
Software Analysis And Transformation

Software Engineering:
the war against complexity

Jurgen J. Vinju
Centrum Wiskunde & Informatica (CWI)

CHAQ Change-centric Quality Assurance
open tool demonstrations event

at Antwerp University
on February 24th, 2015

SWAT - SoftWare Analysis And Transformation

CWI SWAT
CWI SWAT

SWAT - SoftWare Analysis And Transformation

Douglas DC-2 “KLM Uiver”

SWAT - SoftWare Analysis And Transformation

Great Design
We want great design for software too
• trustworthy
• cheap
• versatile
• simply beautiful

SWAT - SoftWare Analysis And Transformation

Great Design
We want great design for software too
• trustworthy
• cheap
• versatile
• simply beautiful

need

SWAT - SoftWare Analysis And Transformation

Great Design
• The DC-2 is obviously a high-quality design

• it does not crash and handles very well

• it does not wear quickly

• yet, it is easy to maintain

• it’s a small investment compared to what you can earn with it

• it can take on any cargo, including passengers, comfortably

• it’s both good in general and good in detail; every detail matters

• it’s very, very shiny

• We know pretty well how to describe, judge and improve airplan quality

SWAT - SoftWare Analysis And Transformation

Software Design
Most software does not have to actually fly,
so it’s not as hard to design as the DC-2…
Common belief that “software” is indeed “soft”

• Ugly software also works…

• If software breaks, we just fix it…
We know this is not true

SWAT - SoftWare Analysis And Transformation

Software Design
Most software does not have to actually fly,
so it’s not as hard to design as the DC-2…
Common belief that “software” is indeed “soft”

• Ugly software also works…

• If software breaks, we just fix it…
We know this is not true

So, what exactly is
good software design ?

and
why does it matter ?

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe
• if you can’t see it, it does not mean it does not exist

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe
• if you can’t see it, it does not mean it does not exist

• too small or too slow, like the black plague

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe
• if you can’t see it, it does not mean it does not exist

• too small or too slow, like the black plague

• too big or too fast, like the earth and the speed of light

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe
• if you can’t see it, it does not mean it does not exist

• too small or too slow, like the black plague

• too big or too fast, like the earth and the speed of light

• too scary, like a stranger

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe
• if you can’t see it, it does not mean it does not exist

• too small or too slow, like the black plague

• too big or too fast, like the earth and the speed of light

• too scary, like a stranger

• too subjective, like art

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe
• if you can’t see it, it does not mean it does not exist

• too small or too slow, like the black plague

• too big or too fast, like the earth and the speed of light

• too scary, like a stranger

• too subjective, like art

• Software

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe
• if you can’t see it, it does not mean it does not exist

• too small or too slow, like the black plague

• too big or too fast, like the earth and the speed of light

• too scary, like a stranger

• too subjective, like art

• Software

• consists of many small details

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe
• if you can’t see it, it does not mean it does not exist

• too small or too slow, like the black plague

• too big or too fast, like the earth and the speed of light

• too scary, like a stranger

• too subjective, like art

• Software

• consists of many small details

• evolves slowly but surely

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe
• if you can’t see it, it does not mean it does not exist

• too small or too slow, like the black plague

• too big or too fast, like the earth and the speed of light

• too scary, like a stranger

• too subjective, like art

• Software

• consists of many small details

• evolves slowly but surely

• too big to read and too fast to trace

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe
• if you can’t see it, it does not mean it does not exist

• too small or too slow, like the black plague

• too big or too fast, like the earth and the speed of light

• too scary, like a stranger

• too subjective, like art

• Software

• consists of many small details

• evolves slowly but surely

• too big to read and too fast to trace

• new concept to most people

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe
• if you can’t see it, it does not mean it does not exist

• too small or too slow, like the black plague

• too big or too fast, like the earth and the speed of light

• too scary, like a stranger

• too subjective, like art

• Software

• consists of many small details

• evolves slowly but surely

• too big to read and too fast to trace

• new concept to most people

• quality is contextual

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe
• if you can’t see it, it does not mean it does not exist

• too small or too slow, like the black plague

• too big or too fast, like the earth and the speed of light

• too scary, like a stranger

• too subjective, like art

• Software

• consists of many small details

• evolves slowly but surely

• too big to read and too fast to trace

• new concept to most people

• quality is contextual

Agenda make software quality known to and
observable by non-software-specialists, creating more

traction for investing in software quality

SWAT - SoftWare Analysis And Transformation

Complexity Dominates Software Quality

Software quality is about subjective requirements

correct, testable, efficient, secure, flexible,

but all of these depend on
COMPLEXITY
(¬simplicity)

SWAT - SoftWare Analysis And Transformation

Complexity Trumps
• Correctness & security:

• can’t verify what you can’t define

• debilitating high cost

• Testable:

• can’t test what’s not independend

• Efficiency:

• can’t pin-point causes of bottlenecks

• Flexible:

• can’t predict impact of change

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

• Engineering

• Maintenance (what can we do about it?)

• Construction (how can we prevent it?):

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

• Engineering

• Maintenance (what can we do about it?)

• Construction (how can we prevent it?):

• Conclusion (holistic perspective)

• Meta-tools

• Public/private collaboration

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

• Engineering

• Maintenance (what can we do about it?)

• Construction (how can we prevent it?):

• Conclusion (holistic perspective)

• Meta-tools

• Public/private collaboration

3examples

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

• Engineering

• Maintenance (what can we do about it?)

• Construction (how can we prevent it?):

• Conclusion (holistic perspective)

• Meta-tools

• Public/private collaboration

3examples
one-stop-shop

advertisement

SWAT - SoftWare Analysis And Transformation

www.ojuang.com

http://www.ojuang.com

SWAT - SoftWare Analysis And Transformation

If Kafka would write a book today…
This kind of software exists everywhere:

• 10K to 25M lines of code

• 2 to 10 programming languages and dialects

• 20 to 200 dependencies on library components and frameworks

• 10 to 1000 programmers

• 1 to 1M users

• 10 to 40 years lifetime

• “IT happens”

having a nightmarishly complex,
bizarre, or illogical quality

SWAT - SoftWare Analysis And Transformation

Software at scale

SWAT - SoftWare Analysis And Transformation

Software at scale
Common but hard questions are:

SWAT - SoftWare Analysis And Transformation

Software at scale
Common but hard questions are:

• How can this have worked, ever?

SWAT - SoftWare Analysis And Transformation

Software at scale
Common but hard questions are:

• How can this have worked, ever?

• What is it? What does it do? When? How? Why?

SWAT - SoftWare Analysis And Transformation

Software at scale
Common but hard questions are:

• How can this have worked, ever?

• What is it? What does it do? When? How? Why?

• Can it be fixed, extended, modified, replaced?

SWAT - SoftWare Analysis And Transformation

Software at scale
Common but hard questions are:

• How can this have worked, ever?

• What is it? What does it do? When? How? Why?

• Can it be fixed, extended, modified, replaced?

• At what cost? At what risk?

SWAT - SoftWare Analysis And Transformation

Software at scale
Common but hard questions are:

• How can this have worked, ever?

• What is it? What does it do? When? How? Why?

• Can it be fixed, extended, modified, replaced?

• At what cost? At what risk?

SWAT - SoftWare Analysis And Transformation

Software at scale
Common but hard questions are:

• How can this have worked, ever?

• What is it? What does it do? When? How? Why?

• Can it be fixed, extended, modified, replaced?

• At what cost? At what risk?

Common situations are:

SWAT - SoftWare Analysis And Transformation

Software at scale
Common but hard questions are:

• How can this have worked, ever?

• What is it? What does it do? When? How? Why?

• Can it be fixed, extended, modified, replaced?

• At what cost? At what risk?

Common situations are:

• lack of control leading to unbounded growth

SWAT - SoftWare Analysis And Transformation

Software at scale
Common but hard questions are:

• How can this have worked, ever?

• What is it? What does it do? When? How? Why?

• Can it be fixed, extended, modified, replaced?

• At what cost? At what risk?

Common situations are:

• lack of control leading to unbounded growth

• lack of predictability, leading to unbounded cost

SWAT - SoftWare Analysis And Transformation

Software at scale
Common but hard questions are:

• How can this have worked, ever?

• What is it? What does it do? When? How? Why?

• Can it be fixed, extended, modified, replaced?

• At what cost? At what risk?

Common situations are:

• lack of control leading to unbounded growth

• lack of predictability, leading to unbounded cost

• lack of long term perspective, leading to ill-informed decisions

SWAT - SoftWare Analysis And Transformation

Software at scale
Common but hard questions are:

• How can this have worked, ever?

• What is it? What does it do? When? How? Why?

• Can it be fixed, extended, modified, replaced?

• At what cost? At what risk?

Common situations are:

• lack of control leading to unbounded growth

• lack of predictability, leading to unbounded cost

• lack of long term perspective, leading to ill-informed decisions

• complex software is the enemy of quality

SWAT - SoftWare Analysis And Transformation

Software at scale
Software Complexity is exhibited by:
• heterogeneity (different kinds of parts)
• code volume (textually)
• dependence (semantics)
• encapsulation (nesting)
• distribution (deployment)
• evolution (versions)

Material Time Space
TimeTimeTime

Space
SpaceSpace

SWAT - SoftWare Analysis And Transformation

Complex or Complicated?
• Complicated = many interrelated parts

• linear: small change = small impact

• predictable: straight flow, local failure

• decomposable: manageable

• Complex = unpredictable & hard to manage

• emergent: whole is more than sum

• non-linear: small change = big impact?

• cascading failure

• hysteresis: you must understand its history

• indivisible

 [CSIS paper: "Organizing for a Complex World: The Way Ahead]

SWAT - SoftWare Analysis And Transformation

Complex or Complicated?
• Complicated = many interrelated parts

• linear: small change = small impact

• predictable: straight flow, local failure

• decomposable: manageable

• Complex = unpredictable & hard to manage

• emergent: whole is more than sum

• non-linear: small change = big impact?

• cascading failure

• hysteresis: you must understand its history

• indivisible

 [CSIS paper: "Organizing for a Complex World: The Way Ahead]

Software systems may
generate complex

behaviors, but the code
should not exhibit

“complex” attributes

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

• Engineering

• Maintenance (what can we do about it?)

• Construction (how can we prevent it?):

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

• Engineering

• Maintenance (what can we do about it?)

• Construction (how can we prevent it?):

• Conclusion (holistic perspective)

• Meta-tools

• Public/private collaboration

SWAT - SoftWare Analysis And Transformation

Science

Code & Info

Data & Stats

Plots

Extraction

Visualization

Analysis

SWAT - SoftWare Analysis And Transformation

Science

• Software Analytics

Code & Info

Data & Stats

Plots

Extraction

Visualization

Analysis

SWAT - SoftWare Analysis And Transformation

Science

• Software Analytics

• “debunking” common beliefs

Code & Info

Data & Stats

Plots

Extraction

Visualization

Analysis

SWAT - SoftWare Analysis And Transformation

Science

• Software Analytics

• “debunking” common beliefs

• “discovering” new truths by
observation/experimentation

Code & Info

Data & Stats

Plots

Extraction

Visualization

Analysis

SWAT - SoftWare Analysis And Transformation

Science

• Software Analytics

• “debunking” common beliefs

• “discovering” new truths by
observation/experimentation

• mining software repositories!
Code & Info

Data & Stats

Plots

Extraction

Visualization

Analysis

SWAT - SoftWare Analysis And Transformation

Science of SLOC & CC
• Source Lines of Code (SLOC)

• a measure of “volume”

• indicating effort of reading and writing, complexity

• Cyclomatic Complexity (CC)

• linearly independent control flow paths (how many splitting points)

• a measure of testing effort (test cases needed to cover all blocks)

• indicating effort of understanding, complexity, maybe…

Davy Landman, ICSM2014
Submitted to JSEP

SWAT - SoftWare Analysis And Transformation

Science of SLOC & CC
• Hypothesis: SLOC = a * CC + b ?

• both a measure of volume? which other dimension?

• should we even measure both?

• Literature on this on smaller corpora

• answer yes

• answer yes, when summed up to the file level

• answer yes, if we apply logarithmic transformations

• Let’s check this.

• because in theory a lot more code is possible

• because repeated sum (multiplication) is the essence of “linearity”

???

SWAT - SoftWare Analysis And Transformation

Scatter plots

R2 = 0.4
variance
increases

17.6 million methods

SWAT - SoftWare Analysis And Transformation

Transformations and Aggregation
Summing CC to file level

Sum makes correlation better…

A/B test shows that aggregation is indeed a cause of strong correlation

R2 = 0.7
variance

still
increases

SWAT - SoftWare Analysis And Transformation

The truth about CC/SLOC
• No linear correlation
• “Dissappointing" truth

• “Actionable”

• keep on measuring CC!

• Avoided the interpretation of CC

• see [SCAM2012] and [Abran ’06]

• Application

• Software Improvement Group

Code

Data & Stats

Plots

Extraction

Visualization

Analysis

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

• Engineering

• Maintenance (what can we do about it?)

• Construction (how can we prevent it?):

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

• Engineering

• Maintenance (what can we do about it?)

• Construction (how can we prevent it?):

• Conclusion (holistic perspective)

• Meta-tools

• Public/private collaboration

SWAT - SoftWare Analysis And Transformation

Maintenance
• Activities:

• Reverse engineering

• Re-engineering

• Visualization

• Refactoring

• “understanding” specimens

• about efficiency and effectivity

• tools for getting it right, faster

• tools for mitigating complexity

Code

Model

Picture

GenerationExtraction

Visualization

Transformation

Analysis

SWAT - SoftWare Analysis And Transformation

• Refactoring is improving
internal quality

• reducing complexity

• without changing
functionality.

Code

Model

Picture

Transformation

SWAT - SoftWare Analysis And Transformation

[Joshua Kerievsky, industriallogic.com]

http://industriallogic.com

SWAT - SoftWare Analysis And Transformation

Refactoring Tools
• help by:

• analyzing conditions

• transforming everywhere

• user interactions

• preview

• undo

Code

Model

Picture

GenerationExtraction

Visualization

Transformation

Analysis

SWAT - SoftWare Analysis And Transformation

Refactoring Tools
• help by:

• analyzing conditions

• transforming everywhere

• user interactions

• preview

• undo

Code

Model

Picture

GenerationExtraction

Visualization

Transformation

Analysis

The value and heavy lifting is in the highly detailed
model of programming language

syntax, static and dynamic semantics

SWAT - SoftWare Analysis And Transformation

SWAT - SoftWare Analysis And Transformation

SWAT - SoftWare Analysis And Transformation

• Many interesting refactorings tools in IDEs are
broken due to language evolution

SWAT - SoftWare Analysis And Transformation

• Many interesting refactorings tools in IDEs are
broken due to language evolution

• Most refactorings do not guarantee correctness
in the context of multi-threading [Schäfer,
ECOOP2010]

SWAT - SoftWare Analysis And Transformation

• Many interesting refactorings tools in IDEs are
broken due to language evolution

• Most refactorings do not guarantee correctness
in the context of multi-threading [Schäfer,
ECOOP2010]

• Ongoing work; Maria Gouseti

SWAT - SoftWare Analysis And Transformation

[Schäffer 2010]

SWAT - SoftWare Analysis And Transformation

Java

C#

Intermediate
(Synchronized)
Flow Program

Refactored
Flow Program

Equivalence
check

source-
to-source

source-
to-source

20 pages of code,
600 lines of code

[Rascal]

reuse

value

SIMPLICITY

complex

complex

SWAT - SoftWare Analysis And Transformation

• Refactoring can tools help improving quality

• They are complicated

• First simplify the tools

• Then simplify the code

vs

SWAT - SoftWare Analysis And Transformation

• Refactoring can tools help improving quality

• They are complicated

• First simplify the tools

• Then simplify the code

vs

What if programmers spend
less time on debugging

accidental problems and
spend it on hard features for

business value instead?

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

• Engineering

• Maintenance (what can we do about it?)

• Construction (how can we prevent it?):

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

• Engineering

• Maintenance (what can we do about it?)

• Construction (how can we prevent it?):

• Conclusion (holistic perspective)

• Meta-tools

• Public/private collaboration

SWAT - SoftWare Analysis And Transformation

Construction
• Correct-by-construction

• Variability by prediction

• Model Driven Engineering

• Software Architecture

• Formal Methods

• Programming languages

• “make better software”

Code

Model

Design

Generation

Formalization

Transformation

Analysis

SWAT - SoftWare Analysis And Transformation

Domain Specific Languages
• Requirements=domain analysis

• Separate what is fixed from
what is variable (predict)

• Language for domain experts

• No accidental complexity

• Multiple back-ends

• Technology evolution

• Different Audiences

Code

Model

Picture

Generation

Formalization

Analysis

SWAT - SoftWare Analysis And Transformation

Digital Forensics

• Digital evidence is messy

• Technology is highly variable (cameras, formats)

• Evidence needs to be collected from terabytes
within days

[Jeroen van den Bos, Tijs van der Storm]

SWAT - SoftWare Analysis And Transformation

Derric Language

https://github.com/jvdb/derric

https://github.com/jvdb/derric

SWAT - SoftWare Analysis And Transformation

Derric Results

• Just as fast or faster than hand-optimized C++ code
• Derric definitions retargeted to other algorithms
• Derric definitions transformed for speed trade-offs

[ICSE’11, ICMT’12,ECFMA’13]

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

• Engineering

• Maintenance (what can we do about it?)

• Construction (how can we prevent it?):

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

• Philosophy (what is software complexity?)

• Science (what is the truth about software complexity?)

• Engineering

• Maintenance (what can we do about it?)

• Construction (how can we prevent it?):

• Conclusion (holistic perspective)

• Meta-tools

• Public/private collaboration

SWAT - SoftWare Analysis And Transformation

Holistic & Reflective
• Key: software which reads and writes software

• Science

• Maintenance

• Construction

• Meta Domain

• tools share similar character

• transfer theory to industry

• transfer knowledge to research

SWAT - SoftWare Analysis And Transformation

Symbiosis

SWAT - SoftWare Analysis And Transformation

Symbiosis
• Maintenance and Construction need scientific and

industrial validation

• Maintenance and Construction need input from Mining

• Science needs “what if” scenarios; hypotheses

• Maintenance and Construction need programming
language models, analysis, visualization, generation, …

• Industry needs predictions, tools, expert engineers

• Academia needs data, domain expertise and researchers

SWAT - SoftWare Analysis and TransformationSWAT - SoftWare Analysis And Transformation

Research

Tools enable exchange

Engineering

Public/Private collaboration

SWAT - SoftWare Analysis And Transformation

Collaboration Portfolio• Science

• Software Improvement Group

• OSSMETER EU Project (www.ossmeter.org) (holistic quality assessment)

• Code (metrics), Meta-data (versions, bugs, questions), Natural language (sentiments)

• Maintenance

• Dutch Banking/Insurance companies (re-engineering, reverse engineering)

• High-tech industries (embedded systems, networks, television)

• Construction

• Games (EQUA project)

• NFI (“CSI Netherlands”, evidence collection)

• Tax office, financial auditing companies (fraud detection)

• Banks (configuration, verification, modeling & simulation)

• High-tech industries (protocols, state machines, configuration)

[logo’s omitted]

http://www.ossmeter.eu

SWAT - SoftWare Analysis And Transformation

Software
Industry & Research

thrive in the current climate of
public/private collaboration

=
opportunity + responsibility

SWAT - SoftWare Analysis And Transformation

Software
Industry & Research

thrive in the current climate of
public/private collaboration

=
opportunity + responsibility

SWAT - SoftWare Analysis And Transformation

Software
Industry & Research

thrive in the current climate of
public/private collaboration

=
opportunity + responsibility

SWAT - SoftWare Analysis And Transformation

Software
Industry & Research

thrive in the current climate of
public/private collaboration

=
opportunity + responsibility

SWAT - SoftWare Analysis and TransformationSWAT - SoftWare Analysis And Transformation

Research

Software Tools

Software Engineering

SWAT - SoftWare Analysis and TransformationSWAT - SoftWare Analysis And Transformation

Research

Software Tools

Software Engineering

SWAT - SoftWare Analysis and Transformation
(Brueghel, Tower of Babel)

SWAT - SoftWare Analysis and Transformation

Languages

(Brueghel, Tower of Babel)

SWAT - SoftWare Analysis and Transformation

Languages
Dialects

(Brueghel, Tower of Babel)

SWAT - SoftWare Analysis and Transformation

Languages
Dialects

Frameworks

(Brueghel, Tower of Babel)

SWAT - SoftWare Analysis and Transformation

Languages
Dialects

Frameworks
Libraries

(Brueghel, Tower of Babel)

SWAT - SoftWare Analysis and Transformation

Languages
Dialects

Frameworks
Libraries
Formats

(Brueghel, Tower of Babel)

SWAT - SoftWare Analysis and Transformation

Languages
Dialects

Frameworks
Libraries
Formats

no true standards

(Brueghel, Tower of Babel)

SWAT - SoftWare Analysis and Transformation

Languages
Dialects

Frameworks
Libraries
Formats

no true standards

challenge for meta programming

(Brueghel, Tower of Babel)

SWAT - SoftWare Analysis and TransformationSWAT - SoftWare Analysis And Transformation

Research

Software Tools

Software Engineering

Rascal

http://www.rascal-mpl.org

http://www.rascal-mpl.org

SWAT - SoftWare Analysis and TransformationSWAT - SoftWare Analysis And Transformation

Code

Model

Picture

GeneratioExtractio

FormalizatioVisualizatio

Transformatio

Conversio

Analysi

Executio

Renderin

Rascal
is
a

language
for

meta
programming

(which we apply
for science,

maintenance and
construction in research

and industry)

“risky” investment
10 year perspective

http://www.rascal-mpl.org

http://www.rascal-mpl.org

SWAT - SoftWare Analysis And Transformation

Conclusion

SWAT - SoftWare Analysis And Transformation

Conclusion
• Software Complexity Agenda

• Philosophy

• Science

• Maintenance

• Construction

SWAT - SoftWare Analysis And Transformation

Conclusion
• Software Complexity Agenda

• Philosophy

• Science

• Maintenance

• Construction

• Going meta is the key

• Tools enable collaboration

• Tools manage accidental complexity

• Community is necessary to mitigate cost

• Education needs to go meta

SWAT - SoftWare Analysis And Transformation

Conclusion
• Software Complexity Agenda

• Philosophy

• Science

• Maintenance

• Construction

• Going meta is the key

• Tools enable collaboration

• Tools manage accidental complexity

• Community is necessary to mitigate cost

• Education needs to go meta

• Let engineers focus on value

