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Abstract

Term rewriting is an appealing technique for performing program analysis and pro-

gram transformation. Tree (term) traversal is frequently used but is not supported

by standard term rewriting. In this paper, many-sorted �rst-order term rewriting

is extended with automatic tree traversal by adding two primitive tree traversal

strategies and complementing them with three types of traversals. These so-called

traversal functions can be either top-down or bottom-up. They can be sort preserv-

ing, mapping to a single sort, or a combination of these two. Traversal functions

have a simple design, their application is type-safe in a �rst-order many-sorted set-

ting and can be implemented eÆciently. We describe the operational semantics of

traversal functions and discuss applications.

1 Introduction

Program analysis and program transformation usually take the syntax tree

of a program as starting point. Operations on this tree can be expressed in

many ways, ranging from imperative or object-oriented programs, to attribute

grammars and rewrite systems. One common problem that one encounters is

how to express the traversal of a tree: to visit all the nodes of a tree and

extract information from some nodes or make changes to certain other nodes.

The kinds of nodes that may appear in a program's syntax tree are deter-

mined by the grammar of the language the program is written in. Typically,

each rule in the grammar corresponds to a node category in the syntax tree.

Real-life languages are described by grammars containing a few hundred up

to one thousand grammar rules. This immediately reveals a hurdle for writing

tree traversals: a naive recursive traversal function should consider many node

categories and the size of its de�nition will grow accordingly. This becomes

even more dramatic if we realize that the traversal function will only do some

real work (apart from traversing) for very few node categories.

This problem asks for a form of automation that takes care of the tree

traversal itself so that the human programmer can concentrate on the few
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node categories where real work is to be done. Stated di�erently, we want to

o�er tree traversal as a built-in, not a burden, to the programmer.

From previous experience [3,5,6] we know that term rewriting is a conve-

nient, scalable technology for expressing analysis, transformation, and renova-

tion of individual programs and complete software systems. In this paper we

address therefore the question how tree traversals can be added to the term

rewriting paradigm.

One important requirement is to have a typed design of automated tree

traversals, such that terms are always well-formed. Another requirement is to

have simplicity of design and use. In particular, we prefer to remain inside

the domain of �rst-order speci�cations.

In the remainder of this introduction we will brie
y recapitulate term

rewriting, and discuss why traversal functions are necessary in term rewriting.

In Section 2 we extend the algebraic speci�cation formalism Asf+Sdf [1,9]

with traversal functions and in Section 3 we give some small examples of the

use of these traversal functions. The operational semantics of traversal func-

tions is given in Section 4. Section 5 describes the experience with traversal

functions and Section 6 gives a discussion and also discusses related work.

A brief recapitulation of term rewriting

Algorithm 1 An interpreter for innermost rewriting.

funct innermost(term; rules) �
(fn; children) := decompose(term)
children

0 := nil

foreach child in children do

children
0 := append(children0

; innermost(child; rules))
od

term := compose(fn; children
0)

reduct := reduce(term; rules)
return if reduct = fail then term else reduct �.

funct reduce(term; rules) �
foreach rule in rules do

(lhs; rhs) := decompose(rule)
bindings := match(term; lhs)
if bindings 6= fail then

return innermost(substitute(rhs; bindings); rules)
�

od

return fail .

A basic insight in term rewriting is important for understanding the traver-

sal functions described in this paper. Therefore we give a brief and informal

recapitulation of innermost term rewriting. For a full account see [11].

A term is a pre�x expression consisting of constants (e.g., a or 12), vari-

ables (e.g., X) or function applications (e.g., f(a, X, 12)). For simplicity, we

will view constants as nullary functions. A closed term is a term without vari-

ables. A rewrite rule is a pair of terms T1 ! T2. Both T1 and T2 may contain
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variables provided that each variable in T2 also occurs in T1. A term matches

another term if it is structurally equal modulo occurrences of variables
1
(e.g.,

f(a, X) matches f(a, b)) and results in a binding (e.g., X is bound to b).

The bindings resulting from matching can be used for substitution, i.e., replace

the variables in a term by the values they are bound to.

Given a closed term T and a set of rewrite rules, the purpose of a rewrite

rule interpreter is to �nd a sub-term that can be reduced: the so-called redex.

If sub-term R of T matches with the left-hand side of a rule T1 ! T2, the

bindings resulting from this match can be substituted in T2 yielding T
0

2
. R

is then replaced in T by T
0

2
and the search for a new redex is continued.

Rewriting stops when no new redex can be found and we say that the term is

then in normal form.

Di�erent methods for selecting the redex may yield di�erent results. In

this paper we limit our attention to leftmost innermost rewriting in which the

redex is searched in a left-to-right, bottom-up fashion.

The operation of a rewrite rule interpreter is shown in more detail in Al-

gorithm 1. The functions match and substitute are not further de�ned, but

have a meaning as just sketched. The functions decompose and compose ma-

nipulate terms and also rules, and append appends an element to the end of

a list.

Note that the underlying term representation can be either typed or un-

typed. The match, substitute, decompose and compose functions have to take

this into account.

Observe how function innermost �rst reduces the children of the current

term before attempting to reduce the term itself. This realizes a bottom-up

traversal of the term. Also note that if the reduction of the term fails, it re-

turns itself as result. The function reduce performs, if possible, one reduction

step. It searches all rules for a matching left-hand side and, if found, the bind-

ings resulting from the successful match are substituted in the corresponding

right-hand side. This modi�ed right-hand side is then further reduced with

innermost rewriting.

In Section 4 we will extend Algorithm 1 to cover traversal functions as

well.

Why traversal functions in term rewriting? Rewrite rules are very con-

venient to express transformations on trees and one may wonder why traversal

functions are needed at all. We will clarify this by way of simple trees con-

taining natural numbers. Figure 1 displays an Sdf grammar [10] for a simple

tree language. The leafs are natural numbers and the nodes are constructed

with one of the binary constructors f, g or h. Transformations on these trees

can now be de�ned easily. For instance, if we want to replace all occurrences

1 A matching algorithm has to do some extra work if a speci�c variable name occurs more

than once in a pattern. Usually the di�erent occurrences are renamed to fresh variables

and equality checks are added.
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module Tree-syntax

imports Naturals

exports

sorts TREE

context-free syntax

NAT -> TREE

f(TREE, TREE) -> TREE

g(TREE, TREE) -> TREE

h(TREE, TREE) -> TREE

Figure 1: Sdf grammar for simple tree language.

of f by h, then the following rule suÆces:

[t1] f(T1, T2) = h(T1, T2)

Applying this rule to the term f(f(g(1,2),3),4) leads to a normal form in

two steps (using innermost reduction):

f(f(g(1,2),3),4) -> f(h(g(1,2),3),4) -> h(h(g(1,2),3),4)

Similarly, if we want to replace all sub-trees of the form f(g(T1, T2), T3)

by h(T1, h(T2, T3)), we can achieve this by the single rule:

[t2] f(g(T1, T2), T3) = h(T1, h(T2, T3))

If we apply this rule to f(f(g(1,2),3),4) we get a normal form in one step:

f(f(g(1,2),3),4) -> f(h(1,h(2,3)),4)

Note how in both cases the standard (innermost) reduction order of the rewrit-

ing system takes care of the complete traversal of the term. Such elegant

speci�cations have, however, three severe limitations.

� First, if we want to have the combined e�ect of rules [t1] and [t2], we

get unpredictable results, since the two rules interfere with each other:

the combined rewrite system is said to be non-con
uent. Applying the

above two rules to our sample term f(f(g(1,2),3),4) may lead to ei-

ther h(h(g(1,2),3),4) or h(h(1,h(2,3)),4) in two steps, depending on

whether [t1] or [t2] is applied in the �rst reduction step.

� The second problem is that rewrite rules cannot access any context informa-

tion. In other words a rewrite rule has only one parameter, which is the term

that matches the left-hand side. Especially for program transformation this

is very limiting.

� Thirdly, in ordinary (typed) term rewriting only type-preserving rewrite

rules are allowed, i.e., the type of the left-hand side of a rewrite rule has

to be equal to the type of the right-hand side of that rule. Sub-terms can

only be replaced by sub-terms of the same type, thus enforcing that the

complete term remains well-typed. In this way, one cannot express non-

type-preserving traversals such as the (abstract) interpretation or analysis

of a term.
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module Tree-trafo12

imports Tree-syntax

exports

context-free syntax

trafo1(TREE) -> TREE

trafo2(TREE) -> TREE

equations

[0] trafo1(N) = N

[1] trafo1(f(T1, T2)) = h(trafo1(T1), trafo1(T2))

[2] trafo1(g(T1, T2)) = g(trafo1(T1), trafo1(T2))

[3] trafo1(h(T1, T2)) = h(trafo1(T1), trafo1(T2))

[4] trafo2(N) = N

[5] trafo2(f(g(T1,T2),T3)) = h(trafo2(T1), h(trafo2(T2), trafo2(T3)))

[6] trafo2(g(T1, T2)) = g(trafo2(T1), trafo2(T2))

[7] trafo2(h(T1, T2)) = h(trafo2(T1), trafo2(T2))

Figure 2: De�nition of trafo1 and trafo2.

A common solution to the above three problems is to introduce new func-

tion symbols that eliminate the interference between rules. In our example,

if we introduce the functions trafo1 and trafo2, we can explicitly control

the outcome of the combined transformation by the order in which we apply

trafo1 and trafo2 to the initial term. By introducing extra function sym-

bols, we also gain the ability to pass data around using extra parameters of

these functions. This adds data-
ow to a speci�cation. Finally, the function

symbols allow to express non-type-preserving transformations by explicitly

typing the function to accept one type and yield another.

So by introducing �rst-order functions, three limitations of rewrite rules

are solved. The main down-side of this approach is that we loose the built-in

facility of innermost rewriting to traverse the input term without an explicit

e�ort of the programmer. Extra rewrite rules are needed to de�ne the traversal

of trafo1 and trafo2 over the input term, as shown in Figure 2. Observe

that equations [2] and [5] in the �gure correspond to the original equations

[t1] and [t2], respectively. The other equations are just needed to de�ne the

tree traversal. De�ning the traversal rules requires explicit knowledge of all

productions in the grammar (in this case the de�nitions of f, g and h). In this

example, the number of rules per function is directly related to the size of the

language shown in Figure 1. For large grammars this is clearly undesirable.

The traversal functions presented in this paper, solve the problem of the

extra rules needed for term traversal without loosing the practical abilities

of �rst-order functions to carry data around and having non-sort-preserving

transformations.
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2 Traversal functions in Asf+Sdf

We want to automate tree traversal in the many-sorted, �rst-order term rewrit-

ing language Asf+Sdf [1,9]. Asf+Sdf uses context-free syntax for de�ning the

signature of terms. As a result, terms can be written in arbitrary user-de�ned

notation. The context-free syntax is de�ned in Sdf
2 . Terms are used in

rewrite rules de�ned in Asf
3 . For the purpose of this paper, the following

features of Asf are relevant:

� Many-sorted (typed) terms.

� Unconditional and conditional rules. Conditions come in three 
avors:

equality between terms, inequality between terms, and so-called assignment

conditions that introduce new variables.

� Default rules that are tried only if all other rules fail.

� Terms are normalized by leftmost innermost reduction.

The idea of traversal functions is as follows. The programmer de�nes

functions as usual by providing a signature and de�ning rewrite rules. The

signature of a traversal function has to be de�ned as well. This is an ordinary

declaration but it is explicitly labeled with the attribute traversal. We call

such a labeled function a traversal function since from the user's perspective

it automatically traverses a term: the rewrite rules for term traversal do not

have to be speci�ed anymore since they are provided automatically by the

traversal attribute. The speci�cation writer only has to give rewrite rules

for the nodes that the traversal function will actually visit.

The functionality provided by the traversal attribute thus de�nes the

traversal behavior while rewrite rules provided by the user de�ne the visit

behavior for nodes. If during innermost rewriting a traversal function appears

as outermost function symbol of a redex, then that function will �rst be used

to traverse the redex before further reductions occur.

Conceptually, a traversal function is a shorthand for a possibly large set

of rewrite rules. For every traversal function a set of rewrite rules can be

calculated that implements both the traversal and the actual rewriting of some

sub-terms. This is a nice way of de�ning the semantics of traversal functions.

More details can be found in [7].

The question is what sort of traversals we can provide in our fully typed

setting. We allow three types of functions for the visiting behavior and two

types of traversal strategies which we now discuss in order. The merits and

limitations of this approach are discussed in Section 6. For extensive examples

we refer the reader to [7].

Traversal functions are partitioned into three types, de�ned as follows:

2 Syntax De�nition Formalism.
3 Algebraic Speci�cation Formalism.
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Transformer: a sort-preserving transformation that will traverse its �rst

argument. Possible extra arguments may contain additional data that can be

used (but not modi�ed) during the traversal. A transformer is declared as

follows:

f(S1; : : : ; Sn)! S1 ftraversal(trafo)g

Because a transformer always returns the same sort, it is type-safe. A trans-

former is used to transform a tree.

Accumulator: a mapping of all node types to a single type. It will traverse

its �rst argument, while the second argument keeps the accumulated value.

An accumulator is declared as follows:

f(S1; S2; : : : ; Sn)! S2 ftraversal(accu)g

After each application of an accumulator, the accumulated argument is up-

dated. The next application of the accumulator, possibly somewhere else in

the term, will use the new value of the accumulated argument. In other words,

the accumulator acts as a global, modi�able state during the traversal.

An accumulator function never changes the tree, only its accumulated ar-

gument. Furthermore, the type of the second argument has to be equal to the

result type. The end-result of an accumulator is the value of the accumulated

argument. By these restrictions, an accumulator is also type-safe for every in-

stantiation. An accumulator is meant to be used to extract information from

a tree.

Accumulating transformer: a sort preserving transformation that accu-

mulates information while traversing its �rst argument. The second argument

maintains the accumulated value. The return value of an accumulating trans-

former is a tuple consisting of the transformed �rst argument and accumulated

value. An accumulating transformer is declared as follows:

f(S1; S2; : : : ; Sn)! S1#S2 ftraversal(accu, trafo)g

An accumulating transformer is used to simultaneously extract information

from a tree and transform it.

Transformers, accumulators, and accumulating transformers may be over-

loaded in their �rst argument to obtain visitors for heterogeneous trees. This

means that a single traversal function can visit di�erent types of nodes in a

single traversal.

The optional extra arguments of traversal functions can carry information

down and their de�ning rewrite rules can extract information from their chil-

dren by using conditions. So we can express analysis and transformation using

non-local information rather easily.

Having these three types of traversals, they must be provided with traver-

sal strategies. Traversal strategies determine the order of traversal and the

\depth" of the traversal. We provide a choice among the following two strate-

gies for each type of traversal.

Bottom-up: the function traverses all the sub-trees of a node while its

rewrite rules are used to visit the nodes in a bottom-up fashion. The annotation
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module Tree-inc

imports Tree-syntax

exports

context-free syntax

inc(TREE) -> TREE ftraversal(trafo)g
equations

[1] inc(N) = N + 1

in inc( f( g( f(1,2), 3 ),

g( g(4,5), 6 )) )

out f( g( f(2,3), 4 ),

g( g(5,6), 7 ))

Figure 3: The transformer inc increments each number in a tree.

module Tree-sum

imports Tree-syntax

exports

context-free syntax

sum(TREE, NAT) -> NAT ftraversal(accu)g
equations

[1] sum(N1, N2) = N1 + N2

in sum( f( g( f(1,2), 3 ),

g( g(4,5), 6 )),

0)

out 21

Figure 4: The accumulator sum computes the sum of all numbers in a tree.

bottom-up selects this behavior. A traversal function without an explicit

indication of a visiting strategy also uses the bottom-up strategy.

Top-down: the function traverses the sub-trees of a node in a top-down

fashion and stops recurring at the �rst node where one of its rewrite rules ap-

plies and does not go to any sub-trees of that node. The annotation top-down

selects this behavior.

A transformer with a bottom-up strategy resembles standard innermost

rewriting; it is sort preserving and bottom-up. It is as if a small rewriting

system is de�ned within the context of a transformer function. The di�erence

is that a transformer function in
icts one reduction on a node, while innermost

reduction normalizes a node completely.

The top-down strategy is rather powerful because it stops, allowing the

user to continue the traversal under certain conditions.

Note that the horizontal ordering (left-to-right or right-to-left), might also

be a parameter. In this work we have focused on left-to-right traversals.

3 Examples

After this general description of traversal functions, it is time to illustrate

these concepts. We will give a very simple example of each type of traversal

function just described. More realistic examples are presented in Section 5.
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module Tree-pos

imports Tree-syntax

exports

context-free syntax

pos(TREE, NAT) -> TREE # NAT

ftraversal(accu, trafo)g
equations

[1] pos(N1, N2) = <N1 * N2, N2 + 1>

in pos( f( g( f(1,2), 3 ),

g( g(4,5), 6 )),

0)

out <f( g( f(0,2), 6 ),

g( g(12,20), 30 )),

6>

Figure 5: The accumulating transformer pos multiplies each number by its

position in the tree.

Increment the numbers in a tree. The speci�cation in Figure 3 shows

the transformer inc. Its purpose is to increment all numbers that occur in a

tree. The results of applying inc to a sample tree are also shown in Figure 3.

Add the numbers in a tree. The second example shows the use of the

accumulator. The problem we want to solve is computing the sum of all

numbers that occur in a tree. The accumulator sum in Figure 4 solves this

problem. Note that in equation [1] variable N1 represents the current node

(a number), while variable N2 represents the sum that has been accumulated

so far (also a number).

Multiply by position in tree. The last example shows the use of the

accumulating transformer. The traversal functions is to determine the position

of each number in a bottom-up traversal of the tree and to multiply each

number by its position. This is achieved by the accumulating transformer

pos shown in Figure 5. The general idea is to accumulate the position of each

number during the traversal and to use it as a multiplier to transform numeric

nodes.

4 Operational Semantics

In this section we show an operational semantics for traversal functions. The

reader is referred to [7] for a di�erent style of semantics, namely expressing

traversal functions in terms of normal rewriting systems. The semantics in

this section is better suited as a reference for implementation.

We start with normal innermost rewriting as depicted earlier in Algo-

rithm 1. In this algorithm we do assume we have a typed term representation,

because we want to have type-safe traversal functions. This means that with

every constructor and with every function symbol a �rst order type can be

associated. For example, a function f could have type �1 � � � � � �n ! �r.

If n = 0, f is a constant of type �r. If n > 0, f is either a constructor or a

function with its arguments typed by �1; :::; �n respectively. If we allow tupled
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Algorithm 2 An extended interpreter for innermost rewriting.

funct innermost(term; rules) �
(fn; children) := decompose(term)
children

0 := nil

foreach child in children do

children' := append(children'; innermost(child; rules))
od

term := compose(fn; children')
reduct := switch function-type(fn)

case traversal : traverse(term; rules)
case normal : reduce(term; rules);

return if reduct = fail then term else reduct �.

terms, we should also de�ne the types of tuples. A tuple type is simply de-

noted by (�1 � �2). Of course, the match function should take care to match

only terms that have matching types. Our compose function gets an extra
argument denoting which type of function it should use to construct a term.

The main algorithm consists of the normal innermost reduction strategy,
but we switch to a di�erent mode when a traversal function is encountered.

The switch statement in Algorithm 2 detects a traversal function and turns

over control to a function called traverse, instead of calling reduce.

This function is shown in Algorithm 3. It initiates the traversal with di�er-

ent parameters for each kind of traversal function. Recall that the input term

is of the form trfn(T1; T2; :::; Tn) (n >= 1) where trfn is a traversal function,
T1 is the term to be traversed, T2 is the (optional) accumulator argument, and

T3; :::; Tn are the (optional) remaining arguments. Actual traversal is done by

td-or-bu (\top-down or bottom-up") that uses either top-down or bottom-up

depending on the traversal strategy of trfn. The arguments of td-or-bu are

determined by the di�erent kinds of traversals.

We apply the traversal function by reusing the reduce function from the ba-

sic innermost rewriting algorithm. It is applied either before or after traversing
the children, depending on the traversal strategy (bottom-up or top-down).

In order to be type-safe, the type of the traversal function changes while
the term is traversed. Its type always matches the type of the node that is
currently visited. This behavior is encoded by the type-compose function. For

type-preserving transformers, the type of the �rst argument and the result-
ing argument are adapted to the type of the node that is currently visited.

Similarly, for the accumulator only the type of the �rst argument is changed
while the type of the accumulated argument remains equal. Finally, for the

combination the type of the �rst argument and the resulting tuple type are

updated.

The traversal of children in function visit-children takes into account that

the accumulated value must be passed on between each child. Note that in
case of a transformer, this accumulated value is ignored by passing always the

value nil.
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After a successful application of a user-de�ned rule, the function make-

reduct decides what to do with the reduct depending on the type of traversal.

If it is a transformer, the reduct replaces the redex. In case of an accumula-
tor, the reduct replaces the accumulated argument. If it is an accumulating

transformer, the �rst element of the tuple replaces the redex, while the second
element replaces the accumulated argument.

Algorithm 3 An interpreter for traversal functions (part 1/2).

funct traverse(term; rules) �
(trfn; args) := decompose(term);
term := head(args); args := tail(args)
switch traversal-kind(trfn)

case \trafo" :
(reduct;nil) := td-or-bu(trfn; term;nil; args; rules)
return reduct

case \accu" :
(reduct; accu) := td-or-bu(trfn; term; head(args); tail(args); rules)
return accu

case \accu, trafo" :
return td-or-bu(trfn; term; head(args); tail(args); rules); .

funct td-or-bu(trfn; term; accu; args; rules) �
return switch traversal-strategy(trfn)

case \top-down" : top-down(trfn; term; accu; args; rules)
case \bottom-up" : bottom-up(trfn; term; accu; args; rules); .

funct top-down(trfn; term; accu; args; rules) �
reduct := reduce(type-compose(trfn; term; accu; args); rules)
return if reduct = fail then

visit-children(trfn; term; accu; args; rules)
else make-reduct(trfn; term; reduct) �.

funct bottom-up(trfn; term; accu; args; rules) �
(term; accu) := visit-children(trfn; term; accu; args; rules)
reduct := reduce(type-compose(trfn; term; accu; args); rules)
return if reduct = fail then (term; accu)

else make-reduct(trfn; term; reduct) �.
funct visit-children(trfn; term; accu; args; rules) �

(fn; children) := decompose(term)
children' := nil

foreach child in children do

(reduct; accu) := td-or-bu(trfn; child; accu; args; rules)
children' := append(children'; reduct)

od

return (compose(fn; children'); accu).
funct make-reduct(trfn; term; reduct) �
return switch traversal-kind(trfn)

case \trafo" : (reduct;nil)
case \accu" : (term; reduct)
case \accu, trafo" : reduct; .

Finally, when we return from the traversal, the top level function traverse

returns a di�erent normal form for each type of traversal function. In case of

a transformer, the transformed term is simply returned. When it is an accu-
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Algorithm 3 An interpreter for traversal functions (part 2/2).

funct type-compose(fn; term; accu; args) �
�t := result-type-of (term)
switch traversal-kind(fn)

case \trafo" :
�1 � � � � � �n ! �1 := type-of (fn)
type := �t � � � � � �n ! �t

case \accu" :
�1 � �2 � � � � � �n ! �2 := type-of (fn)
type := �t � �2 � � � � � �n ! �2

case \accu, trafo" :
�1 � �2 � � � � � �n ! (�1 � �2) := type-of (fn)
type := �t � �2 � � � � � �n ! (�t � �2);

return compose(fn; type; [term; accu; args]).

mulator, we return the accumulated argument. An accumulating transformer
returns a tuple of the transformed term and the �nal value of the accumulated

argument.

5 Experience

Various experiments have been carried out including transformations on COB-
OL, an Sdf checker, Sdf re-factoring, and Java re-factoring. We discuss here

the COBOL example in more detail.

In a joint project of the Software Improvement Group (SIG), Centrum

voor Wiskunde en Informatica (CWI) and Vrije Universiteit (VU) traversal

functions have been applied to the conversion of COBOL programs [18]. This
is based on earlier work described in [15]. The purpose was to migrate VS

COBOL II to COBOL/390. An existing tool (CCCA from IBM) was used to
carry out the basic, technically necessary, conversions. However, this leaves

many constructions unchanged that will obtain the status \archaic" or \ob-

solete" in the next COBOL standard. In addition, compiler-speci�c COBOL

extensions remain in the code and several outdated run-time utilities can be
replaced by standard COBOL features.

This collection of source-to-source transformations were formalized as a

number of traversal functions. Every function performs a tiny sub-task. Ex-
amples of such sub-tasks are:

� Adding END-IF keywords to close IF-statements.

� Replace nested IF-statements with EVALUATE-statements.

� Replace outdated CALL utilities by standard COBOL statements.

� Reduce GO-TO statements: a goto-elimination algorithm that itself consists

of over 20 di�erent transformation rules that are applied iteratively in a
�xed-point computation.

Each of these sub-tasks (21 in total) only consists of a few rewrite rules that
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de�ne the e�ect of a traversal function on speci�c statements.

There are several ways of combining these sub-tasks to obtain the COBOL

transformation tool that we wanted. Firstly, the sub-tasks can be combined

using normal Asf+Sdf rules using functional application.

Secondly, each sub-task is an Asf+Sdf speci�cation in itself, which can be

run on the command-line separately. Combined with a generated parser and

a generic pretty printer, such tools can be used to build complete source-to-

source transformations tools using simple shell scripts.

In an experiment the transformation tools were applied to a test base of

582 COBOL programs containing 440,000 lines of code to obtain the following

results:

� 17,000 END-IFs were added.

� 4,000 lines were changed in order to eliminate CALL-utilities.

� 1,000 GO-TOs have been eliminated (about 65% of all GO-TOs).

� The complete transformation took two and a half hours using the ASF

interpreter. The compiled version of traversal functions was not yet ready

at the time this experiment was done but it would reduce the time by a factor

of at least 15. The estimated compiled execution time would therefore be

circa 10 minutes.

The number of productions in the COBOL grammar that has been used in

this renovation factory was 600 and the number of transformations performed

was 21 as we have seen above. Per transformation step only one traversal

over the tree is needed. We can then conclude that the maximum number 4 of

rewrite rules that would be needed is 21� 600 = 12:600! In reality the actual

number of rewrite was less than 100 thanks to the use of traversal functions.

In other projects the experience with traversal functions seems to be very

positive as well. To quote [14]:

\At the time of writing, the Framework for Sdf Transformations (FST)

is described by 24 traversal functions with only a few rewrite rules per

function. The Sdf grammar itself has about 100 relevant productions. This

is a remarkable indication for the usefulness of the support for traversal

functions. In worst case, we would have to deal with about 2400 rewrite

rules otherwise."

6 Discussion

Traversal functions vs. hand-written code The approach sketched in

this paper has substantial advantages over manually writing functions that

traverse the tree explicitly.

4 In practice, this number could be smaller since a hand-written speci�cation could explic-

itly avoid visits to certain sub-trees.
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Untyped Typed

Strategy primitives Stratego [16] ELAN [2]

Built-in strategies Renovation Factories [8] Traversal Functions

Figure 6: Classi�cation of traversal approaches.

In contrast with hand-written traversal code, the traversal functions ap-

proach is more language-independent, type safe and concise. Language-indep-

endence is obtained since the implementation of traversal functions is inde-

pendent of the source language to which they are being applied. The approach

is type safe since only type preserving transformations and limited sort chang-

ing transformations can be expressed. It is concise since only transformation

rules have to be written for node types that actually require transformation

(as opposed to nodes that only have to be visited).

In the case of hand-written code, the programmer has to traverse all nodes

in the tree explicitly and the amount of code will become bulky. In addition,

this code is dependent on the source language being transformed. Type safety

depends on the data structure being used to represent trees. One can either

use a generic tree data-type and loose type safety, or one can use distinct data-

types for each node type. In the latter case a substantial amount of interfacing

and traversal code has to be written. That code lends itself, in principle, to

automatic generation. For JAVA, such an approach is described in [12].

Related Work We distinguish four directly related approaches in Figure 6

and discuss them below. For a more extensive coverage of related work we

refer to [7].

ELAN [2] is a language of many-sorted, �rst-order, rewrite rules extended

with a strategy language that controls the application of individual rewrite

rules. Its strategy primitives (e.g., don't know choice, don't care choice) al-

low formulating non-deterministic computations. Currently, ELAN does not

support generic tree traversals since they are not easily �tted in with ELAN's

type system.

Stratego [17] is an untyped term rewriting language that provides user-

de�ned strategies. Among its strategy primitives are rewrite rules and several

generic traversal operators that allow the de�nition of any tree traversal, such

as bottom-up and top-down in an abstract manner. Therefore, tree traversals

are �rst class objects that can be reused separately from rewrite rules. Stratego

provides a library with all kinds of named traversal strategies such as, for

instance, bottomup(s), topdown(s) and innermost(s). In [13], a proposal

is made for a Stratego-like language that allows typed generic traversals for

type preserving and type-unifying strategies.

Transformation Factories [8] are an approach in which Asf+Sdf rewrite

rules are generated from language de�nitions. After the generation phase,
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the user instantiates an actual transformation by providing the name of the

transformation and by updating default traversal behavior. Note that the

generated rewrite rules are well-typed, but very unspeci�c types are used to

obtain reusability of the generated rewrite rules.

Transformation Factories provide two kinds of traversals: transformers and

analyzers. A transformer transforms the node it visits. An analyzer is the

combination of a traversal, a combination function and a default value. The

generated traversal function reduces each node to the default value, unless

the user overrides it. The combination function combines the results in an

innermost manner. The simulation of higher-order behavior again leads to

unspeci�c types.

Relation with Traversal Functions Traversal functions emerged from

our experience in writing program transformations for real-life languages in

Asf+Sdf. Both Stratego and Transformation Factories also o�er solutions to

remedy the problems that we encountered.

Stratego extends term rewriting with traversal strategy combinators and

user-de�ned strategies, but we are more conservative and extend �rst-order

term rewriting only with a �xed set of traversal primitives. One contribution

of traversal functions is that they provide a simple type-safe approach for tree

traversals in �rst-order speci�cations. The result is simple, can be statically

type-checked in a trivial manner and can be implemented eÆciently.

Recently, in [13] another type system for tree traversals was proposed. It

is based on traversal combinators as found in Stratego. While this typing

system is attractive in many ways, it is a bit more complicated for the user.

Two generic types are added to a �rst-order type system: Type-Preserving

and Type-Unifying strategies. To mediate between these generic types and

normal types an extra combinator is o�ered that combines both a type-guard

and a type lifting operator. In the case of traversal functions, extending

the type system is not needed because the tree traversal is combined with

function application in a single traversal function. This allows the interpreter

or compiler to create type-guards automatically. In similar way as for traversal

functions, in [13] traversal types are also divided into type-preserving e�ects

and mappings to a single type. The tupled combination is not o�ered.

Compared to Transformation Factories (which most directly inspired our

traversal functions), we provide a slightly di�erent set of traversal functions

and reduce the notational overhead. We have also removed the need for higher

order arguments, obtaining precise and simple types. At the level of the

implementation, we do not generate Asf+Sdf rules, but we have incorporated

traversal functions in the standard interpreter and compiler of Asf+Sdf. As a

result, execution is more eÆcient and speci�cations are more readable, since

users are not confronted with generated rewrite rules or simulated higher-order

arguments.

Compilation of Traversal Functions We have extended the Asf+Sdf
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compiler [4] with traversal functions in a very simple manner. We only brie
y

sketch the approach here. For every de�ning rewrite rule of a traversal function

and for every call to a traversal function the type of the overloaded argument

and optionally the result type is turned into a single universal type. In a

�rst approximation, the result is one big type-unsafe function which can be

compiled using the existing compilation scheme.

Type-safety is achieved as follows. If the �rst argument of a de�ning rewrite

rule is guarded by a constructor, this will automatically enforce type-safety.

If it is not guarded (i.e., the argument is a single variable), we add a condition

to the rewrite rule that checks the type of the matched tree at run-time. The

compiled code will thus be type-safe.

The resulting compiled code is extended with calls to a small run-time

library. They take care of actually traversing the tree and passing along the

accumulated argument before or after trying to apply the compiled traversal

function.

Conclusions We have described term rewriting with traversal functions as an

extension to innermost term rewriting and we have shown how to incorporate

this in Asf+Sdf. The advantages of our approach are:

� The most frequently used traversal orders are provided as built-in primitives.

� The approach is fully type-safe and easily type-checked.

� Traversal functions can be implemented eÆciently.

To summarize, traversal functions are a nice compromise between simplicity

and expressive power. For implementation issues and extensive examples we

refer to [7].

The main disadvantage of our approach manifests itself when dealing with

traversal orders that are not provided by the built-in primitives. Two escapes

are possible: such traversals can either be simulated as a modi�cation of one of

the built-in strategies (by adding conditions or auxiliary functions), or one can

fall back to the tedious speci�cation of the traversal by enumerating traversal

rules for all constructors of the grammar. Extending the approach to cover

the variability of left-to-right vs. right-to-left traversal is possible.
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