Software Analysis And Transformation

Software Engineering:
the war against complexity

Jurgen J. Vinju
Centrum Wiskunde & Informatica (CWI)

CHAQ Change-centric Quality Assurance
open tool demonstrations event
at Antwerp University
on February 24th, 2015

W INVENTORS FOR THE DIGITAL WORLD

CWI SWAT

- ——

SWAT - SoftWare Analysis And Transformation

Douglas DC-2 “KLM Uiver”

Great Design

We want great design for software too
® trustworthy

® cheap

® versatile

® simply beautiful

Great Design

We need great design for software too
® trustworthy
® cheap
® versatile

® simply beautiful

Great Design

®* The DC-2 is obviously a high-quality design

® it does not crash and handles very well

it does not wear quickly

® yet, it is easy to maintain

® it’s a small investment compared to what you can earn with it

® it can take on any cargo, including passengers, comfortably

® it’s both good in general and good in detail; every detail matters
® it's very, very shiny

®* We know pretty well how to describe, judge and improve airplan quality

m SWAT - SoftWare Analysis And Transformation

Software Design

Most software does not have to actually fly,
so it’s not as hard to design as the DC-2...

Common belief that “software” is indeed “soft”
® Ugly software also works...
® If software breaks, we just fix it...

We know this IS not true

SWAT - SoftWare Analysis And Transformation

Software Design

S0, what exactly is
good software design !
and
why does it matter !

Software quality is hard to observe

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe

® if you can’t see it, it does not mean it does not exist

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe

® if you can’t see it, it does not mean it does not exist

®* too small or too slow, like the black plague

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe

® if you can’t see it, it does not mean it does not exist
®* too small or too slow, like the black plague

® too big or too fast, like the earth and the speed of light

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe

® if you can’t see it, it does not mean it does not exist
®* too small or too slow, like the black plague
® too big or too fast, like the earth and the speed of light

® too scary, like a stranger

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe

® if you can’t see it, it does not mean it does not exist
®* too small or too slow, like the black plague
® too big or too fast, like the earth and the speed of light
® too scary, like a stranger

® too subijective, like art

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe

® if you can’t see it, it does not mean it does not exist
®* too small or too slow, like the black plague
® too big or too fast, like the earth and the speed of light
® too scary, like a stranger
® too subijective, like art

® Software

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe

® if you can’t see it, it does not mean it does not exist
®* too small or too slow, like the black plague
® too big or too fast, like the earth and the speed of light
® too scary, like a stranger
® too subijective, like art
* Software

consists of many small details

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe

® if you can’t see it, it does not mean it does not exist
®* too small or too slow, like the black plague
® too big or too fast, like the earth and the speed of light
® too scary, like a stranger
® too subijective, like art
* Software

consists of many small details

* evolves slowly but surely

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe

® if you can’t see it, it does not mean it does not exist
®* too small or too slow, like the black plague
® too big or too fast, like the earth and the speed of light
® too scary, like a stranger
® too subijective, like art
* Software

consists of many small details

* evolves slowly but surely

® too big to read and too fast to trace

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe

® if you can’t see it, it does not mean it does not exist
®* too small or too slow, like the black plague
® too big or too fast, like the earth and the speed of light
® too scary, like a stranger
® too subijective, like art
* Software

consists of many small details

* evolves slowly but surely

® too big to read and too fast to trace

® new concept to most people

SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe

® if you can’t see it, it does not mean it does not exist
®* too small or too slow, like the black plague
® too big or too fast, like the earth and the speed of light
® too scary, like a stranger
® too subijective, like art
* Software

consists of many small details

* evolves slowly but surely

® too big to read and too fast to trace
®

new concept to most people

* quality is contextual

@ SWAT - SoftWare Analysis And Transformation

Software quality is hard to observe

® if you can'’t see it, it does not mean it does not exist
®* too small or too slow, like the black plague

® too big or too fast, like the earth and the speed of light

Agenda make software quality known to and

observable by non-software-specialists, creating more
traction for investing in software quality

* evolves slowly but surely

® too big to read and too fast to trace
o

new concept to most people

® quality is contextual

W SWAT - SoftWare Analysis And Transformation

Complexity Dominates Software Quality

Software quality is about subjective requirements

correct, testable, efficient, secure, flexible,

but all of these depend on

COMPLEXITY

{ Wikipedia
< Wikipedia

Simplicity

Complexity

Complexity is generally used to characterize
something with many parts where those
paris interact with each other in multiple

ways. T'he study of these complex linkages is

the main goal of complex systems theory.

(simplicity)

Thesaurus

complicated adjective
the complicated election rules: COMPLEX,

intricate, involved. convoluted. tangled.

elaborate) impenetrable, knotty, tricky, 1..

Simplicity is the state or quality of being
simple. Something which is easy to
understand or explain is simple, in contrast
to something complicated. Alternatively, as
Herbert A. Simon suggested, something is
simple or complex depending on the way we
choose to describe it. In some uses, simplicity
can be used tb imply beauty, burity, or
clarity. Simplicity may also be used in a
negative connotation to denote a deficit or
insufficiency of nuance or complexity of a
thing, relative to what is supposed to be
required.

SWAT - SoftWare Analysis And Transformation

Complexity Trumps

Correctness & security:

® can’t verify what you can’t define

®* debilitating high cost

Testable:

® can’t test what’s not independend

Efficiency:

® can’t pin-point causes of bottlenecks

Flexible:

® can’t predict impact of change

SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)

® Science (what is the truth about software complexity?)

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)
® Science (what is the truth about software complexity?)
® Engineering

® Maintenance (what can we do about it?)

® Construction (how can we prevent it?):

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)
® Science (what is the truth about software complexity?)
® Engineering

® Maintenance (what can we do about it?)

® Construction (how can we prevent it?):

®* Meta-tools

®* Public/private collaboration

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)
® Science (what is the truth about software complexity?)
® Engineering
Maintenance (what can we do about it?) Q,b
/o
® Construction (how can we prevent it?): /@@
® Conclusion (holistic perspective)

®* Meta-tools

®* Public/private collaboration

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

® Science (what is the truth about software complexity?)
® Engineering

.o o Sy Y
Maintenance (what can we do about it?) Q/b
0

® Construction (how can we prevent it?): /@@
® Conclusion (holistic perspective) O/)G
< My
* Meta-tools O'l'@ o
/?/\.9 0\\9 4
®* Public/private collaboration @/)) O,O
7
4

m SWAT - SoftWare Analysis And Transformation

Software is not so difficult to
understand, but it is extremely complex

N WY L T '

http://www.ojuang.com

3894 lines

: " - X
5 X - . >
4 2 X 'y E d
o W ’ : :
- v ', -) .
: : . S < 3 A 4
v » h e :‘V. A"m' -
3 - o ",_‘. _.‘f"' Erg e
’ "2} C

174 cases

3894 lines

: " - X
5 X - . >
4 2 X 'y E d
o W ’ : :
- v ', -) .
: : . S < 3 A 4
v » h e :‘V. A"m' -
3 - o ",_‘. _.‘f"' Erg e
’ "2} C

174 cases

If Kafka would write a book today...

This kind of software exists everywhere:

® 10K to 25M lines of code

® 2 to 10 programming languages and dialects

® 20 to 200 dependencies on library components and frameworks

10 to 1000 programmers

1 to 1M users
Franz Kafka

10 to 40 years lifetime ™

Franz Kafka was a German-language writer of novels
and short stories, regarded by critics as one of the
most influential authors of the 20th century. Wikipedia

“IT happens”

Born: July 3, 1883, Prague, Czech Republic

having a nightmarishly complex,

bizarre, or illogical quality

SWAT - SoftWare Analysis And Transformation

Software at scale

Software at scale

Common but hard questions are:

E SWAT - SoftWare Analysis And Transformation

Software at scale

Common but hard questions are:

e How can this have worked, ever?

E SWAT - SoftWare Analysis And Transformation

Software at scale

Common but hard questions are:
e How can this have worked, ever?

e What is it? What does it do? When? How? Why?

E SWAT - SoftWare Analysis And Transformation

Software at scale

Common but hard questions are:
e How can this have worked, ever?

e What is it? What does it do? When? How? Why?

e Can it be fixed, extended, modified, replaced?

E SWAT - SoftWare Analysis And Transformation

Software at scale

Common but hard questions are:
e How can this have worked, ever?

e What is it? What does it do? When? How? Why?

e Can it be fixed, extended, modified, replaced?

e At what cost? At what risk?

E SWAT - SoftWare Analysis And Transformation

Software at scale

Common but hard questions are:
e How can this have worked, ever?

e What is it? What does it do? When? How? Why?

e Can it be fixed, extended, modified, replaced?

e At what cost? At what risk?

E SWAT - SoftWare Analysis And Transformation

Software at scale

Common but hard questions are:
e How can this have worked, ever?

e What is it? What does it do? When? How? Why?

e Can it be fixed, extended, modified, replaced?

e At what cost? At what risk?

Common situations are:

E SWAT - SoftWare Analysis And Transformation

Software at scale

Common but hard questions are:
e How can this have worked, ever?

e What is it? What does it do? When? How? Why?

e Can it be fixed, extended, modified, replaced?

e At what cost? At what risk?

Common situations are:

e lack of control leading to unbounded growth

E SWAT - SoftWare Analysis And Transformation

Software at scale

Common but hard questions are:
e How can this have worked, ever?

e What is it? What does it do? When? How? Why?

e Can it be fixed, extended, modified, replaced?

e At what cost? At what risk?

Common situations are:
e lack of control leading to unbounded growth

e lack of predictability, leading to unbounded cost

SWAT - SoftWare Analysis And Transformation

Software at scale

Common but hard questions are:
e How can this have worked, ever?

e What is it? What does it do? When? How? Why?

e Can it be fixed, extended, modified, replaced?

e At what cost? At what risk?

Common situations are:
e lack of control leading to unbounded growth
e lack of predictability, leading to unbounded cost

e lack of long term perspective, leading to ill-informed decisions

E SWAT - SoftWare Analysis And Transformation

Software at scale

Common but hard questions are:
e How can this have worked, ever?

e What is it? What does it do? When? How? Why?

e Can it be fixed, extended, modified, replaced?

e At what cost? At what risk?

Common situations are:
e lack of control leading to unbounded growth
e lack of predictability, leading to unbounded cost
e lack of long term perspective, leading to ill-informed decisions

e complex software is the enemy of quality

E SWAT - SoftWare Analysis And Transformation

Software at scale

Software Complexity is exhibited by:
® heterogeneity (different kinds of parts)
code volume (textually)
dependence (semantics)
encapsulation (nesting)
distribution (deployment)
evolution (versions)

@ &

SWAT - SoftWare Analysis And Transformation

Complex or Complicated?

* Complicated = many interrelated parts

®* linear: small change = small impact

®* predictable: straight flow, local failure

® decomposable: manageable

* Complex = unpredictable & hard to manage

®* emergent: whole is more than sum
non-linear: small change = big impact?
cascading failure

® hysteresis: you must understand its history

®* indivisible

[CSIS paper: "Organizing for a ComplexWorId The Way Ahead]

m SWAT - SoftWare Analysis And Transformation

Complex or Complicated?

* Complicated = many interrelated parts
® linear: small change = small impact

®* predictable: straight flow, local failure

Software systems may
generate complex

®* decomposable: manageable

* Complex = unpredictable & hard to manage

behaviors, but the code
should not exhibit
“complex’ attributes

®* emergent: whole is more than sum
non-linear: small change = big impact?
®* cascading failure

® hysteresis: you must understand its history

® indivisible T e
i. .
s‘*‘

x\“
W [CSIS paper: "Organizing for a ComplexWorId The Way Ahead]
SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)

® Science (what is the truth about software complexity?)

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)
® Science (what is the truth about software complexity?)
® Engineering

® Maintenance (what can we do about it?)

® Construction (how can we prevent it?):

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)
® Science (what is the truth about software complexity?)
® Engineering

® Maintenance (what can we do about it?)

® Construction (how can we prevent it?):

®* Meta-tools

®* Public/private collaboration

m SWAT - SoftWare Analysis And Transformation

Science

Code & Info

Extraction

I e Data & Stats

Visualization

LA DIOPTRIQVE, LES METEORES,;
ZA MECHANIQVE,
ET LA MVSID\VB. ngmksﬂhndemwg.
PAR RENE‘ DESCARTES

;.'.»

Science

" DIOI’TRIQZ‘B, ZES METEORES,
| ZA MECHANIQVE,
ET LA MVSID\VB. Qui font des effsis de cette METHODE,
PAR RENE‘ DESCARTES

* Software Analytics

Code & Info

Extraction

I e Data & Stats

Visualization

Science

CONDVIRE SA RAISON,
la vericé dans les Sciences,

LA DIOPTRIQVE, LES METEORES,
ZA MECHANIQVE,

® " b : . ET LA M’VSI-KV‘YB. Qui font des effais de cette METHODE,
debunking” common beliefs Bl e e

latr

* Software Analytics

\ =i "UQuc . ULYS L. ‘qx\—il 1CLC
2 - it A Ao » - .

Code & Info

Extraction

I e Data & Stats

Visualization

Science

POVR BIEN CONDVIRE SA '
. Sche vetm'!daps les Sctcnccs. {,.

* Software Analytics 24 DIOPTRIQYE, LES METEORES;

ZA MECHANIQVE,

® nA” ' ET 24 MPSIQYV E, Qui fontdeseffais de cette METHODE,
debunking” common beliefs by DESCARTES

® “discovering” new truths by
observation/experimentation

Code & Info

Extraction

I e Data & Stats

Visualization

Science

Software Analytics
“debunking” common beliefs

“discovering” new truths by
observation/experimentation

mining software repositories!

Code & Info

Extraction

I e Data & Stats

Visualization

- — . am— o - . .
. —_ m
* ’
- ~
)) W'y o

DE LA METHOD
If)ogk MVIRE SA fmsorg

. & chercher la vericé dans les Sciences,

4 DIOPTRIQVE, LES METEORES;
LA MECHANIQVE,

 E7 LA MVSIQYVE, Qui fontdeseffsis de cette METHODE,
PAR RENE DESCARTES.

1! SCll. QUG . Ul — &y} ‘-4\\-“ AL 'P’ - .
- - e . - . At omuand 4 . - a 4
o O 2 -7 -
- s y
- e - - e "-‘
ry e o e / / . o v 5~
—_ o 7 et

.
llllll

Science of SLOC & CC

Davy Landman, ICSM20 14

Submitted to |SEP
® Source Lines of Code (SLOC)

® a measure of “volume”

®* indicating effort of reading and writing, complexity

® Cyclomatic Complexity (CC)

® linearly independent control flow paths (how many splitting points)

® a measure of testing effort (test cases needed to cover all blocks)

®* indicating effort of understanding, complexity, maybe...

m SWAT - SoftWare Analysis And Transformation

Science of SLOC & CC

® Hypothesis: SLOC=a*CC + b ?

® both a measure of volume? which other dimension?

® should we even measure both? 22? |
® Literature on this on smaller corpora | :{.‘,f.?;-"".?""
o %) . ';,,:,;,;.;--:- .

answer yes

® answer yes, when summed up to the file level

® answer yes, if we apply logarithmic transformations

® Let’s check this.
® because in theory a lot more code is possible

®* because repeated sum (multiplication) is the essence of “linearity”

m SWAT - SoftWare Analysis And Transformation

CcC

Scatter plots

SO0 - 100~
10-
| I y
-
< .
400 - v 0-
v
I~]
_|-
-0~
300 -
LR
0 1 10 100 1000 4000
SLOC

200~

R2 =04

100~

variance
Increases

0=

LOC

| 7.6 millsion methods

SWAT - SoftWare Analysis And Transformation

Transformations and Aggregation

Summing CC to file level

1500+

R2=0.7
variance

8 1000+

still
INCcreases

500+

0 2000 4000 6000

Sum makes correlation better...

A/B test shows that aggregation is indeed a cause of strong correlation

E SWAT - SoftWare Analysis And Transformation

The truth about CC/SLOC

® No linear correlation
* “Dissappointing" truth

® “Actionable” Extraction

®* keep on measuring CC!
Analysis [D LT 7 Stats

® Avoided the interpretation of CC
® see [SCAM2012] and [Abran ’06]'"szten
® Application

® Software Improvement Group €13

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)

® Science (what is the truth about software complexity?)

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)
® Science (what is the truth about software complexity?)
® Engineering

® Maintenance (what can we do about it?)

® Construction (how can we prevent it?):

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)
® Science (what is the truth about software complexity?)
® Engineering

® Maintenance (what can we do about it?)

® Construction (how can we prevent it?):

®* Meta-tools

®* Public/private collaboration

m SWAT - SoftWare Analysis And Transformation

Maintenance

® Activities:
® Reverse engineering
® Re-engineering
® Visualization
® Refactoring

® “understanding” specimens

® about efficiency and effectivity
® tools for getting it right, faster

® tools for mitigating complexity

\ CVL_

Transformation

Extraction Generation

Analysis

Visualization

SWAT - SoftWare Analysis And Transformation

Transformation

® Refactoring is improving
internal quality

® reducing complexity

® without changing
functionality.

Picture

m SWAT - SoftWare Analysis And Transformation

public abstract class ibstractCollection implements Collection {

puhl1c void addill (AbstractCollection)
if (c instanceof Set]‘\>

//#} ELSE 1f [c 1nstanceof Llst] {)

O/

Set s
ffor

- (Set)es
(int i=0; i/< s.size():

1++)

if ('contalns[C;getElementAtilﬂ])

add(s.getElementit (i)) ;

= (Listjc;
i< 1.

LlSt €L
“for (1nt i=0;

=1

add(l.get (i)); =

[e (lcontams@(IR {

(l_else if (c 1nstanceof Hap) ;1__

Map m (Map]c,
for (int i=0; i<m.size(); i++)
add@keys[i] ;, mowvalues[iy) 2

}

e — -

{

™\ Duplicated
Code

{

I
Duplicated \
_— Code

P
Alternative Classes

with
Different Interfaces

Switch Statement

—— |nappropriate Intimacy

Long Method

[Joshua Kerievsky, industriallogic.com]

SWAT - SoftWare Analysis And Transformation

http://industriallogic.com

Refactoring Tools

¢ help by Transformation |

® analyzing conditions

® transforming everywhere
y

Extraction Gener:

® user Iinteractions

Analysis

® preview

® un d O Visualization

m SWAT - SoftWare Analysis And Transformation

Refactoring Tools

¢ h e I p by : Transformation

® analyzing conditions

® transforming everywhere

Extraction Gener:

® user Iinteractions

Analysis

® preview

® un d O Visualization

The value and heavy lifting is in the highly detailed
model of programming language
syntax, static and dynamic semantics

m SWAT - SoftWare Analysis And Transformation

nteres ting refactorings tools |

oken C u'--~c anguage evolut on

o 3
o ”

SWAT - SoftWare Analysis And Transformation

® Many interesting refactorings tools in IDEs-are
broken due to language evolution

® Most refactorings de:not guarantee correctness
in the context of multi-threading [Schafer,
ECOOP2010]

SWAT - SoftWare Analysis And Transformation

® Many interesting refactorings tools in IDEs-are
broken due to language evolution

® Most refactorings de:not guarantee correctness
in the context of multi-threading [Schafer,
ECOOP2010]

®* Ongoing work; Maria Gouseti

SWAT - SoftWare Analysis And Transformation

class C2 implements TM { class C2 implements TM {

static class A { static class A {
synchronized static void m() {} synchronized static void m() {}
synchronized static void n() {} }
} static class B {
static class B { synchronized static void n() {}
}
@Override éOverride
public void m1() { public void m1() {
synchronized (B.class) { A.m(); } synchronized (B.class) { A.m(); }
}
@Override éOverride
public void m2() { public void m2() {
synchronized (A.class) { A.n(); } synchronized (A.class) { B.n(); }
} }
} }
Original Refactored

MoVE METHOD introduces a deadlock, when m1() locks on B.class and m2() locks on A.class and
both threads are blocked on the lock held by the other one [Schaffer 201 O]

SWAT - SoftWare Analysis And Transformation

source-

to-source value

Equivalence
complex / check
DI B Intermediate Refactored
reuse (Synchronized) Elow Prosram
complex gl Flow Program >

3 20 pages of code,
600 lines of code

[Rascal]

SWAT - SoftWare Analysis And Transformation

source-
to-source

® Refactoring can tools help improving quality

®* They are complicated
® First simplify the tools

®* Then simplify the code

m SWAT - SoftWare Analysis And Transformation

® Refactoring can tools help improving quality

® They are complicated

What if programmers spend

®* First Slmpllfy the tools less time on debugging
accidental problems and
® Then S|mp||fy the code spend it on hard features for

business value instead!?

@ SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)

® Science (what is the truth about software complexity?)

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)
® Science (what is the truth about software complexity?)
® Engineering

® Maintenance (what can we do about it?)

* Construction (how can we prevent it?):

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)
® Science (what is the truth about software complexity?)
® Engineering

® Maintenance (what can we do about it?)

* Construction (how can we prevent it?):

®* Meta-tools

®* Public/private collaboration

m SWAT - SoftWare Analysis And Transformation

Construction

Correct-by-construction

Variability by prediction

Model Driven Engineering §
Software Architecture

L
Formal Methods %

Programming languages £=—4

R

*make better software”

m SWAT - SoftWare Analysis And Transformation

Domain Specific Languages

®* Requirements=domain analysis

® Separate what is fixed from
what is variable (predict)

®* Language for domain experts
®* No accidental complexity

® Multiple back-ends

® Technology evolution

®* Different Audiences

SWAT - SoftWare Analysis And Transformation

Digital Forensics

[Jeroen van den Bos, Tijs van der Storm]

5 6 T = 9 10
/A U
U B

E 2a

=

&»&
&_

] 2
clusters: %

contents: E,

12 14) (§]
NI

R Y AR
F.

-
~J
p—

Fig. 1. An example set of contiguous clusters on a storage device

® Digital evidence is messy
®* Technology is highly variable (cameras, formats)

® Evidence needs to be collected from terabytes
within days

E SWAT - SoftWare Analysis And Transformation

Derric Language

1 format PNG

2 strings ascii
3 sign false

1 unit byte

5 size 1

6 type integer
ssequence

o Signature IHDR
10 Chunks+ IDAT IDAT* Chunks*
11 IEND

12

13structures
1aSignature {

15 marker: 137,80,78,71,13,10,26,10;

16 }
17

18 Chunk {

1o length: lengthOf(chunkdata) size 4;

20 chunktype: !"IDAT" size 4;
21 chunkdata: size length;

22 crc: checksum(algorithm="crc32-ieee",
23 init="allone",start="1sb",

24 end="invert",store="msbfirst",
25 fields=chunktype+chunkdata)

26 size 4;

28 IHDR = Chunk {

20 chunktype: "IHDR";
30 chunkdata: {

31 width: !0 size 4;
32 height: '0 size 4;

33 bitdepth: 1|2|4|8]|16;
34 colourtype: 0|2]|3|4]|6;

35 compression: 0;
36 filter: 0;

37 interlace: 0|1;
38}

30 }

40

41 IDAT = Chunk {

42 Chunktype: "IDAT";

143 chunkdata: compressed(
44 algorithm="deflate",
45 layout="z1lib",

46 fields=chunkdata)
a7 size length;

49
50 IEND {
51 length: 0 size 4;

52 chunktype: "IEND";
53 Ccrc: OxAE, 0Ox42, 0x60, 0x82;

https://github.com/jvdb/derric

SWAT - SoftWare Analysis And Transformation

https://github.com/jvdb/derric

Derric Results

Component [mplementation | Size (SLOC)
Grammar RASCAL 52
JPEG description DERRIC 92
PNG description DERRIC 58
Structure-based matching (code generator) | RASCAL 510
Bifragment gap (runtime) Java 72
Brute force (runtime) Java 44
Utilities (runtime) Java 256

Total: 1084

® Just as fast or faster than hand-optimized C++ code
® Derric definitions retargeted to other algorithms
® Derric definitions transformed for speed trade-offs

[ICSE’I |, ICMT’ 1 2,ECFMA’| 3]

E SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)

® Science (what is the truth about software complexity?)

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)
® Science (what is the truth about software complexity?)
® Engineering

® Maintenance (what can we do about it?)

® Construction (how can we prevent it?):

m SWAT - SoftWare Analysis And Transformation

Software Complexity Agenda

* Philosophy (what is software complexity?)
® Science (what is the truth about software complexity?)
® Engineering

® Maintenance (what can we do about it?)

® Construction (how can we prevent it?):

®* Meta-tools

®* Public/private collaboration

m SWAT - SoftWare Analysis And Transformation

Holistic & Reflective

® Key: software which reads and writes software
® Science
®* Maintenance
® Construction
®* Meta Domain

® tools share similar character

® transfer theory to industry

® transfer knowledge to research CE:\CE:\@
W SWAT - SoftWare Analysis And Transformation

Symbiosis

— SWAT - SoftWare Analysis And Transformation

Symbiosis

Maintenance and Construction need scientific and
iIndustrial validation

Maintenance and Construction need input from Mining
Science needs “what if” scenarios; hypotheses

Maintenance and Construction need programming
language models, analysis, visualization, generation, ...

Industry needs predictions, tools, expert engineers

Academia needs data, domain expertise and researchers

SWAT - SoftWare Analysis And Transformation

Public/Private collaboration

Tools enable exchange

——

Research Engineering

I —— S — S

m SWAT - SoftWare Analysis And Transformation

® Science

Collaboration Portfolio €

* Software Improvement Group

®* OSSMETER EU Project (www.ossmeter.org) (holistic quality assessment)

® Code (metrics), Meta-data (versions, bugs, questions), Natural language (sentiments)

® Maintenance OSSMETER

Automated Measurement and Analysis of Open Source Software

®* Dutch Banking/Insurance companies (re-engineering, reverse engineering)
® High-tech industries (embedded systems, networks, television)
* Construction

® Games (EQUA project) [IOgO 3 Omltted]

® NFI (“CSI Netherlands”, evidence collection)
Tax office, financial auditing companies (fraud detection)

Banks (configuration, verification, modeling & simulation)

High-tech industries (protocols, state machines, configuration)

E SWAT - SoftWare Analysis And Transformation

http://www.ossmeter.eu

Software
Industry & Research
thrive In the of
public/private collaboration

opportunity + responsibility

Software
Industry & Research
thrive In the of
public/private collaboration

opportunity + responsibility

Software
Industry & Research
thrive In the of
public/private collaboration

opportunity + responsibility

Software
Industry & Research
thrive In the of
public/private collaboration

opportunity + responsibility
T

Software Tools

"

Research Software Engineering

II—— e ——

E SWAT - SoftWare Analysis And Transformation

‘ Software Tools

- — ——

Research Software Engineering
fEALe SWAT - SoftWare Analysis And Transformation

BA
-

“a

)

()
e
(]
—
Y
)
o
¢
3
0

FIREATS

Attt o

L
RLIT
.-'o(’!-.q.\ﬁ 47 bl

b

%8

)
e
(]
—
Y
)
o
¢
3
0

FIREATS

Attt o

v ¢ L . ;
L Pk N
. ~ . - : ‘ - L o -
L v-l‘. . -_ . 4 vl
W § tecaaaiai o S
1S . a-f.. : _.:.
e v 2 W <~ a0 Y
o - 'hs 1...-,. R » .

A

Languages

he

bel

-

(o]
o
Y

e

e

()

3

L

"

ry

3
iy
.'ﬁ

. 1
LA
"

S

Languages

bel

-

(o]
o
Y

e

e

()

3

L

"

ry

3
iy
.'ﬁ

. 1
L
"

S

Languages
: 3 .‘ t
works

Diale
Frame

1 Gl R reyenr Y- o

o5 T

S

"

Languages

i SRR .‘((cic:c.&m L ohadln

o5 T

S

.-&__'

Languages

Libraries

Frameworks
Libraries
Formats

.re 3
SRR g

7 S

.=

T4

4 g™

At P arah g giav g it S

’;;h.uog..}.‘ ‘\‘ b

=

> o

!
> .

Tower of--Babe,I__)_..é-

-
p

-

Languages
Diale
Frameworks

Libraries
Formats

i I

T RRARR

ol . e L 3 . 1 S o BIATR ‘5-1

challenge for meta programming
o B oaaey o g 7\

xR T 5
T S5 e e -
P, 3 o ".‘* &

Tower of -Babef'l__:)_é

™

http://www.rascal-mpl.org

Software Tools

S — ——

Research Software Engineering

I — D —

m SWAT - SoftWare Analysis And Transformation

http://www.rascal-mpl.org

Rascal
IS
a
language
for
meta
programming

(which we apply
for science,
maintenance and
construction In research
and industry)

“risky” investment
10 year perspective

http://www.rascal-mpl.org

Transformatio

I Executio

Extractio Generatio

Analysi

Visualizatio Formalizatio

Renderin Conversio

SWAT - SoftWare Analysis And Transformation

http://www.rascal-mpl.org

Conclusion

SWAT - SoftWare Analysis And Transformation

Conclusion

* Software Complexity Agenda
® Philosophy
® Science
® Maintenance

® Construction

m SWAT - SoftWare Analysis And Transformation

Conclusion

* Software Complexity Agenda
® Philosophy
® Science
® Maintenance

® Construction

® Going meta is the key
® Tools enable collaboration
® Tools manage accidental complexity
®* Community is necessary to mitigate cost

® Education needs to go meta

m SWAT - SoftWare Analysis And Transformation

Conclusion

* Software Complexity Agenda
® Philosophy
® Science
® Maintenance

® Construction

® Going meta is the key
® Tools enable collaboration
® Tools manage accidental complexity
®* Community is necessary to mitigate cost

® Education needs to go meta

® Let enaineers focus on value

m SWAT - SoftWare Analysis And Transformation

