Software Analysis And Transformation

Software Analysis and
Transformation
with
Rascal

BioAssist Meeting
Jan 11th, 2013

Jurgen Vinju

® (Centrum Wiskunde & Informatica
® Programming languages and systems
® Algol
® Python
® ASF+SDF, Rascal
® MonetDB

® Where mathematics meets informatics

® striving for fundamental (general) results

® motivated by and applied in industry, government, and the sciences
® W3C

® Software Improvement Group (spin-off)

® \aster Software Engineering @{Universiteit van Amsterdam, VU, HvA}

m SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

25 minutes

® What and why do we research software at CWI?
® How?”
® T'wo possible discussions

® (Question: how is bio software unique?

® Perspective: meta = data programming?

E SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

Our team

Paul Jurgen Tijs
Klint Vinju v/d Storm

SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

QR

UNDER

CONSTRUCTION,

The problem with
software 1s not in
constructing it

(given sufficiently experienced architects & engineers)
W SWAT - SoftWare Analysis And Transformation

\ ;')

T— R

The problem 1s in
understanding
existing software in
order to improve it

(and a lot of software eX|sts)

SWAT - SoftWare Analysis And Transformatio

We study software systems:
their design, their construction
and their inevitable evolution.

e learning to understand software systems

e learning to improve them

e focusing on complexity as the quality attribute
e studying the causes of software complexity

e studying solutions to get simpler software

e helping software engineers to be more effective
e shaping the future of programming languages and IDEs

(NASA mission control, apollo 13)

Friday, January 11, 13

Software is not so difficult to
understand, but it is extremely complex

O A)

A U Y
v Y E 3 & |
/! | I ! [
;-.\ N Il " |
N N { S
g — \ T
'v'.n\ - £
L Pk * v A A AR
Th S D0 N AR
v B o s - % A
' RS Pe . '\ l"-\ -
» .. “ N "-. —
o, & >
’ e R
f A - o ,
. A s A
Wiy ! s

Kafkaesque

Software - large and complex structures
of computer instructions, written and
read by man, executed by computers.

“marked by a senseless, disorienting, often menacing
complexity...” (Infoplease.com)

m SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

3894 lines
367 ifs

174 cases

Friday, January 11, 13

Solution...

m SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

Transformation & Analysis

® (de)optimization ® Code-to-model
Raphael (1509)

4 > .
® GOTO removal © @ Quality assessment

® Bug fixing (Y2K)

® Mining trends

® Porting ® Dead code detection

® Refactoring ... ® Bug detection

® Model-to-code ® Model checking

® Languages ® [mpact analysis

m SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael

I”

“every week a new too

Research Application
P ———— ———
W SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

' —*
Research Software
P————— [— B
W SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

Rascal
is
a
DSL
for

meta
programiming

VL

Transformation I Execution

Extraction Generation

Analysis

Visualization Formalization

Rendering Conversion

(Brueghel, Tower of Babel)

SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

The three Multi-disciplinary
challenges e N (7 &

55
. »
-)
»
. X)l;j . : Yoo .‘.;7‘ ._ &S 4
N "4 | F
- " . - L .
— N .
20003 20082 J0043 Joose 3
4|
- > b g
B 9 : -
20087 Jtoes Jodew ?

20008

Diversity

Precision vs Efficiency

m SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

The key point of Rascal is
that 1t 1s a one-stop-shop;
no hacking stuff together,
just one consistent, typed,
and safe environment for
meta-programming for
“any’ language.

D.IY.

® That’s the goal
® We teach Rascal (master)
® We use Rascal

® Caveat: “Experimental”

E SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

highlight:A one-slide DSL

Code

Model

Picture |

highlight:A one-slide DSL

metro {
Centraal Waterloo Weesperplein Wibautstraat Amstel;

Amstel Spaklerweg Overamstel Rai Zuid;

Rai Zuid Amstelveenseweg Lelylaan Sloterdijk; (
|
\

Centraal Rokin FerdinandBol Zuid;

Model

Picture

Friday, January 11, 13

highlight:A one-slide DSL

metro {
Centraal Waterloo Weesperplein Wibautstraat Amstel;

Amstel Spaklerweg Overamstel Rai Zuid;

Rai Zuid Amstelveenseweg Lelylaan Sloterdijk; -
Centraal Rokin FerdinandBol Zuid; ﬁ Code

{ <"Centraal”, “Waterloo”>, (
|
\
|
|

Picture ‘

Friday, January 11, 13

highlight:A one-slide DSL

metro {
Centraal Waterloo Weesperplein Wibautstraat Amstel;

Amstel Spaklerweg Overamstel Rai Zuid;

Rai Zuid Amstelveenseweg Lelylaan Sloterdijk; r
Centraal Rokin FerdinandBol Zuid; Code
\
} |
{ <"Centraal”, "“Waterloo”>, [
<“Waterloo”,” Weesperplein”>, .. } - Model]
\
\ |

Friday, January 11, 13

highlight:A one-slide DSL

metro {
Centraal Waterloo Weesperplein Wibautstraat Amstel;

Amstel Spaklerweg Overamstel Rai Zuid;

Rai Zuid Amstelveenseweg Lelylaan Sloterdijk; - 1
Centraal Rokin FerdinandBol Zuid; Code

}

{ <“Centraal”, “Waterloo”>, |]
<“Waterloo”,” Weesperplein”>, .. } Model |

digraph Metro {

node [shape=box]

Centraal -> Waterloo Picture

Waterloo -> Weesperplein ...

Centraal [shape=ellipse]

Rokin » FerdinandBol — —

1 Amstelveenseweg — Lelylaan — Sloterdijk

t/-(- ents —_l- 5~ ™ Zuid
(_Centraal L, o] Z
Waterloo —{ Weesperplein —# Wibautstraat [~ Amstel » Spaklerweg [~ Overamstcl Rai

Friday, January 11, 13

A ONE-SLIDE DSL

0]
Q
O

E
5

AT aRASY T)
o o ¥ BN O, A

g —

[} 3

=
. =
+
Q

_

Friday, January 11, 13

A ONE-SLIDE DSL

module Metro [Cod]

A ONE-SLIDE DSL

module Metro

start syntax System = “metro” “{“ Track* tracks "“}";

[Code]
EERn S
Model

[Picture]

Friday, January 11, 13

A ONE-SLIDE DSL

module Metro [Code]

PEEn S
Model

start syntax System = “metro” “{“ Track* tracks "“}";

syntax Track = Id+ stations “;” ;

s I gy

[Picture J

|

Friday, January 11, 13

A ONE-SLIDE DSL

module Metro

Code 1
start syntax System = “metro” “{” Track* tracks "“}"; ‘ =
syntax Track = Id+ stations “;” ; | Model
lexical Id = [A-Za-z][A-Za-z0-9]%*; 2

1

Picture \

Friday, January 11, 13

A ONE-SLIDE DSL

module Metro

e |
start syntax System = “metro” “{” Track* tracks "“}"; | -)
syntax Track = Id+ stations “;” ; f Model
lexical Id = [A-Za-z][A-Za-20-9]*;

layout WS = [\ \t\n\r]*; r

Picture i

Friday, January 11, 13

A ONE-SLIDE DSL

module Metro

start syntax System = “metro” “{“ Track* tracks "“}"; Code
syntax Track = Id+ stations “;” ; ' Model |
lexical Id = [A-Za-z][A-Za-z0-9]%*; i
layout WS = [\ \t\n\r]*;

Picture

rel[Id,Id] extractMetroGraph(loc source) =

Friday, January 11, 13

module Metro Code

start syntax System = “metro” “{“ Track* tracks "“}";

syntax Track = Id+ stations “;” ; | Model

lexical Id = [A-Za-z][A-Za-2z0-9]*;

layout WS = [\ \t\n\r]*;

Picture

rel[Id,Id] extractMetroGraph(loc source) =

{<from, to> | /Track t := parse(#start[System], source),

Friday, January 11, 13

module Metro Code

start syntax System = “metro” “{“ Track* tracks "“}";

syntax Track = Id+ stations “;” ; | Model

lexical Id = [A-Za-z][A-Za-2z0-9]*;

layout WS = [\ \t\n\r]*;

Picture
rel[Id,Id] extractMetroGraph(loc source) =
{<from, to> | /Track t := parse(#start[System], source),

)
(Track) "<Id+ > <Id from> <Id to> <Id+ >; := t}

°
4

Friday, January 11, 13

module Metro

start syntax System = “metro” “{” Track* tracks "“}"; -
syntax Track = Id+ stations “;” ; rm&;ﬁ;_ﬁ
lexical Id = [A-Za-z][A-Za-2z0-9]*;

layout WS = [\ \t\n\r]*; H}i&éf

rel[Id,Id] extractMetroGraph(loc source) =
{<from, to> | /Track t := parse(#start[System], source),
(Track) “<Id+ > <Id from> <Id to> <Id+ >;° := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

Friday, January 11, 13

module Metro

Code
start syntax System = “metro” “{“ Track* tracks "“}";
syntax Track = Id+ stations “;” ; rmﬁ&ﬁé_ﬂ
lexical Id = [A-Za-z][A-Za-z0-9]*;
layout WS = [\ \t\n\r]*; o

rel[Id,Id] extractMetroGraph(loc source) =
{<from, to> | /Track t := parse(#start[System], source),
(Track) “<Id+ > <Id from> <Id to> <Id+ >;° := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

Friday, January 11, 13

module Metro

start syntax System = “metro” “{” Track* tracks “}"; Cods
syntax Track = Id+ stations “;” ; rmﬁ&ﬁé_ﬂ
lexical Id = [A-Za-z][A-Za-z0-9]%*;

layout WS = [\ \t\n\r]*; o

rel[Id,Id] extractMetroGraph(loc source) =
{<from, to> | /Track t := parse(#start[System], source),
(Track) “<Id+ > <Id from> <Id to> <Id+ >;° := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {
writeFile(target,”digraph Metro { node [shape=box]

Friday, January 11, 13

module Metro

start syntax System = “metro” “{” Track* tracks “}"; Cods
syntax Track = Id+ stations “;” ; rmﬁ&ﬁé_ﬂ
lexical Id = [A-Za-z][A-Za-z0-9]%*;

layout WS = [\ \t\n\r]*; o

rel[Id,Id] extractMetroGraph(loc source) =
{<from, to> | /Track t := parse(#start[System], source),
(Track) “<Id+ > <Id from> <Id to> <Id+ >;° := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {
writeFile(target,”digraph Metro { node [shape=box]

‘<for (<from, to> <- metro) {>

Friday, January 11, 13

module Metro

start syntax System = “metro” “{” Track* tracks “}"; Cods
syntax Track = Id+ stations “;” ; rmﬁ&ﬁé_ﬂ
lexical Id = [A-Za-z][A-Za-z0-9]%*;

layout WS = [\ \t\n\r]*; o

rel[Id,Id] extractMetroGraph(loc source) =
{<from, to> | /Track t := parse(#start[System], source),
(Track) “<Id+ > <Id from> <Id to> <Id+ >;° := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {
writeFile(target,”digraph Metro { node [shape=box]
‘<for (<from, to> <- metro) {>

‘* <from> -\> <to><}>

Friday, January 11, 13

module Metro

start syntax System = “metro” “{” Track* tracks “}"; Cods
syntax Track = Id+ stations “;” ; rmﬁ&ﬁé_ﬂ
lexical Id = [A-Za-z][A-Za-z0-9]%*;

layout WS = [\ \t\n\r]*; o

rel[Id,Id] extractMetroGraph(loc source) =
{<from, to> | /Track t := parse(#start[System], source),
(Track) “<Id+ > <Id from> <Id to> <Id+ >;° := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {
writeFile(target,”digraph Metro { node [shape=box]
‘<for (<from, to> <- metro) {>
‘* <from> -\> <to><}>

‘'<for (st <- metro<from>, isHub(metro, st)){>

Friday, January 11, 13

module Metro

start syntax System = “metro” “{” Track* tracks “}"; Cods
syntax Track = Id+ stations “;” ; rmﬁ&ﬁé_ﬂ
lexical Id = [A-Za-z][A-Za-z0-9]%*;

layout WS = [\ \t\n\r]*; o

rel[Id,Id] extractMetroGraph(loc source) =
{<from, to> | /Track t := parse(#start[System], source),
(Track) “<Id+ > <Id from> <Id to> <Id+ >;° := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {
writeFile(target,”digraph Metro { node [shape=box]
‘<for (<from, to> <- metro) {>
‘* <from> -\> <to><}>
‘<for (st <- metro<from>, isHub(metro, st)){>

‘ <st> [shape=ellipse]<}>

Friday, January 11, 13

module Metro

start syntax System = “metro” “{” Track* tracks “}"; Cods
syntax Track = Id+ stations “;” ; rmﬁ&ﬁé_ﬂ
lexical Id = [A-Za-z][A-Za-z0-9]%*;

layout WS = [\ \t\n\r]*; o

rel[Id,Id] extractMetroGraph(loc source) =
{<from, to> | /Track t := parse(#start[System], source),
(Track) “<Id+ > <Id from> <Id to> <Id+ >;° := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {
writeFile(target,”digraph Metro { node [shape=box]
‘<for (<from, to> <- metro) {>
‘* <from> -\> <to><}>
‘<for (st <- metro<from>, isHub(metro, st)){>
‘ <st> [shape=ellipse]<}>

‘)i

Friday, January 11, 13

module Metro

start syntax System = “metro” “{” Track* tracks “}"; Cods
syntax Track = Id+ stations “;” ; rmﬁ&ﬁé_ﬂ
lexical Id = [A-Za-z][A-Za-z0-9]%*;

layout WS = [\ \t\n\r]*; o

rel[Id,Id] extractMetroGraph(loc source) =
{<from, to> | /Track t := parse(#start[System], source),
(Track) “<Id+ > <Id from> <Id to> <Id+ >;° := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {
writeFile(target,”digraph Metro { node [shape=box]
‘<for (<from, to> <- metro) {>
‘* <from> -\> <to><}>
‘<for (st <- metro<from>, isHub(metro, st)){>
‘ <st> [shape=ellipse]<}>

‘)i

Friday, January 11, 13

A ONE-SLIDE DSL

Code

Model

Picture

A ONE-SLIDE DSL

% What 1s the point?

¢ Rapid tool development
¢ No boilerplate
¢ No glue

¢ Done. Next!

Code

Model

Picture

Friday, January 11, 13

A ONE-SLIDE DSL

% What 1s the point?

A

¢ Rapid tool development

¢ No boilerplate Code

Al

% NNo glue

A

¢ No magic Model

% Done. Next!

s This works for Picture

Al

¢ all kinds of meta-programming tools

Al

¢ all kinds of languages

Friday, January 11, 13

LIBRARY DEVELOPMENT

Code

Model

Picture

LIBRARY DEVELOPMENT

A

- Type-sale access to resources such as bug
databases, version management systems,

spreadsheets, webservices
Code

Model

Picture

Friday, January 11, 13

LIBRARY DEVELOPMENT

A

- Type-sale access to resources such as bug
databases, version management systems,

spreadsheets, webservices
Code

A

¢ Front-ends for programming languages

Model

Picture

Friday, January 11, 13

.

« Type-safe access to resources such as bug

QUA

databases, version management systems,

spreadsheets, webservices
Code

—

* Front-ends for programming languages

1

-« Generic analyses; statistics, constraints, Model

satishiability, ...

Picture

Friday, January 11, 13

.

« Type-safe access to resources such as bug

QUA

databases, version management systems,

spreadsheets, webservices
Code

—

* Front-ends for programming languages

1

-« Generic analyses; statistics, constraints, Model

satishiability, ...

—_—— e ————

—

>¢ Visualization: one-stop-library for any visualization| p;ure

(graph, chart, browser, ...)

Friday, January 11, 13

/A

'« Type-sate access to resources such as bug

\'2

databases, version management systems,
spreadsheets, webservices

A

2¢ Front-ends for programming languages

-« Generic analyses; statistics, constraints, Model

satishiability, ...

—

>¢ Visualization: one-stop-library for any visualization| p;ure

(graph, chart, browser, ...)

P~

% (this 1s our main challenge at the moment)

Friday, January 11, 13

Current applications

® PHP, Lua static analysis of dynamic languages
® Modular/Language parametric refactoring
® Grammar engineering
® Domain specific languages
® Pacioli - Computational auditing
® Derric - Digital Forensics

® Design pattern diagnostics

E SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

Take home messages

® http://www.rascal-mpl.org
® for DYI tool building
® open-source
® CWI-SWAT
® studies real software (for example yours)
® bhuilds tools

® UvA Master Software Engineering

® part-time (2 year), full-time (1 year)

® (to be developed) “deep track” - domain specific SE tracks

E SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

http://www.rascal-mpl.org
http://www.rascal-mpl.org

Discussion

® For meta programming source code is data

® and, source code is big!

® so, is meta programming like big data?

® Common challenges, common solution patterns?’
® Are meta programming solutions relevant for bd?

® Are big data solutions relevant for meta prog?

® {C sh,wjould Rascal be extended to big data use cases?

E SWAT - SoftWare Analysis And Transformation

Friday, January 11, 13

