit Amsterdam) and Guido Wachsmuth (University of Rostock) ap-
plied them in Sdf re-factoring. Ralf Lämmel, Eelco Visser and Joost Visser com-
mented on drafts of this paper. The feedback by the anonymous referees greatly
improved the presentation of the paper.

REFERENCES

Alblas, H. 1991. Introduction to attribute grammars. In International Summer School on
Attribute Grammars, Applications and Systems, H. Alblas and B. Melichar, Eds. Lecture Notes

in Computer Science, vol. 545. Springer Verlag, Berlin Heidelberg New York, 1–15.

Bergstra, J. A., Heering, J., and Klint, P., Eds. 1989. Algebraic specification. ACM

Press/Addison-Wesley.

Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.-E., and Ringeissen, C. 1998.

An overview of ELAN. In International Workshop on Rewriting Logic and its Applications,

C. Kirchner and H. Kirchner, Eds. Electronic Notes in Theoretical Computer Science, vol. 15.
Elsevier.

Brand, M. v. d., Deursen, A. v., Klint, P., Klusener, S., and Meulen, E. v. d. 1996. Indus-
trial applications of ASF+SDF. In Algebraic Methodology and Software Technology (AMAST

’96), M. Wirsing and M. Nivat, Eds. LNCS, vol. 1101. Springer-Verlag, 9–18.

Brand, M. v. d., Heering, J., Klint, P., and Olivier, P. 2002. Compiling language definitions:

The ASF+SDF compiler. ACM Transactions on Programming Languages and Systems 24, 4,
334–368.

Brand, M. v. d., Klint, P., and Olivier, P. 1999. Compilation and memory management for
ASF+SDF. In Compiler Construction. Lecture Notes in Computer Science, vol. 1575. Springer-

Verlag, 198–213.

Brand, M. v. d., Klint, P., and Verhoef, C. 1996. Core technologies for system renovation. In
SOFSEM’96: Theory and Practice of Informatics, K. Jeffery, J. Král, and M. Bartos̆ek, Eds.
LNCS, vol. 1175. Springer-Verlag, 235–255.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

Term Rewriting with Traversal Functions · 37

Brand, M. v. d., Klint, P., and Verhoef, C. 1998. Term rewriting for sale. In Second In-

ternational Workshop on Rewriting Logic and its Applications, WRLA 98, C. Kirchner and
H. Kirchner, Eds.

Brand, M. v. d., Klint, P., and Vinju, J. 2001. Term rewriting with traversal functions. Tech.

Rep. SEN-R0121, Centrum voor Wiskunde en Informatica.

Brand, M. v. d., Sellink, M., and Verhoef, C. 2000. Generation of components for software
renovation factories from context-free grammars. Science of Computer Programming 36, 209–

266.

Cardelli, L. 1997. Type systems. In Handbook of Computer Science and Engineering. CRC

Press.

Cordy, J., Halpern-Hamu, C., and Promislow, E. 1991. TXL: A rapid prototyping system for

programming language dialects. Computer Languages 16, 1, 97–107.

Deursen, A. v., Heering, J., and Klint, P., Eds. 1996. Language prototyping: an algebraic

specification approach. AMAST Series in Computing, vol. 5. World Scientific.

Deursen, A. v., Klint, P., and Tip, F. 1993. Origin tracking. Journal of Symbolic Computa-

tion 15, 523–545.

Deursen, A. v. and Moonen, L. 1998. Type inference for COBOL systems. In Proc. 5th Working

Conf. on Reverse Engineering, I. Baxter, A. Quilici, and C. Verhoef, Eds. IEEE Computer
Society, 220–230.

Felty, A. 1992. A logic programming approach to implementing higher-order term rewriting.

In Extensions of Logic Programming (ELP ’91), L.-H. Eriksson, L. Hallnäs, and P. Schroeder-
Heister, Eds. Lecture Notes in Artifial Intelligence, vol. 596. Springer-Verlag, 135–158.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1994. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusets.

Hedin, G. 1992. Incremental semantic analysis. Ph.D. thesis, Lund University.

Hedin, G. and Magnusson, E. 2001. JastAdd - a Java-based system for implementing frontends.
In Proc. LDTA’01, M. van den Brand and D. Parigot, Eds. Electronic Notes in Theoretical

Computer Science, vol. 44-2. Elsevier Science.

Heering, J. 1992. Implementing higher-order algebraic specifications. In Proceedings of the
Workshop on the λProlog Programming Language, D. Miller, Ed. University of Pennsylvania,

Philadelphia, 141–157. Published as Technical Report MS-CIS-92-86.

Heering, J. 1996. Second-order term rewriting specification of static semantics: An exercise.

In Language Prototyping, A. van Deursen, J. Heering, and P. Klint, Eds. AMAST Series in
Computing, vol. 5. World Scientific, 295–305.

Heering, J., Hendriks, P., Klint, P., and Rekers, J. 1989. The syntax definition formalism

SDF - reference manual. SIGPLAN Notices 24, 11, 43–75.

Huet, G. and Lang, B. 1978. Proving and applying program transformations expressed with
second-order patterns. Acta Informatica 11, 31–55.

Klint, P. 2001. Is strategic programming a viable paradigm? In Workshop on Reduction Strate-

gies in Rewriting and Programming (WRS’01), B. Gramlich and S. Lucas, Eds. Electronic
Notes in Theoretical Computer Science, vol. 57/2. Elsevier Science Publishers.

Klint, P. 2003. How understanding and restructuring differ from compiling—a rewriting per-

spective. In Proceedings of the 11th International Workshop on Program Comprehension
(IWPC03). IEEE Computer Society, 2–12.

Knuth, D. 1968. The Art of Computer Programming, Volume 1. Addison-Wesley.

Kuipers, T. and Visser, J. 2001. Object-oriented tree traversal with JJForester. In Electronic

Notes in Theoretical Computer Science, M. van den Brand and D. Parigot, Eds. Vol. 44. Elsevier

Science Publishers. Proc. of Workshop on Language Descriptions, Tools and Applications
(LDTA).

Lämmel, R. 2003. Typed generic traversal with term rewriting strategies. Journal of Logic and

Algebraic Programming 54, 1–64.

Lämmel, R. and Visser, J. 2002. Typed combinators for generic traversal. In PADL 2002:
Practical Aspects of Declarative Languages. Lecture Notes in Computer Science (LNCS), vol.

2257. Springer.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

38 · M.G.J. van den Brand et al.

Lämmel, R., Visser, J., and Kort, J. 2000. Dealing with large bananas. In Workshop on Generic

Programming, J. Jeuring, Ed. Ponte de Lima. Published as Technical Report UU-CS-2000-19,
Department of Information and Computing Sciences, Universiteit Utrecht.

Lämmel, R. and Wachsmuth, G. 2001. Transformation of SDF syntax definitions in the

ASF+SDF Meta-Environment. In Proc. LDTA’01, M. van den Brand and D. Parigot, Eds.
Electronic Notes in Theoretical Computer Science, vol. 44-2. Elsevier Science.

Sellink, M., Sneed, H., and Verhoef, C. 1999. Restructuring of COBOL/CICS legacy systems.

In Proceedings of Conference on Maintenance and Reengineering (CSMR’99). Amsterdam, 72–

82.

Terese. 2003. Term Rewriting Systems. Number 55 in Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press.

Tip, F. and Dinesh, T. 2001. A slicing-based approach for locating type errors. ACM Transac-

tions on Software Engineering and Methodology 10, 5–55.

Veerman, N. 2003. Revitalizing modifiability of legacy assets. In 7th European Conference on
Software Maintenance and Reengineering, M. van den Brand, G. Canfora, and T. Gymóthy,

Eds. IEEE Computer Society Press, 19–29.

Visser, E. 2000. Language independent traversals for program transformation. In Workshop on
Generic Programming, J. Jeuring, Ed. Ponte de Lima, 86–104. Published as Technical Report

UU-CS-2000-19, Department of Information and Computing Sciences, Universiteit Utrecht.

Visser, E. 2001a. Stratego: A language for program transformation based on rewriting strate-

gies. System description of Stratego 0.5. In Rewriting Techniques and Applications (RTA’01),
A. Middeldorp, Ed. Lecture Notes in Computer Science. Springer-Verlag.

Visser, E. 2001b. A survey of strategies in program transformation systems. In Workshop on

Reduction Strategies in Rewriting and Programming (WRS’01), B. Gramlich and S. Lucas,
Eds. Electronic Notes in Theoretical Computer Science, vol. 57/2. Elsevier Science Publishers.

Visser, J. 2001c. Visitor combination and traversal control. ACM SIGPLAN Notices 36, 11

(Nov.), 270–282. OOPSLA 2001 Conference Proceedings: Object-Oriented Programming Sys-

tems, Languages, and Applications.

Vogt, H. H., Swierstra, S. D., and Kuiper, M. F. 1989. Higher order attribute grammars.
SIGPLAN Notices 24, 7, 131–145. Proceedings of the ACM SIGPLAN ’89 Conference on

Programming Language Design and Implementation.

Zaadnoordijk, H. 2001. Source code transformations using the new ASF+SDF meta-
environment. M.S. thesis, University of Amsterdam, Programming Research Group.

Received Month Year; revised Month Year; accepted Month Year;

ACM Transactions on Computational Logic, Vol. V, No. N, October 2013.

