
A broad introduction to 
Mining Software Repositories
(and some related subjects)

Software Evolution 2012-2013
Jurgen Vinju

Monday, November 26, 12



Mining Software Repositories

Why?

What?

How?

Example!

Monday, November 26, 12



Repository Mining is a ...

a potentially very fruitful

but expensive 

and certainly non-trivial

software engineering activity
Monday, November 26, 12



MSR Definition

[1] Kadi et al. “A survey and taxonomy of approaches for mining software 
repositories in the context of software evolution” Journal of Software 
Maintenance and Evolution: Research and Practice. 2007; 19:77-131. Wiley 
InterScience

“A broad class of investigations into the examination of 
software repositories. Here software repositories refer 
to artifacts that are produced and archived during 
software evolution. They include sources such as
the information stored in source code version-control 
systems ... requirements/bug-tracking systems ..., and 
communication archives ....” [1]

Monday, November 26, 12



MSR is about evolution

Software versions -> Time

Changes -> Differences

Data -> Source Code, Bug reports, ...

Meta Data -> Who, when, where, why

Monday, November 26, 12



MSR includes...

data recovery

data analysis

data measurement

data mining

static source analysis

statistical analysis (correlation)

and then some...

Monday, November 26, 12



Why MSR?

Research

To verify theories of software evolution in general

To search for general theories of software evolution

Application

To exploit theories of software evolution for a 
particular system or family of systems

Monday, November 26, 12



La methode 
scientifique
Scepticism: doubt is the first 
certainty

How to convince your sceptical 
self and your sceptical colleagues 
of a truth once discovered?

As objective as possible

As accessible as possible

Descartes (
1637)

Monday, November 26, 12



Scientific Methods

A scientific method consists of the collection of 
data through observation and experimentation, 
and the formulation and testing of hypotheses [2]

Three ingredients of scientific methods

Observation

Formulation of theory

Testing (falsification)

[2] Merriam Webster Dictionary

Karl Popper

Monday, November 26, 12

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Observation
http://en.wikipedia.org/wiki/Observation
http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Hypothesis
http://en.wikipedia.org/wiki/Hypothesis
http://en.wikipedia.org/wiki/Scientific_method#cite_note-2
http://en.wikipedia.org/wiki/Scientific_method#cite_note-2


MSR + scientific method

Software “exists” like butterflies in nature exist

Study it using similar scientific method

Reconstruct reality rather than construct new 
reality (more common in computer science)

Weird for computer scientists (education!)

Hard to ask the right questions

Monday, November 26, 12



Questions?
Theories?

Science starts with good 
questions

What do we want to know 
about software evolution 
anyway? What theories do we 
want tested?

Please brainstorm about this 
for 5-10 minutes

Raphael (1509)

School of Athens (with Plato & Aristotle)

Monday, November 26, 12

http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael
http://en.wikipedia.org/wiki/Raphael


Question topics [3]

Developer efforts and social networks

Change impact and propagation (co-evolution)

Trends and hotspots (risk management)

Fault and defect analysis & prediction

[3] M. D’Ambros et al.  Analysing Software Repositories
to Understand Software Evolution

Monday, November 26, 12



Example questions [1]
Which coding style leads to more bugs?

Which refactorings prevent design degredation?

How and why does software grow/shrink?

What is the relation between team size and velocity?

What evolutionary couplings are there? (which classes 
change together?)

When are bugs introduced? (on Friday?)

Are source code clones bad for maintainability?

[1] Kadi et al. “A survey and taxonomy of approaches for mining software repositories in the context of software evolution” Journal of 
Software Maintenance and Evolution: Research and Practice. 2007; 19:77-131. Wiley InterScience

Monday, November 26, 12



Hypotheses

Take a question/theory, design an 
hypothetical MSR experiment which could 
invalidate it

What are the major challenges in 
implementing this experiment?

Take 10 minutes

Monday, November 26, 12



“EASY MSR”

Extract
Analyze
SYnthesize

an 
intermediate 

representation 
“models” 

versions and 
meta data 

about versions
report/visualization

of outcome

data of several 
versions is extracted

Monday, November 26, 12



Extract
Analyze*
Synthesize

layering,
filtering &
aggregation

for scalability’s
sake

Monday, November 26, 12



HowTo MSR: Challenges
Selection of input data

Accuracy of input data

Memory size

Speed

Traceability

Reproducability

Accuracy of analysis results

Monday, November 26, 12



What is a version?

SVN, GIT, CVS, …?
Monday, November 26, 12



What is a change?

SVN, GIT, CVS, …?
Monday, November 26, 12



How to detect a ... ?
design pattern

refactoring
architectural change

clone
...

Monday, November 26, 12



How to detect evolution 
of a ... ?

design pattern
refactoring

architectural change
clone

...
Monday, November 26, 12



Hypothesis testing & 
binary classification

How many times does 
your test get it right, 
how many times does it 
get it wrong?

[wikipedia]
Monday, November 26, 12



Measuring accuracy

TPR: recall (how many of the 
right results do you have)

PPV: precision (how correct 
are the results that you have)

You need a benchmark or a 
“golden standard”

Monday, November 26, 12



Measuring correlation

Can be measured in particular cases (for 
example using Spearman’s coefficient)

Correlation does not imply causation, but it 
may indicate it 

Use statistical correlation to form hypotheses

Correlation metrics may assume certain 
statistical models (be careful!)

Monday, November 26, 12



Measuring evenness

See how measurements are distributed (suchs as 
number of methods per class)

Usually not “normal”, so hard to measure in terms of 
averages and deviations

Use Lorenz curves and Gini coefficients to summarize 
evenness does not assume statistical model

Check out: Nierstraz et al. “Comparative Analysis of 
Evolving Software Systems Using the Gini. 
Coefficient” ICSM 2009

Monday, November 26, 12



Lorenz & Gini

Gini = A / (A + B)
Gives you versions of interest

Monday, November 26, 12



Dealing with uncertainty

You have an interesting theory

You have a lot of (messy) data

You have a fuzzy detection method 

Problem: How to come to the right conclusion?

Answer: focus on invalidation (objectivity)

Answer: focus on visualization (accessibility)

Monday, November 26, 12



One case of MSR
An empirical study on the maintenance of source code clones [4]

Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, 
Massimiliano Di Penta

Questions:

How are clones maintained? (consistently/inconsistently, 
synchronous/asynchronous)

How do bugs correlate with these classes of clones?

How do we measure how clones are maintained?

How do clone detection algorithm parameters affect our 
results?

Monday, November 26, 12



Tracing clone classes 
through revisions

It all starts from “change sets” (logical commit)

A clone class is a set of cloned pieces of code

A clone class evolves with the code

You need to invent a smart way to “diff” clone 
classes, given any weird change to the code

Then you classify what happens to each class

Monday, November 26, 12



Clone Evolution Patterns [4]
Empir Software Eng (2010) 15:1–34 7

Fig. 2 a–d Clone evolution patterns for two clone fragments CFx and CFy

can occur when programmers clone code fragments and then adapt them to
implement new pieces of functionality. However, IE can also occur when, for
some reason, a clone change is propagated outside our interval of observation.
For this reason, although in the interval of observation considered IE and LP
are mutually exclusive, it cannot be guaranteed that, outside such an interval,
all clone fragments belonging to the clone class become consistent again, thus
resulting in a late propagation. As shown later in the case study we experienced
that the interval of observation considered is always much greater than the time
for late propagations, then the latter case occurs very rarely.

Concrete examples of the above evolution patterns, detected on the four systems
considered in our empirical study, are discussed in Section 4.5. The identification of
clone evolution patterns is performed through a sequence of three steps, aimed at
analyzing the evolution of clone elements at increasing levels of granularity, i.e., (a)
clone section pair evolution, (b) clone fragment pairs evolution, and (c) clone class
evolution. With the proposed approach, one can study the evolution at the desired
level or granularity, although one is often interested—as we do in our empirical
study—to investigate how a whole clone class evolves. Figure 3 shows these steps in
the case of a clone class composed of three clone fragments CF1, CF2, and CF3. Our
differencing approach (Canfora et al. 2007) identifies clone section pairs by matching
similar code elements between two clone fragments. First, as it will be discussed in
Section 2.3.1, the approach classifies the evolution of each clone section pair. Then,
considering the evolution patterns for all the clone sections belonging to the same
pair of clone fragments, the approach identifies—as explained in Section 2.3.2—the
evolution pattern for each possible pair of clone fragments belonging to a clone class.
Finally, this information is used—as explained in Section 2.3.3—to determine the
evolution pattern of the whole clone class.

Monday, November 26, 12



Clone Class Pairs

Between each two consecutive versions find 
the pairs of identical clone classes

Then decide in which evolution pattern they 
fall (previous slide)

Then, over all versions, decide which is the 
dominant pattern for each clone class

Then, analyse data, summarize and find 
correlations to confirm or reject hypotheses

Monday, November 26, 12



Research Questions

What is the percentage of clones following 
the different evolution patterns?

Is there any relation between the clone 
finding parameters and the evolution 
pattern?

Is there any relation between evolution 
patterns and bug fixing?

Monday, November 26, 12



Results (from [4])

18 Empir Software Eng (2010) 15:1–34

Table 3 Number of evolution
patterns detected on different
systems with different clone
detection approaches

System CO IE L2 LP UN All

AST-based
ArgoUML 0.9 155 96 10 9 10 280
JBoss 3.2.2 436 564 17 31 53 1,101
OpenSSH 2.9.9 71 24 0 4 1 100
PostgreSQL 6.5 110 114 16 46 3 289

Token-based
ArgoUML 0.9 136 79 7 10 10 242
JBoss 3.2.2 209 353 3 19 17 601
OpenSSH 2.9.9 9 12 1 0 0 22
PostgreSQL 6.5 19 27 3 5 0 54

4.2 RQ2: Is There any Relationship Between the Clone Granularity and the
Evolution Pattern Followed by the Clone?

Table 4 shows, for each system, the number of evolution patterns detected for
different levels of granularity, i.e., (a) block, (b) method (function for the C lan-
guage), and (c) class (file for the C language). We perform a Pearson Chi-Square
test on a contingency table, where columns represent evolution patterns and rows
granularity levels (H0: the proportion of clones having different granularity levels
does not change among evolution patterns). For clones detected with the token-

TokenAST
UNLPL2IECOUNLPL2IECO

60

50

40

30

20

10

0%
 o

f c
lo

ne
 e

vo
lu

tio
n 

pa
tt

er
ns

 

TokenAST
UNLPL2IECOUNLPL2IECO

60

50

40

30

20

10

0%
 o

f c
lo

ne
 e

vo
lu

tio
n 

pa
tt

er
ns

 

(a) ArgoUML (c) JBoss

TokenAST
UNLPL2IECOUNLPL2IECO

50

40

30

20

10

0%
 o

f c
lo

ne
 e

vo
lu

tio
n 

pa
tt

er
ns

 

TokenAST
UNLPL2IECOUNLPL2IECO

80

70

60

50

40

30

20

10

0%
 o

f c
lo

ne
 e

vo
lu

tio
n 

pa
tt

er
ns

(b) PostgreSQL (d) OpenSSH

Fig. 5 a–d Clone evolution patterns among different clone detectors (figures on bars indicate
percentages)

Monday, November 26, 12



Conclusions

Clones are often consistently edited 
immediately

Clones are often used for templating (IE)

Clone detection methods do not influence 
evolution pattern much

Relation to bug fixes show observable 
differences between evolution patterns, but 
nothing conclusive.

Monday, November 26, 12



Threats to validity

construct validity: do they measure/observe the right 
things?

internal validity: do they draw the right conclusions 
from the results?

external validity: does this mean anything for 
anybody else?

reliability validity: is this reproducible?

Monday, November 26, 12



Threats to validity

construct validity: do they measure/observe the right 
things?

internal validity: do they draw the right conclusions 
from the results?

external validity: does this mean anything for 
anybody else?

reliability validity: is this reproducible?

Read the paper and think about it
Monday, November 26, 12



MSR with Rascal

Rascal has an experimental language 
independent model for repository analysis 
(SVN, CVS and GIT) available online

Waruzj Shahbazian. "Rminer: A integrated 
model for repository mining using Rascal” 
2010. Universiteit van Amsterdam

It can be “easily” combined with other 
analysis written in Rascal

Monday, November 26, 12



MSR with Rascal

Rascal has an experimental language 
independent model for repository analysis 
(SVN, CVS and GIT) available online

Waruzj Shahbazian. "Rminer: A integrated 
model for repository mining using Rascal” 
2010. Universiteit van Amsterdam

It can be “easily” combined with other 
analysis written in Rascal

Monday, November 26, 12



Take home messages

Empirical research = all about evidence, not proof

Mining Software Repositories = Field of opportunity

Monday, November 26, 12


