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Abstract—The behavior of software that uses the Java Reflec-
tion API is fundamentally hard to predict by analyzing code. Only
recent static analysis approaches can resolve reflection under
unsound yet pragmatic assumptions. We survey what approaches
exist and what their limitations are. We then analyze how real-
world Java code uses the Reflection API, and how many Java
projects contain code challenging state-of-the-art static analysis.

Using a systematic literature review we collected and catego-
rized all known methods of statically approximating reflective
Java code. Next to this we constructed a representative corpus of
Java systems and collected descriptive statistics of the usage of
the Reflection API. We then applied an analysis on the abstract
syntax trees of all source code to count code idioms which go
beyond the limitation boundaries of static analysis approaches.
The resulting data answers the research questions. The corpus,
the tool and the results are openly available.

We conclude that the need for unsound assumptions to resolve
reflection is widely supported. In our corpus, reflection can not
be ignored for 78% of the projects. Common challenges for
analysis tools such as non-exceptional exceptions, programmatic
filtering meta objects, semantics of collections, and dynamic
proxies, widely occur in the corpus. For Java software engineers
prioritizing on robustness, we list tactics to obtain more easy to
analyze reflection code, and for static analysis tool builders we
provide a list of opportunities to have significant impact on real
Java code.

Keywords-Java; Reflection; Static Analysis; Systematic Litera-
ture Review; Empirical Study

I. Introduction
Static analysis techniques are applied to support the efficiency

and quality of software engineering tasks. Be it for understand-
ing, validating, or refactoring source code, pragmatic static
analysis tools exist to reduce error-prone manual labor and to
increase the comprehension of complex software artefacts.

Static analysis of object-oriented code is an exciting, ongoing
and challenging research area, made especially challenging
by dynamic language features (a.k.a. reflection). The Java
Reflection API allows programmers to dynamically inspect and
interact with otherwise static language concepts such as classes,
fields and methods, e.g., to dynamically instantiate objects, set
fields and invoke methods. These dynamic language features
are useful, but their usage also wreaks havoc on the accuracy
of static analysis results. This is due to the undecidability of
resolving dynamic names and dynamic types.
Until 2005, the analysis of code which uses the Reflection

API was considered to be out of bounds for static analysis, and

handled via user annotations or dynamic analysis; handling
reflection would inherently be either unsound (due to unverified
assumptions) or highly inaccurate (due to over-approximation)
and render the contemporary static analysis tools impractical.
Then, in 2005 Livshits et al. [1] published an analysis of how
reflection was used in six large Java projects, proposing three
unsound, yet well-motivated assumptions and using these to
(partially) statically resolve the targets of dynamic method calls.
Since then more tools were based on similar assumptions.

Very recently, in 2015, Livshits and several other authors of
static analysis tools published the soundiness manifesto [2]. It
argues for “soundy” static analysis approaches that are mostly
sound, but pragmatically unsound around specific problematic
language features. Java’s Reflection API is one of the examples
that can be handled more effectively after certain unsound
assumptions are made. For future work they identified the need
for empirical evidence on how these language features are
used, such that tool builders can motivate the required unsound
assumptions. We provide more unbiased empirical evidence
on the use of reflection by focussing on the following Main
Research Question: What are limits of state-of-the-art static
analysis tools when confronted with the Reflection API and
how do these limits relate to real Java code?
Hence, we investigate the following sub-questions:

SQ1. How do static analysis approaches handle reflection;
which limitations exist and which assumptions are made?
(Section III)

SQ2. How often are different parts (see Section II) of the
Reflection API used in real Java code? (Section IV)

SQ3. How often does real Java code challenge the limitations
and assumptions identified by SQ1? (Section V)

Together with answers to these questions, this paper contributes
a representative corpus of open-source Java projects [3], and a
comprehensive literature overview on the relation between static
analysis and Java reflection. The main question is answered
with a list of challenges and suggested tactics for static analysis
researchers, ordered by expected impact.

II. The Java Reflection API

We first describe the Java Reflection API; how its features
can be categorized. The resulting frame of reference is used for
the interpretation of the findings in Sections III–V, because the
different API features interact differently with static analysis.



<MetaObject> ::= <Class> | <Method> | <Constructor> | <Field>

<Member> ::= <Method> | <Constructor> | <Field>

<ClassLoader> ::=
TM <Class>.getClassLoader()
LM | ClassLoader.getSystemClassLoader()
LM | new ClassLoader(<ClassLoader>)
LM | <ClassLoader>.getParent()

<Class> ::=
LC Class.forName(<String>)
LC | Class.forName(<String>, <Boolean>, <ClassLoader>)
LC | <ClassLoader>.loadClass(<String>)
LM | <Type>.class
LM | <Object>.getClass()
TM | <Class>.get*Interfaces()
TM | <Class>.asSubclass(<Class>)
TM | <MetaObject>.get*Class{es}?()
TM | <MetaObject>.get*Type*()
P | Proxy.getProxyClass(<Class*>)

<Method> ::=
TM <Class>.get{Declared}?Methods()
TM | <Class>.get{Declared}?Method(<String>, <Class*>)
TM | <Class>.getEnclosingMethod()

<Constructor> ::=
TM <Class>.get{Declared}?Constructors()
TM | <Class>.get{Declared}?Constructor(<Class*>)
TM | <Class>.getEnclosingConstructor()

<Field> ::=
TM <Class>.get{Declared}?Fields()
TM | <Class>.get{Declared}?Field(<String>)

<Void> ::=
M <Field>.set*(<Object>, <Object>)
AR | Array.set*(<Object>, <int>, <Object>)
MM | <Member>.setAccessible(<Boolean>)
AS | <ClassLoader>.{set}?{clear}?*AssertionStatus(<Boolean*>)
AS | <ClassLoader>.set*AssertionStatus(<String>, <Boolean>)

<Object> ::=
C <Constructor>.newInstance(<Object*>)
C | <Class>.newInstance()
AR | Array.newInstance*(<Class>, <int*>)
P | Proxy.newProxyInstance(<ClassLoader>, <Class*>, <Object>)
I | <Method>.invoke(<Object>, <Object*>)
A | <Field>.get*(<Object>)
AR | Array.get*(<Object>, <int>)
DC | <Class>.cast(<Object>)
AN | <Method>.getDefaultValue()
TM | <Class>.getEnumConstants()
P | Proxy.getInvocationHandler(<Object>)
AN | <MetaObject>.getAnnotation(<Class*>)
AN | <MetaObject>.get*Annotations()
S | <Class>.getSigners()

<ProtectionDomain> ::= S <Class>.getProtectionDomain()

<Boolean> ::=
SG <Class>.isAssignableFrom(<Class>)
SG | <Class>.isInstance(<Class>)
SG | Proxy.isProxyClass(<Class>)
SG | <MetaObject>.is*(<Class>) // other signature checks
SG | <MetaObject>.equals(<Object>)
SG | <MetaObject> == <MetaObject>
SG | <MetaObject> != <MetaObject>
SG | <Member>.isAccessible(<Class>)
AS | <Class>.desiredAssertionStatus()
AN | <MetaObject>.isAnnotationPresent(<Class>)

<String> ::=
ST <MetaObject>.get*Name()
ST | <MetaObject>.to*String()
ST | <Class>.getPackage() // returns a wrapper for strings

<int> ::= SG <MetaObject>.getModifiers()

<Resource> ::= <URL> | <InputStream>
RS | <Class>.getResource*(<String>)
RS | <ClassLoader>.get*Resource*(<String>)

Figure 1. Grammar of the Java Reflection API. A ‘*’ inside a terminal indicates zero or more other characters, and inside a nonterminal it indicates zero or
more of this nonterminal. {X}? indicates an optional part of a terminal. MethodUtil.getMethod* was elided into the - non deprecated - replacement method.

The Java Reflection API consists of objects modeling the
Java type system. These meta objects are split over 8 classes
- java.lang.{Class,ClassLoader} and java.lang.reflection.{

Array,Constructor}, {Field,Member,Method,Proxy} - totaling 181
public methods. The meta objects mostly provide an immutable
view of the running system’s types.

Figure 1 summarizes the API as a context-free grammar
that defines construction of references to meta objects. We
use a context-free grammar as a more concise alternative to
class diagrams or interface definitions. Each production in
Figure 1 defines a number of alternatives to produce an object
of the defined non-terminal. The grammar naturally groups
on return type to emphasize the construction of (immutable)
meta objects and compresses methods of similar intent using
regular expressions. With this, we completely mapped the 181
public methods of the entire API onto 58 productions, which
are further grouped into 17 functional categories in Table I.
Next to the API listed in the java.lang.reflection pack-

age, there is: the Object.getClass() method and the literal
Object.class language construct for class literals. There is also
relevant Java expression syntax related to reflection, casts
and instanceof. Class literals, such as MyClass.class, produce

a meta object instance of the (static) type Class<MyClass>. They
are a static alternative to Object.getClass. Cast and instanceof

expressions also use literal types which interact with Java’s
execution semantics (e.g. throwing ClassCastException).
From the perspective of static analysis, the reflection API

introduces dynamic language features for an otherwise statically
resolved language. From this perspective, the API can be
split in two parts. The first part ( in Table I) are the
Dynamic Language Features that simulate statically resolved
counterparts: e.g., the <Method>.invoke API is the dynamic
equivalent of the method invocation in Java. The second part
( ) includes supporting methods for the dynamic language
features (e.g., getting a Method meta object), and miscellaneous
methods for accessing other elements of the Java runtime.
Even when infrequently used, a single occurrence of using

a dynamic language feature does complicate static analysis of
the entire program. For example, a single dynamic method
invocation could in principle call any method in the currently
loaded system, resulting in a highly inaccurate call graph for
the entire system. For the rest of this paper, we are primarily
interested in how static analyses approximate the effect of these
dynamic language features.



Table I
Categories for reflection productions.

Category Description

LC Load Class Entry to the Reflection API, returns ref-
erences to meta objects from a String.
Considered harmful since it can execute
static initializers.

LM Lookup Meta Object Non harmful entries to the Reflection API,
returns references to meta objects.

TM Traverse Meta Object Get references to other meta objects related
to the current meta object in the type
system of Java.

C Construct Object Create a new instance of an object, equiv-
alent to the new <ClassName>() Java con-
struct.

P Proxy Proxies are fake implementations of inter-
faces, where every invoke is translated to
a single callback method. Very harmful
for static analysis, since there is no static
equivalent for this feature.

A Access Object Read the value of an Object’s field. Equiv-
alent to the obj.field Java construct.

M Manipulate Object Change the value of a field. Equivalent
Java construct: obj.field = newValue

MM Manipulate Meta Object The only mutable part of the API: changing
access modifiers.

I Invoke Method Invoke an method. Equivalent Java con-
struct: recv.method(args).

AR Array Create, access, and manipulate arrays.
SG Signature Test the signature of a Meta Object, for

example if it is a public field.
AS Assertions Access and manipulate the assertion flag

per class.
AN Annotations Access and iterate annotations.
RS Resources Read resources using the ClassLoader.
ST String representations Get the name of the meta object’s elements.
S Security Security related calls
DC Casts Cast to a dynamically Class meta object.

Equivalent Java construct: (Class)obj

The categories represent core Dynamic Language Features which simulate
statically resolved counterparts.
The categories represent supporting APIs comparable to normal Java library
code.

Modeling the supporting methods is often necessary to
approximate the semantics of the dynamic language features.
For example, invoking a method requires a Method meta object.
Finding meta objects (with the exception of the LC productions)
does not complicate static analysis on its own. It is merely an
inspection of the type system. These methods can be either
simulated by static analysis tools, or directly executed.
The pinnacle of dynamic behavior are Proxy classes P .

The dynamic proxy feature allows one to instantiate objects
- statically implementing a specific interface - that will
dynamically forward all calls to a generic invoke method of
another object (implementing the InvocationHandler interface).
The proxy feature hides dynamic method invocation under a
normal statically checked virtual method interface, rendering
all virtual method invocations possibly dynamic.

III. Static Analysis of Reflection in the Literature
To answer how reflection is handled by static analysis

approaches (SQ1) we conduct a literature review. The result of
the review is a list of techniques and associated properties of
hard to analyse code which identify limitations and assumptions
of static analysis tools. Note that the results of this review can

not serve as a feature comparison between static analysis tools,
because of different goals of those tools and because of our
focus on the Reflection API, rather than the entire Java language.

A. Finding and selecting relevant work
Two commonly used literature review techniques are snow-

balling [25], [26] and Systematic Literature Review (SLR) [27].
Snowballing consists in iteratively following the citations of a
small collection of serendipitously identified papers. However,
several core papers have hundreds of citations, e.g., the work of
Felt et al. [16] has been cited 940 times, rendering snowballing
too labor intensive. Hence, we conduct an SLR.
1) Initial queries: As recommended by Kitchenham and

Charters [27] we started by considering IEEE Xplore, ACM
DL, and ScienceDirect. The search results, however, contained
multiple inconsistencies. In IEEE Xplore, e.g., adding an OR

to our query reduced the number of results. ACM DL and
ScienceDirect search missed papers when limited to the abstract
field, even though those abstracts contained the search terms.
Hence, we decided that these sources were not well-suited for
SLR. Instead, we opt for Google Scholar as it provides a wide
coverage of different electronic sources as recommended [27]
and its search engine did not exhibit these peculiarities.
Following the PICO criteria [28] we define our population

as Java projects with reflection, intervention as static analysis
and outcomes as approach, limitations and assumptions. We do
not explicitly state the comparison element of PICO since our
goal consists in comparing different ways reflection is handled
by static analysis techniques with each other as opposed to
comparing them with a predefined control treatment. Based
on the population, intervention and outcome we formulate the
following query: java "static analysis" +reflection. We do
not explicitly include the outcome in the query since approaches,
limitations and assumptions can be phrased in numerous ways.
In October 2015 the query returned 4 K references.
2) Automatic selection criteria: Since manual analysis of

4 K documents is infeasible, we design six criteria to reduce the
number of potentially relevant documents. To be included in the
study the document should meet at least one of those criteria.
Those criteria, presented in Table II, are based on frequency of
keywords in the full text, the first 10% of the text (head), the last
10% (tail), and the last 10% without the references/bibliography
(tail without references). We validated all thresholds of these
criteria by sampling beyond the thresholds and manually
scanning the additional papers for false negatives. We picked
liberal thresholds to optimize on recall (e.g., P ≤ 80 for
deciding a document is a single paper rather than a collection).
3) Manually Improving Accuracy: 478 documents (11%

of the original set) were matched by at least one of the six
criteria in Table II. Including the 36 documents that pdf2text
failed to analyse we had 514 documents to read. We reviewed
all documents applying the practical screen [29] to exclude
those meeting the following exclusion criteria: not about
Java, not about static analysis, reflection is only recognized
as a limitation, reflection is handled with an external tool,
reflection is wrapped to guard against its effects, reflection



Table II
Inclusion criteria used to select relevant documents for manual review.

1) Papers with reflection in introduction (head) and conclusion (tail).
Moreover, at least one term related to accuracy should be used. To correct
for Google’s stemming of JavaScript to Java, we exclude papers that mention
JavaScript too often: P ≤ 80∧Rh > 0∧(Rt > 0 ∨ Rt′ > 0)∧A > 0∧S ≤ 5.

2) Thesis. A thesis discussing reflection, containing reflection code
samples, and mentioning accuracy: P > 50∧Th > 0∧R > 1∧A > 0∧J > 0.

3) Proceedings with frequent mentions of reflection: P > 20 ∧ Th =
0 ∧Ch > 0 ∧ R > 5.

4) Short papers frequently mentioning reflection. Smaller documents might
have non standard layout, or be sensitive to the 10% cutoff points for the
head and tail. These documents mentioning reflection at least 10 times are
also included: P ≤ 40 ∧ R ≥ 10 ∧ A > 0 ∧ S ≤ 5.

5) Proceedings with reflection code samples. Similarly to 3) but
with reflection code samples: P > 20∧Th = 0∧Ch > 0∧ R > 0∧ J > 0.

6) Large non-thesis, non-proceedings papers with frequent reflection:
P > 80 ∧Th = 0 ∧Ch = 0 ∧ R > 5.

The ?h denotes head section, ?t tail section , ?t′ tail section without bibliography, and P amount of pages in a PDF. A represents terms related to “accuracy”,
“precision” and “soundness”, C for “proceedings” and “conference”, J for “lang.reflect”, R for “reflection”, S for “javascript”, and T for “thesis” and
“dissertation”.

Table III
Static Analysis approaches for handling reflection. For object and context sensitivity we report the sensitivity depth. For the strings column:
no analysis, only literals, literals and concatenations, and full fledged (JSA) string operations. For the remaining properties we use
filled circles to summarize the coverage of a property: for none, for partial, and for full. The table is sorted on the “Build using” and

“Year” columns.

Paper Year Tool Related Kind Goal
Sensitivity(y) Inter-

proce-
dural

Fixed-
point

Strings Casts Meta-
Objects Dependency

flow(z) field object context

[1] 2005 bddbddb Static &
Annotations

Call
Graph(a)

0 0 (k) Datalog &
bddbddb

[4] 2009 Doop [1], [5] Static Points to (b) 0 1, 2 (c) Datalog
[6] 2013 Datalaude [1] Static Points to 0 0 Maude &

Joeq

[7] 2014 Elf [4] Static Points to (b) 0 1, 2 Doop

[8] 2015 Solar [7] Static &
Annotations

Points to (b) 0 1, 2 (d) Doop & Elf

[9] 2015 [4] Static Points to (b) 1 1 Datalog

[10] 2015 Doop [4] Static Points to (b) 0 1, 2 (e) (e) (e) Datalog

[11] 2003 JSA Static Call Graph (b) 0 0 Soot

[12] 2007 [11] Static &
Dynamic

Class
Loading

(b) (f) 0 0 (g) Soot & JSA

[13] 2009 [12] Static &
Dynamic

Class
Loading

(b) (f) 0 0 (g) Soot & JSA

[14] 2013 Averroes Static &
Dynamic

Modeling
API

0 0 Soot &
TamiFlex

[15] 2007 ACE Static &
Dynamic

Call Graph 1 1 (k)

[16] 2011 Stowaway Static Name 0 0
[17] 2012 ScanDal Static Taint 0 1

[18] 2013 [16] Static Name (h) 0 ∞(h) (i)

[19] 2014 Static CFG 0 0

[20] 2014 FUSE Static Points to (b) 0 0 0 (k)

[21] 2015 WALA Static Multiple (b) 0/∞ 0/∞
[22] 2015 part of

SPARTA
[23] Static &

Annotations
Implicit CFG 0 0 Checker

Framework

[24] 2015 EdgeMiner Static Implicit CFG 0 0 (j) dx

a) Including points-to analysis.
b) After SSA transform.
c) Only for Class.forName.
d) Lazy
e) Only if it points to a small set of

candidates (subclasses / fields /
methods).
f) Only string fields.
g) JSA extended with environment
information, modeling field, and

tracking of objects of type Object.
h) Backwards slicing.
i) With heuristics.
j) Only for base (JRE/Android)
framework.

k) Only for newInstance.
y) None of the papers are path
sensitive.
z) The reported flow sensitivity was
always intra-procedural.



Table IV
Reported open and resolved limitations of static analysis tools, using literature from Table III.

Name Description

CorrectCasts [1] Assumption that casts never throw ClassCastException

WellBehavedClassloaders [1] Assumption that all ClassLoaders implementations follow a specific contract, i.e., if a class with the (fully qualified)
name X is requested from the LC API then a reference to a class named X is produced

ClosedWorld [1] Assumption that the classpath configured for static analysis equals that of the analysed program
IgnoringExceptions [4] Not modeling the control effect of exceptions, which is relevant around common exceptions of the Reflection API (e.g.,

ClassCastException)
InaccurateIndexedCollections [4] Not modeling index positions in arrays and lists, which is relevant when meta objects end up in such collections
InaccurateSetsAndMaps [13] Not modeling hashCode and equals semantics in concert with hash collections, which is relevant when meta objects end

up in such collections
NoMultipleMetaObjects [7] Ignoring usage of TM API methods which return multiple meta objects in an array
IgnoringEnvironment [12] Not modeling the content of configuration strings which come from System.getEnv for tracing LC , LM or TM methods
UndecidableFiltering [16] Conditional control flow and arbitrary predicates are hard in general, while for code which filters meta objects even an

approximate answer would greatly help
NoProxy [7] Assumption that Proxy objects are never used. Proxy objects may invoke dynamically linked code opaquely behind any

(dynamic) interface, undermining otherwise trivial assumptions of static analysis of method calls

is used to solve a problem, or a homonym of “reflection”
was the cause of the match. We have logged the exclusion
decisions in a shared online spreadsheet and reviewed each
others decisions. This process produced 50 documents. Next
we removed non-peer-reviewed publications: locating and
substituting conference papers for equivalent technical reports,
masters theses or PhD theses; locating and substituting extended
journal versions for conference papers; removing non-peer-
reviewed publications such as technical reports and masters
thesis’ without corresponding publications at the time; and
finally as recommended by Kitchenham and Charters [27]
merging duplicate documents produced by noise in Google
Scholar. This results in 39 documents.

All 39 documents were then read by one author and scanned
by another, producing 4 new relevant documents from the
citations (all missing from the original Google Scholar results).
The 4 new papers introduced Soot [30], Spark [31] (a plugin
for Soot), WALA [21], and JSA [11]. Only JSA and WALA handle
reflection specifically, while Soot requires plugins (such as
TamiFlex [32] or Spark), and Spark requires user annotations.

While reading the documents we applied the methodological
quality screen [29] and identified another 10 documents to be
excluded, due to the following reasons: taint analysis pushing
taints through the reflection API [33], [34], using existing
techniques for handling reflection [14], [35]–[40], and handling
reflection in generated bytecode rather than in source code [41].

B. Documenting Properties of Static Analysis Tools

To answer SQ1, we read the 33 (39 + 4 − 10) documents to
list approaches or techniques which are involved in resolving
dynamic language features of Java reflection. The end result
is summarized in Table III. When we could not find enough
information to extract information about the properties of a
tool from the respective paper, we analysed the latest version
of the tool’s source code and documentation (if available). As
recommended by Brereton et al. one author extracted the data,
and another one checked it [42].

We classified the techniques in three kinds of analysis,
different in the kind of information which is used to resolve
reflection: static uses code analysis to resolve reflection (listed
in Table III), dynamic uses information acquired at run-time for
resolving reflection rather than code ( [30], [32], [43]–[47]) and
annotations groups techniques based on are human-provided
meta data rather than code or dynamic analysis ( [31], [48]–
[51]). Note that papers solely about dynamic analysis were
excluded in an earlier stage.

Next we record the goal of the static analysis as mentioned
in the paper (e.g., call graph construction), the name of the
tool, and possible dependency on other related tools. We also
distinguish between intra- and inter-procedural algorithms.
Diving further into the explanations of techniques of each

static analysis tool revealed a diverse collection of mostly
incomparable algorithms and heuristics in terms of functionality
and quality attributes. Based on this reading we documented
the authors’ descriptions of properties of the analysis tools
in terms of sensitivity. Sensitivity defines the smallest level
of distinction made by the abstract (symbolic) representations
of run-time values and run-time effects that static analysis
tools use. Finer-grade distinctions mean more different abstract
values and result in more accurate but slower analyses, while
coarser-grade distinctions lead to less different abstract values
and less accurate but faster analyses.

Flow sensitivity entails distinctions between subsequent as-
signments

Field sensitivity entails distinction between different fields in
the same object

Object sensitivity entails the distinctions between individual
objects, via groups of objects, to general class types, at
increasing levels of indirection

Context sensitivity entails the distinction of method execu-
tions between different calling contexts of a given depth

We also record whether the analysis requires a fixed-point
computation. Finally we identified and documented the use of
three specialized measures taken by static analysis tools:



String analysis approximates run-time values of strings as
accurately as possible. These results can then be used to
approximate class and method names which flow into the
LC , TM reflection API, after which the semantics of invoke

and newInstance may be resolvable.
Casts provide information about run-time types under the as-

sumption that no ClassCastException occurs. Some analyses
also reason back from the correct-casts assumption.

MetaObjects signifies the full simulation (or execution) of
the LC , LM , and TM reflection API to find out which meta
objects may flow into the dynamic language features.

By inspecting Table III we observe that flow sensitivity is
very common (often as a side-effect of the SSA transform), field
sensitivity is used for half of the approaches (more common in
Doop and Soot), and, most analyses are inter-procedural and
track at least string literals. Tracing Doop through the years,
we see more modeling of Strings, Casts and Meta Objects.

C. Self-reported limitations and assumptions
The self-reported assumptions about actual code and limi-

tations of the tools are summarized in Table IV. All tools
discussed in the 33 studies assume well-behavedness of
ClassLoader implementations and absence of Proxy classes. The
other reported limitations are either resolved and fixed by a
given paper, or mentioned as a known limitation of the currently
described approach. We do not provide a feature comparison
per tool, but rather report “common” assumptions made by
static analysis tools. We choose not to extend Table IV with how
many tools use each assumption, to avoid it being interpreted
as a (crude) comparison between incomparable tools.

SQ1: State-of-the-art static analysis tools use inter-
procedural, flow and field sensitive analysis. Some ex-
plicitly model Strings, Casts and Meta Objects. All tools
assume well-behavedness of ClassLoader implementations
and absence of Proxy classes. The techniques and their
limitations are summarized in Tables III and IV.

IV. How often is the reflection api used?
Regardless of the conceptual relation between reflection

and static analysis, we need support for the relevance of this
relation in real Java code to answer SQ2 and motivate further
investigation.

Table V summarizes the related work found during the review
(Section III) reporting empirical observations of reflection
usage. From these reports we hypothesize that also in arbitrary
Java code the usage of reflection is widespread. This is likely
true, but it may not be deduced from the reported numbers
in Table V, since these studies have been done on corpora
selected and filtered for answering different questions.
In particular focusing only on large corpora of Android

apps would not be acceptable for our current study since they
are an identifiable subgroup of all Java applications. Also the
much smaller SPECjvm1 or DaCapo [52] benchmarks have

1https://www.spec.org/benchmarks.html#java

Table V
Empirical observations of reflection in the literature of Table III.

Year Ref. Corpus Report

2005 [1] 6 applications
(643 KLOC)

The accompanying technical report dis-
cusses reflection use cases, which are used
to formulate the three now very popular
assumptions.

2011 [16] 900 Android
apps

61% use invoke. Reflection is also used
for serialization, hidden APIs, and back-
wards compatibility.

2013 [18] 1.3 K Android
apps

73% use invoke. Primarily for API calls,
however, this reflects only 0.07% of all
API calls.

2014 [19] 1.7 K Android
apps

73% use reflection. invoke is most com-
mon

2014 [19] 150 Android
apps

Analyzing the string argument for forName
and getMethod, 17.30% use only constant
strings, 25.30% use a single variable, and
38.70% use more than one variable.

2014 [7] 14 Java
programs
(DaCaPo
benchmark
and 3 other
applications)

Identified 609 invocations of reflection
with Soot, reports popularity of the harm-
ful API, the kind of string operations
performed on arguments, and how often
the APIs return meta object arrays were
used.

2015 [47] 29 K Android
apps

81.10% used either invoke or newInstance

2015 [22] 35 Android
apps

142 calls to invoke, classifying 81% for
backwards compatibility, 6% accessing
hidden APIs, and 13% as unknown.

been compiled to reflect typical performance characteristics of
(concurrent) Java programs rather than be representative of the
usage of reflection.

A. Corpus Construction
To test the above hypothesis and answer SQ2 we construct

a corpus of the source code of 461 open-source software
projects. Hunston has observed that in corpus linguistics the
main issues related to corpus design pertain to its size, contents,
representativeness and permanence [53]. Tempero et al. have
argued that the same concerns pertain to software corpora [54].
Contents of the corpus is determined by the research

questions we answer using it, i.e., SQ2 and SQ3. Hence, our
corpus contains Java programs. Permanence, i.e., regular corpus
updates, are considered as future work. Next we discuss how
size and representativeness are balanced in our corpus.
1) Selecting projects: To balance the corpus size with

representativeness, we construct a corpus small enough to
analyze while still covering a wide range of open source
Java projects. We use the Software Projects Sampling (SPS)
tool [55] by Nagappan et al. Given a universe of projects
on Ohloh/OpenHub2, SPS measures representativeness of a
smaller corpus with respect to the universe in terms of
diversity dimensions and constructs a maximally representative
corpus by iteratively adding projects that would increase
the representativeness most. Diversity dimensions considered
include total lines of code, project age (Young, Normal, Old,
Very Old), activity (Decreasing, Stable, Increasing), and of the
last 12 months, number of contributors, total code churn, and
number of commits.

2Since the access to the live OpenHub project collection is rate-limited, we
used the May 2012 database snapshot when it was still called Ohloh [55].

https://www.spec.org/benchmarks.html#java
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Figure 2. Histograms of projects size (bin width 0.15 on the log X-axis)

The entire collection contains 20 K projects, of which around
3 K have Java recorded as the main language. From this universe
the SPS tool identified a sample of 468 projects, maximizing
the spread of all diversity dimensions.
We tried to download the source code of the 468 projects.

For 33 projects the source code was no longer available. We
reran SPS to extend 435 = 468 − 33 projects and maximize the
diversity. SPS suggested 27 additional projects. The source code
of two of these was not available. Repeating the procedure,
SPS suggested one additional project. The resulting 461 =
468 − 33 + 27 − 2 + 1 projects cover 99.47% of the universe.

After downloading the projects we cleaned the corpus by
removing arbitrary copies of the code of projects that originate
from folder-based version management. Using MD5 hashes to
identify full file clones, we manually reviewed and cleaned all
projects. We made the cleaned and annotated corpus openly
available [3], totaling 79.4MSLOC of Java code, to be used to
reproduce the analysis results, or to benchmark static analysis
research tools on systems of documented representativeness.
Figure 2 summarizes the corpus in terms of size.

2) Annotated Abstract Syntax Trees: We need a precise count
of actual calls into the reflection API, rendering fast grepping or
other efficient partial parsing methods out of scope due to their
inherent inaccuracy [56], [57]. To unambiguously identify the
calls to the Reflection API methods we first parsed the source
code, resolved names and types, then serialized the Abstract
Syntax Trees (ASTs), using the Eclipse Java Development Tools
(JDT) and Rascal [58]. We deleted the 4 projects the JDT crashed
on (labeled #294, #399, #420, #455)3.

B. Descriptive Statistics
To describe how the Reflection API is used by the corpus

projects we make use of the context-free grammar in Figure 1
and categories of Table I. Per category we count the percentage
of projects that make use of at least one production belonging to
the category. We aggregate to project level since one instance is
enough to complicate static analysis and projects are a common
unit for static analysis applications.
Inspecting Figure 3 we observe that reflection is used in

almost all the projects (only 4% did not use any reflection).
However, there are more use cases for reflection than just
dynamic language features. The <Type>.class and <Object>

.getClass() are, for example, often used as a log message
prefix. The reported distributions of API method invocations
over projects, should be interpreted by tool builders with the API

3We opt not to replace these projects as we consider the corpus as a separate
contribution independent from the subsequent research.
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Figure 3. Reflection API usages, grouped per category (Table I), aggregated
on project level, 17 projects (3.72%) contained no reflection. 356 projects
(77.90%) contained at least one of the dynamic language features (
categories).

definition itself as a frame of reference, because the API enforces
certain data dependencies between different invocations into
the API, e.g. <Method>.invoke can not be called without first
retrieving an instance of an Method meta object, which in turn
can only come from a Class meta object (see Figure 1).
We aggregated all dynamic language features API calls. Of

all projects, 78% contain at least one form of these harder to
analyze methods of the API. For these projects, a static analysis
needs some form of reflection support. Note we only count
in the Java source code of a project, reflection usage in its
libraries it depends on can only increase the amount of projects
impacted by the dynamic language features of reflection.

SQ2: Hard to analyse parts of Reflection API are very
common: 78% of all projects contain at least one usage
of those.

V. The Impact of Assumptions and Limitations
In this section we answer SQ3: how often the assumptions

and limitations in Table IV (Section III) of state-of-the-art
static analysis tools are challenged by real Java code. For
each identified assumption or limitation of Table IV we
devise one or more AST patterns and manually validate their
precision in detecting occurrences of challenging code. Then
we automatically identify all matches of each pattern in the
corpus described in Section IV-A. We reuse the corpus since we
look for similar representativeness and need similarly accurate
unambiguously resolved classes and methods.

A. Detecting Patterns
To implement pattern detectors we used the builtin AST

pattern matching and traversal facilities of Rascal [59], which
have been used in many other projects [60]–[62]. The pattern
code is around 150 SLOC and it is openly available [63].



Table VI
Descriptions of AST patterns used to detect the limitations identified in Table IV with their rationale.

Name Pattern description Pattern rationale

CorrectCasts try blocks with the body calling either invoke, get, or newInstance,
and with a catch(ClassCastException e) case that neither contains
throw nor calls a method with either “log” or “error“ in the identifier.

Finds code which does not obviously deal with a ClassCastException

as an unexpected error.

WellBehaved-
ClassLoaders

No pattern This is a deep semantical constraint for which we have no accurate
AST pattern

ClosedWorld No pattern This is not a code property, as it assumes something about the
classpath configuration for the static analysis tool

Ignoring-
Exceptions-1

try blocks with the body calling any dynamic language features,
with at least one catch block that also calls a dynamic language
feature method.

Finds code that intents to use reflection in the “normal” path, and
continues to use reflection in the “exceptional” path.

Ignoring-
Exceptions-2

for,while,do statements with in the body a try block with its body
using dynamic language features, and at least one catch block that
does not throw or call a method with either “log” or “error“ in the
identifier

Find codes where the exceptional path is the way to continue to the
next alternative way of using a dynamic language feature which is
generated by a loop

IndexedCollec-
tions

Any call to a method which retrieves information from the Java
Collection API (e.g., get & iterator) of the containers that allow
random indexing or an array access expression where the stored
type is a meta object type.

This exactly identifies (using Java’s type system) where meta objects
may be stored in and retrieved from collections

MetaObjects-
InTables

Any call to a method which retrieves values from the Java Collection
API’s hash-based containers (e.g., HashMap), where the stored type
is a meta object type.

This exactly identifies (using Java’s type system) where meta objects
may be stored in and retrieved from hash collections

Multiple-
MetaObjects

A call to the methods in the TM category (Table I) that return arrays
of meta objects

This exactly identifies the construct of interest using Java’s name
resolution

Environment-
Strings

Any call to the methods retrieving strings from the environment [13]
which are inlined as actual parameters in calls to reflection

Finds trivial flow of information from the environment into the
reflection API, and nothing more

Undecidable-
Filtering

for,while,do statements with in the body a call to any of the methods
in the TM or SG categories (Table I) and a call to any dynamic
language feature

Probably finds code where filtering is implemented using a loop
code idiom, given that it also uses predicates and lookups from the
Reflection API.

NoProxy Any usage of the Reflection API for dynamic proxies This is an exact query (also used in Section IV).

The patterns we devised are described and motivated in
Table VI. We strive for high precision for each pattern (a
low number of false positives). Each AST pattern will capture
“typical” code instances for which a clear rationale exists to
relate it to the assumptions and limitations of Table IV.

Note that assuming each pattern is 100% exact, counting their
matches will generate a lower-bound on the number of code
instances which challenge static analysis tools. As a tight lower-
bound more accurately answers SQ3 than a loose upper-bound
would, we will not sacrifice precision for recall by generalizing
patterns. Some patterns have non-empty intersections, i.e., two
patterns may match on the same piece of code. This effect
must be considered when interpreting the results below, next
to that they are not all 100% exact.

Because the main threat to validity of this research method
is the precision of the patterns, we manually estimated their
precision by reading random samples of matched code in the
corpus. For each pattern which is not exact by definition, we
report the precision after sampling 10 instances and record the
intent of the code examples as we interpreted it to confirm or
deny the rationales of Table VI.

The patterns performed well; at least 8 out of the 10 sampled
methods did challenge the limitation or assumption. In the
sampled methods we observed that most of the challenging
cases involve highly dynamic reflection, where the code uses
complex data-dependent predicates to decide which methods
to invoke or fields to modify. These predicates operated both
on strings and meta objects. We also observed that exceptions
were often ignored to continue with a next possible candidate.

B. Results for Corpus Impact Analysis

The Impact column of Table VII answers SQ3, detailing for
each pattern its impact in the corpus in terms of projects covered
by at least a single match. Note that between the patterns the
percentages are not comparable due to possible overlap. Each
percentage implies a minimal amount of problematic code
instances for the related assumption or limitation, so we find
a lower-bound on the impact of a static analysis tool which
would be able to resolve these hard cases.

Here we interpret the reported impact percentage for each
limitation qualitatively: (a) the impact of CorrectCasts seems
low, so we do not find evidence in this corpus that this is a
bad assumption; (b) we can conclude that detailed modeling of
exceptions can not be avoided; (c) we see that the combination
of collections and reflection (arrays, lists, and tables) is relevant
for about half of the corpus, so this is an important area of
attention; (d) we find complex computations around the filtering
of meta objects in almost half of the projects, which signals
new opportunities for soundy assumptions for computing with
meta objects; finally, (e) a significant part of the corpus is
tainted directly by the use of dynamic proxies, for which no
clear solution seems to be on the horizon.

SQ3: Real Java code frequently challenges limitations of
the existing static analysis tools, in particular, in relation
to modeling of exceptions, collections, filtering of meta
objects and dynamic proxies. The impact of CorrectCasts
seems low.



Table VII
Impact of limitation patterns (Table VI) in the corpus.

Pattern Impact Precision Code intent

CorrectCasts 4% 8/10 Supplying a fallback or looping
through candidates and swallowing
the exception

Ignoring-
Exceptions1

23% 10/10 Falling back to a less specific Meta
Object, or switching to a different
ClassLoader

Ignoring-
Exceptions2

38% 9/10 Iterating through candidates and
either breaking when one does not
throw an exception, or continuing
to the next candidates

Inaccurate-
Indexed-
Collections

55% exact Iterating through a signature of an
meta object

InaccurateSets-
AndMaps

38% exact Meta objects as function pointers
in a table, mapping to objects,
caching around Reflection API

NoMultiple-
MetaObjects

54% exact Looking through candidates, per-
forming mass updates of fields,
checking signatures

Ignoring-
Environment

2% 10/10 Only 9 instances found, they were
all dependency injection

Undecidable-
Filtering

48% 8/10 Trying different names of meta
objects, filtering method and fields
based on signature

NoProxy 21% exact Wrapping objects for caching or
transactions, automatically convert-
ing between comparable interfaces

The summary answer to the Main Research Question is
that apart from CorrectCasts, the limitations and assumptions
of static analysis tools for which we have an AST pattern are
challenged in significant numbers in this corpus.

VI. Discussion

A. Threats to validity
A different categorization of “dynamic language features” in

Section II might influence the answers to our research questions.
To mitigate issues with the categorization we explicitly included
a grammar fully covering the reflection API.

The SLR in Section III was conducted in 2015. To the best of
our knowledge all material appeared since has been included in
Section III. The reading and annotating of the literature itself
was a human task for which we implemented mitigating cross
checks and validation steps.
Although the corpus in Section IV has been constructed

using state-of-the-art methods for maximum variation of meta
data, the choice of meta data variables and the universe the
projects are sampled from can be discussed. To the best of
our knowledge there exists no better means for sampling an
unbiased and representative corpus of open-source projects.

In Section V, we used AST patterns to assess the occurrence
of challenging code. To mitigate the arbitrariness of the patterns,
we maintained a direct trace between the patterns and literature
study in Section III in Table IV. However, any undocumented
assumptions or implicit limitations have naturally not been
mapped. The patterns themselves could be inaccurate, which
was discussed and mitigated in Section V.

The answer to the main question, claiming a high impact of
known limitations of static analysis tools, must be interpreted
in context of the aforementioned threats to validity.

B. The Dual Question of SQ3
The question of how well static analysis tools actually do

on code which uses reflection, rather than their limitations is
relevant. The review in Section III and the corpus in Section IV
provide a starting point for answering it. However, a set of full
comparative studies would be necessary, grouped by the goal
of comparable analyses, by running the actual tools (where
available) on the corpus. The respective coverage of the corpus
for selecting the first 50, 100 or 200 projects is 56%, 72% and
88%. The first projects in the corpus are the most representative,
so initial studies could be performed on one of these prefixes
of the corpus. The configuration and execution of each tool for
each project in the corpus, and the interpretation of detailed
results per analysis group in this proposed study is at the scale
of a community effort.

C. Related work
Next to the focused literature review of Section III we

position this paper in a wider field of empirical analysis
of source code. Reflection and related forms of dynamic
behavior are supported by many programming languages. Not
surprisingly, reflection usage has been studied, e.g. for such
languages as Smalltalk [64], JavaScript [65], [66], PHP [62],
[67] and Python [68], [69]. Despite the differences between
programming languages studied as well as the methodologies
used by the authors, all those papers agree with each other
and with our observations made in Section IV: reflection
mechanisms are used frequently, and they often cannot be
completely resolved statically.
Even if the current observations are in line with previous

work, they are unexpected. The current study is on the statically
typed language Java rather than the aforementioned dynamically
typed languages; for Java the use of reflection is expected to be
the exception rather than commonplace. The Java language is
designed to provide both clear feedback to the programmer and
a built-in notion of code security, based on its static semantics.
We find it surprising that reflection - the back door to dynamic
language features - is used so often and in such a way that
it does undermine these design goals. Selecting Java as a
platform for robust and safe software engineering provides
fewer guarantees than perhaps thought.
A related topic is language feature adoption. Parnin et al.

have studied adoption of Java generics [70], Pinto et al. studied
concurrent programming constructs [71], and Dyer et al. studied
features prior to their official release [72]. Similar studies have
also been conducted, e.g., for C# [73] and PHP [60].

Since we have conducted our SLR in October 2015 additional
papers have been published on static analysis of Java programs
using reflection, witnessing the continuing attention to this
topic from the research community. Harvester [74] combines
static and dynamic analyses to combat malware obfuscation.
Resolution of reflective calls is done by the dynamic analysis.



HornDroid [75] implements a simple string analysis and,
similarly to DroidSafe [35], replaces reflective calls with the
direct ones whenever the string analysis renders it possible.
DroidRA [76] models the use of reflection with COAL [77]
and reduces the resolution of reflective calls to a composite
constant propagation problem.
Beyond related work for Java, without going into details,

all research in and applications of static analysis techniques
to dynamically typed programming languages is relevant, e.g.,
[78], [79]. Our empirical observations (Section V) suggest that
application of the existing soundy techniques for analyzing
dynamic languages to Java could have an impact.

D. Implications for Java Software Engineers
The data shows that reflection is not only used often, but it is

also used in a way challenging to static analysis. If robustness is
of high priority, then the following tactics are expected to have
a positive effect: (a) do not factor out reusable reflective code in
type-polymorphic methods, since the CorrectCasts assumption
is highly useful, keeping casts to concrete types close to the
use of dynamic language features will keep code analyzable;
(b) avoid the use of dynamic proxies at any cost (c) use local
variables or fields to store references to meta objects rather
than collections; (d) avoid loops over bounded collections of
meta objects; and (e) test for preconditions rather than to wait
for exceptions such as ClassCastException.

Given the observations in Section V, applying these tactics
should lower the impact of the assumptions and limitations of
static analysis tools and hence will make Java code more robust.
All tactics trade more lines of code for better analyzability.

E. Implications for Static Analysis Researchers
For all reported challenges for static analysis tools for which

we have an AST pattern, save the CorrectCasts assumption, the
evidence suggests investigating opportunities for more soundy
assumptions in static analysis tools. It can also motivate Java
language or API extensions which cover the current uses of the
reflection API with safer counterparts. The literature survey
suggests looking into combinations with dynamic analysis and
user annotations. Note that the highly advanced analysis tools
already solve a number of these challenges (such as exception
handling), but further improvement to get similar accuracy for
higher efficiency is warranted since these tools would run faster
on a part of the corpus [10].

The negative impact of the CorrectCasts assumption seems
low, so even more aggressive use of said assumption to reason
back from a cast and infer more concrete details about possible
semantics is warranted.
A novel soundy assumption on the semantics of dynamic

proxies would have a significant impact, since currently all
static analysis techniques ignore their existence completely
(which is definitely unsound). For example, we observed that a
useful soundy assumption might be that client code can remain
“oblivious” to any proxy handlers that wrap arbitrary objects
(that implement the same interface) to introduce ignorable

aspects such as caching, offline serialization or transactional
behavior.

We observed that exceptions are used as gotos, especially in
the context of reflection. Hence, a special treatment of the code
which catches these exceptions is warranted. Treating common
idioms of such “error handling” should have a significant effect
in the corpus, without having to use or introduce a general
solution for exception handling per sé.
We see how relevant collections of meta objects (arrays,

lists, and tables) are for analyzing the corpus. Since most
collections of meta objects are bounded - they are acquired
via bounded Reflection API methods - it should be possible to
make more aggressive soundy assumptions around their usage.
For instance, one can aggressively unroll iterators over meta
object collections, or to soundily assume order independence.
Finally, considering the impact of UndecidableFiltering in

the corpus in combination with MultiMetaObjects and the
collection usage we see opportunities for the application of
analysis techniques designed for dynamic languages (e.g.,
Javascript). Such dynamic Java code is akin to Javascript or
PHP code. For example a form of determinancy analysis [79],
[80] might be ported for the Java reflection case.

VII. Conclusions
Contemporary Java static analysis tools use pragmatic soundy

techniques for dealing with the fundamental challenges around
analyzing the Reflection API. Earlier work identified the need
for empirical studies, relating these techniques to the way
programmers actually use the Reflection API in real code.

With this paper we contributed (a) a comprehensive survey of
the literature on the features and limitations of static analysis
tools targeting reflective Java projects, (b) a representative
corpus of 461 open-source Java projects, (c) an overview of
the usage of the Reflection API by real Java code and (d) an AST-
based analysis of how often the assumptions and limitations of
the surveyed static analyses are challenged by real Java code.
The highlights among the empirical observations are that

of all projects, in 78% dynamic language features are used.
Moreover, 21% use dynamic proxies, 38% use exceptions
for non-exceptional flow around reflection, 48% filter meta
objects dynamically, and 55% store meta objects in generic
collections. All those features are known to be problematic for
static analysis tools. We could identify violations of the correct
casts assumption in only 4% of the projects.
We conclude that (a) Java software engineers could make

their code more analyzable by avoiding challenging code idioms
around reflection, (b) introducing new soundy assumptions for
novel static analysis techniques around the Reflection API is
bound to have a significant impact in real Java code.
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