
Software Analysis And Transformation

Software Analysis and
Transformation

with
Rascal

BioAssist Meeting
Jan 11th, 2013
Jurgen Vinju

Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

• Centrum Wiskunde & Informatica

• Programming languages and systems

• Algol

• Python

• ASF+SDF, Rascal

• MonetDB

• Where mathematics meets informatics

• striving for fundamental (general) results

• motivated by and applied in industry, government, and the sciences

• W3C

• Software Improvement Group (spin-off)

• Master Software Engineering @{Universiteit van Amsterdam, VU, HvA}

Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

25 minutes
•What and why do we research software at CWI?

•How?

•Two possible discussions

•Question: how is bio software unique?

•Perspective: meta data programming?⌘

Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

Our team
Paul
Klint

Jurgen
Vinju

Tijs
v/d Storm

Bob
Fuhrer

Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

The problem with
software is not in
constructing it

(given sufficiently experienced architects & engineers)
Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

The problem is in
understanding

existing software in
order to improve it

(and a lot of software exists)
Friday, January 11, 13

We study software systems:
their design, their construction
and their inevitable evolution.

• learning to understand software systems
• learning to improve them
• focusing on complexity as the quality attribute
• studying the causes of software complexity
• studying solutions to get simpler software

• helping software engineers to be more effective
• shaping the future of programming languages and IDEs

(NASA mission control, apollo 13)
Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

Software is not so difficult to
understand, but it is extremely complex

(Cari Buziak, Celtic Knot)

Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

Software - large and complex structures
of computer instructions, written and
read by man, executed by computers.

“marked by a senseless, disorienting, often menacing
complexity...” (Infoplease.com)

Kafkaesque

Friday, January 11, 13

Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

Solution...

Tools
Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

Transformation & Analysis
• (de)optimization

• GOTO removal

• Bug fixing (Y2K)

• Porting

• Refactoring ...

•Model-to-code

• Languages

• Code-to-model

• Quality assessment

•Mining trends

• Dead code detection

• Bug detection

•Model checking

• Impact analysis

Raphael (1509)

(etc)
Friday, January 11, 13

http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael

SWAT - SoftWare Analysis And Transformation

Research

Tools

Application

“every week a new tool”

Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

Research

Tools

Software

Rascal

Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

Code

Model

Picture

GenerationExtraction

FormalizationVisualization

Transformation

Conversion

Analysis

Execution

Rendering

(Brueghel, Tower of Babel)

Rascal
is
a

DSL
for

meta
programming

Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

Diversity

Multi-disciplinary

Precision vs Efficiency

The three
challenges

Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

The key point of Rascal is
that it is a one-stop-shop;
no hacking stuff together,
just one consistent, typed,
and safe environment for
meta-programming for

“any” language.

Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

D.I.Y.

•That’s the goal

•We teach Rascal (master)

•We use Rascal

•Caveat: “Experimental”

Friday, January 11, 13

highlight:A one-slide DSL

Code

Model

Picture

Friday, January 11, 13

highlight:A one-slide DSL
metro {

 Centraal Waterloo Weesperplein Wibautstraat Amstel;

 Amstel Spaklerweg Overamstel Rai Zuid;

 Rai Zuid Amstelveenseweg Lelylaan Sloterdijk;

 Centraal Rokin FerdinandBol Zuid;

}

Code

Model

Picture

Friday, January 11, 13

highlight:A one-slide DSL
metro {

 Centraal Waterloo Weesperplein Wibautstraat Amstel;

 Amstel Spaklerweg Overamstel Rai Zuid;

 Rai Zuid Amstelveenseweg Lelylaan Sloterdijk;

 Centraal Rokin FerdinandBol Zuid;

}

{ <“Centraal”, “Waterloo”>,

Code

Model

Picture

Friday, January 11, 13

highlight:A one-slide DSL
metro {

 Centraal Waterloo Weesperplein Wibautstraat Amstel;

 Amstel Spaklerweg Overamstel Rai Zuid;

 Rai Zuid Amstelveenseweg Lelylaan Sloterdijk;

 Centraal Rokin FerdinandBol Zuid;

}

{ <“Centraal”, “Waterloo”>,

 <“Waterloo”,” Weesperplein”>, … }

Code

Model

Picture

Friday, January 11, 13

highlight:A one-slide DSL
metro {

 Centraal Waterloo Weesperplein Wibautstraat Amstel;

 Amstel Spaklerweg Overamstel Rai Zuid;

 Rai Zuid Amstelveenseweg Lelylaan Sloterdijk;

 Centraal Rokin FerdinandBol Zuid;

}

{ <“Centraal”, “Waterloo”>,

 <“Waterloo”,” Weesperplein”>, … }

Code

Model

Picture

digraph Metro {

 node [shape=box]

 Centraal -> Waterloo

 Waterloo -> Weesperplein ...

 Centraal [shape=ellipse]

}

Friday, January 11, 13

A one-slide DSL
Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;
Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

 ‘<for (<from, to> <- metro) {>

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

 ‘<for (<from, to> <- metro) {>

 ‘ <from> -\> <to><}>

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

 ‘<for (<from, to> <- metro) {>

 ‘ <from> -\> <to><}>

 ‘<for (st <- metro<from>, isHub(metro, st)){>

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

 ‘<for (<from, to> <- metro) {>

 ‘ <from> -\> <to><}>

 ‘<for (st <- metro<from>, isHub(metro, st)){>

 ‘ <st> [shape=ellipse]<}>

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

 ‘<for (<from, to> <- metro) {>

 ‘ <from> -\> <to><}>

 ‘<for (st <- metro<from>, isHub(metro, st)){>

 ‘ <st> [shape=ellipse]<}>

 ‘}”);

Code

Model

Picture

Friday, January 11, 13

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

 ‘<for (<from, to> <- metro) {>

 ‘ <from> -\> <to><}>

 ‘<for (st <- metro<from>, isHub(metro, st)){>

 ‘ <st> [shape=ellipse]<}>

 ‘}”);

Code

Model

Picture

Friday, January 11, 13

a one-slide DSL

Code

Model

Picture

Friday, January 11, 13

a one-slide DSL
What is the point?

Rapid tool development

No boilerplate

No glue

No magic

Done. Next!

Code

Model

Picture

Friday, January 11, 13

a one-slide DSL
What is the point?

Rapid tool development

No boilerplate

No glue

No magic

Done. Next!

This works for

all kinds of meta-programming tools

all kinds of languages

Code

Model

Picture

Friday, January 11, 13

Library development

Code

Model

Picture

Friday, January 11, 13

Library development
Type-safe access to resources such as bug
databases, version management systems,
spreadsheets, webservices

Code

Model

Picture

Friday, January 11, 13

Library development
Type-safe access to resources such as bug
databases, version management systems,
spreadsheets, webservices

Front-ends for programming languages
Code

Model

Picture

Friday, January 11, 13

Library development
Type-safe access to resources such as bug
databases, version management systems,
spreadsheets, webservices

Front-ends for programming languages

Generic analyses; statistics, constraints,
satisfiability, …

Code

Model

Picture

Friday, January 11, 13

Library development
Type-safe access to resources such as bug
databases, version management systems,
spreadsheets, webservices

Front-ends for programming languages

Generic analyses; statistics, constraints,
satisfiability, …

Visualization: one-stop-library for any visualization
(graph, chart, browser, …)

Code

Model

Picture

Friday, January 11, 13

Library development
Type-safe access to resources such as bug
databases, version management systems,
spreadsheets, webservices

Front-ends for programming languages

Generic analyses; statistics, constraints,
satisfiability, …

Visualization: one-stop-library for any visualization
(graph, chart, browser, …)

(this is our main challenge at the moment)

Code

Model

Picture

Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

Current applications
•PHP, Lua static analysis of dynamic languages

•Modular/Language parametric refactoring

•Grammar engineering

•Domain specific languages

•Pacioli - Computational auditing

•Derric - Digital Forensics

•Design pattern diagnostics

Friday, January 11, 13

SWAT - SoftWare Analysis And Transformation

Take home messages
• http://www.rascal-mpl.org

• for DYI tool building

• open-source

• CWI - SWAT

• studies real software (for example yours)

• builds tools

• UvA Master Software Engineering

• part-time (2 year), full-time (1 year)

• (to be developed) “deep track” - domain specific SE tracks

Friday, January 11, 13

http://www.rascal-mpl.org
http://www.rascal-mpl.org

SWAT - SoftWare Analysis And Transformation

Discussion

• For meta programming source code is data

• and, source code is big!

• so, is meta programming like big data?

• Common challenges, common solution patterns?

• Are meta programming solutions relevant for bd?

• Are big data solutions relevant for meta prog?

• {C,sh,w}ould Rascal be extended to big data use cases?

Friday, January 11, 13

