
1Introduction to Software Evolution

Introduction to
Software Evolution

Jurgen Vinju
Magiel Bruntink
Vadim Zaytsev

Ashim Shahi
Anastasia Izmaylova
Atze van der Ploeg

Davy Landman
Michael Steindorfer

2Introduction to Software Evolution

Where are you?

● International conference in Indianapolis U.S.A
– SPLASH (OOPSLA):Object-oriented programming
– SLE: Software Language Engineering
– GPCE: Generative programming
– Parsing@SLE: interactive workshop

● Papers by our group:
– “Micro-Machinations: A DSL for Game Economies”

– “Micropatterns in Grammars”

– “Safe Specification of Operator Precedence Rules”

– “The State of the Art in Language Workbenches”

mailto:Parsing@SLE

3Introduction to Software Evolution

Courses

● Intro (Jurgen)
● Rascal (Jurgen)
● Metrics (Magiel)
● Design Patterns (Jurgen)
● Visualization (Jurgen/Paul)
● Mining (Magiel)
● Refactoring (Jurgen)
● Technical Debt (Jurgen)

4Introduction to Software Evolution

Global Schedule
Lectures
Mon: 09:00 – 11:00 in SP G2.10, all weeks

Lab (deadlines in the pdf on Blackboard Assignments)
Mon: 11:00 – 17:00 in G0.23-G0.25 and G0.10-G0.12
Tue: 09:00 – 17:00 in G0.23-G0.25 and G0.10-G0.12
 Prefer G0.23 and let us know if you are in G0.10!
 Be there!
Paper sessions (essay deadlines in the same pdf)

Every other week

Mon: SP G2.04, G3.05, Tue: G2.04, D1.162

5Introduction to Software Evolution

Grades

● Series 0 has no grade, but it trains you for the...
● required Online lab test (Rascal) > 50% correct
● 1/3 paper sessions, required > 5.5
● 1/3 Series 1, required > 5.5
● 1/3 Series 2, required > 5.5
● Overall average required > 5.5

6Introduction to Software Evolution

Today!
● 9-11 Introduction to Software Evolution & Rascal

– Online
– Next courses will be in person

● 11-17:00 Getting started with Series 0
– this includes lunchtime
– assistants available!
– In G0.23-G0.25 and G0.10-G0.12

● Next week we continue with quick Rascal course

7Introduction to Software Evolution

Lab project (Series 1)
● Work in pairs
● Software Assessment

– Measuring source code
– To find indications of good/bad quality
– Predicting hard to maintain, costly, source code

● Software Metrics
– Mechanics using Rascal
– Definition and correctness ?!
– Aggregation ?!
– Interpretation ?!

8Introduction to Software Evolution

Lab project (Series 2)

● Reverse Engineering
– From source code to design
– Visualization

● Software Visualization
– Mechanics using Rascal
– Software Exploration
– Software Understanding
– Link with metrics

9Introduction to Software Evolution

Lab project (Advanced Track)

● Starts with Series 2
● On demand, personalized
● Instead of series 2
● Research on Android API evolution

– Mining infra-structure
– Analysis
– Compare with related work

● Very challenging!
● Grading: a successful project gives extra points

10Introduction to Software Evolution

Paper sessions

● There is no book with this course
● Instead we read papers about software evolution

and discuss them
● You write an outline of a paper: stepping stone

towards a great masters thesis!
● Feedback from teachers and lab assistants
● Blackboard -> Assignments

11Introduction to Software Evolution

Roadmap

● The Software Volcano
● Introduction to Software Maintenance &

Evolution
● Introduction to Software Renovation
● Introduction to Program Analysis and

Transformation
● Wrapping up

12Introduction to Software Evolution

Software Volcano

Mt. Etna, Sicily, Italy

13Introduction to Software Evolution

The Software Volcano: Languages

● For mainframe applications 80% is COBOL!
● Figures taken from Capers Jones (Software

Productivity Research)

Distribution of languages in use, worldwide

Language Used in % of total
 COBOL 30
 Assembler 10
 C 10
 C++ 10
 550 other languages 40

14Introduction to Software Evolution

● The total volume of software is estimated at
7 * 109 function points

● 1 FP = 128 lines of C or 107 lines of COBOL
● The volume of the volcano is

– 750 Giga-lines of COBOL code, or
– 900 Giga-lines of C code

Software Volcano: Volume

Printed on paper we can wrap planet Earth
9 times!

15Introduction to Software Evolution

Software Volcano: Defects

● Observation:
– on average 5 errors (bugs) per function point
– includes errors in requirements, design, coding,

documentation and bad fixes
● The software volcano, world-wide, contains

 5 * 7 * 109 Bugs = 35 Giga Bugs

This means 6 bugs per human being on
planet Earth!

16Introduction to Software Evolution

Work distribution of programmers

Year New projects Enhancements Repairs Total
1950 90 3 7 100
1960 8,500 500 1,000 10,000
1970 65,000 15,000 20,000 100,000
1980 1,200,000 600,000 200,000 2,000,000
1990 3,000,000 3,000,000 1,000,000 7,000,000
2000 4,000,000 4,500,000 1,500,000 10,000,000
2010 5,000,000 7,000,000 2,000,000 14,000,000
2020 7,000,000 11,000,000 3,000,000 21,000,000

Now: 60% of the programmers work on enhancement and repair

In 2020: only 30% of all programmers will work on new software

17Introduction to Software Evolution

Message

● When an industry approaches 50 years of age it
takes more workers to perform maintenance than
to build new products (ex: automobile industry)

● Maintenance and renovation of existing software
become more and more important: avoid that the
software volcano explodes

● Making sure existing software keeps its value is
an interesting intellectual challenge. Do not
dismiss dealing with other people's code.

18Introduction to Software Evolution

Roadmap

● The Software Volcano
● Introduction to Software Maintenance &

Evolution
● Introduction to Software Renovation
● Introduction to Program Analysis and

Transformation
● Course Overview Software Evolution

19Introduction to Software Evolution

Roadmap

● The Software Volcano
● Introduction to Software Maintenance &

Evolution
● Introduction to Software Renovation
● Introduction to Program Analysis and

Transformation
● Wrapping up

20Introduction to Software Evolution

Introduction to
Software Maintenance & Evolution

● What is Software Maintenance?
● Why does software evolve?
● Problems in Software Maintenance
● Solutions

21Introduction to Software Evolution

What is Software Maintenance?

● Modification of a software product after delivery
to correct faults, to improve performance or other
attributes, or to adapt the product to a modified
environment (IEEE 1219, 1993)

● Observe that:
– maintenance is seen as after-the-fact activity
– no integration with software development process in

this definition

22Introduction to Software Evolution

Another Classification

● Software maintenance
– Changes are made in response to changed requirements

– The fundamental software structure is stable

● Architectural transformation
– The architecture of the system is modified

– Generally from a centralised to a distributed architecture

● Software re-engineering
– No new functionality is added to the system but it is

restructured and reorganised to facilitate future changes

23Introduction to Software Evolution

Why systems change

● Correct errors
● Business pull:

– Business / IT alignment
– Requirements change (legislation, new insights, efficiency)
– Re-organization
– Mergers / take-overs
– New products, marketing actions
– Market hypes (CRM, ERP, BPR, STP)

● Technology push:
– Internet
– Mobile
– Updates of operating system, development environment, databases
– Hardware

24Introduction to Software Evolution

Categories of Maintenance

● Corrective: needed to correct actual errors
● Adaptive: result from changes in the environment
● Perfective: modifications to meet the expanding

needs of the user
● Enhancement = Adaptive + Perfective
● Point to ponder: does this classification help?

25Introduction to Software Evolution

Cost Distribution per Category

Corrective
20%

Adaptive
25%

Perfective
55%

26Introduction to Software Evolution

Feature creep

27Introduction to Software Evolution

Costs of Maintenance

● Usually greater than development costs

– 2 times to 100 times depending on the application
● Affected by both technical and non-technical factors
● Increases as software is maintained

– Maintenance corrupts the software structure, making further
maintenance more difficult

● Ageing software can have high support costs

– old languages, compilers etc.
● Think of your software as continuously evolving

28Introduction to Software Evolution

Cost factors

● Team stability
● Contractual responsibility
● Staff skills
● Program age and structure

29Introduction to Software Evolution

Costs and Complexity

● Predictions of maintainability costs may be made by
assessing the complexity of system components.

● Most maintenance effort is spent on a relatively small
number of system components.

● Complexity depends on
– Complexity of control structures;

– Complexity of data structures;

– Object, method (procedure) and module size

– Dependencies

– Understandability & Changeability

30Introduction to Software Evolution

Lehman’s Laws for
Software Evolution

● Lehman observed that software evolves
● Law of Continuing Change: software needs to

change in order to stay useful
● Law of Increasing Complexity: the structure of a

program deteriorates as it evolves
– the structure of a program degrades until it becomes

more cost effective to rewrite it

31Introduction to Software Evolution

An Example (Civility)

● Software for city administration; Old, successful,
reliable
➔ large client base

● Complex code (performance, size, many changes)
● No clear separation between Data, Business,

Logic and User Interface
➔ High costs for maintenance, hard to change

● Need to change (internet, legislation, process
management, CRM)
➔ Re-engineering and migration

32Introduction to Software Evolution

Legacy systems

• Ideally, for distribution, there should be a clear
separation between the user interface, the system
services and the system data management

• In practice, these are usually intermingled in
older legacy systems

Database

User interface

Services

Ideal model for distribution Real legacy systems

Database

User interface

Services

33Introduction to Software Evolution

Spaghetti code
Start: Get (Time-on, Time-off, Time, Setting, Temp, Switch)

if Switch = off goto off
if Switch = on goto on
goto Cntrld

off: if Heating-status = on goto Sw-off
goto loop

on: if Heating-status = off goto Sw-on
goto loop

Cntrld: if Time = Time-on goto on
if Time = Time-off goto off
if Time < Time-on goto Start
if Time > Time-off goto Start
if Temp > Setting then goto off
if Temp < Setting then goto on

Sw-off: Heating-status := off
goto Switch

Sw-on:Heating-status := on
Switch: Switch-heating
loop: goto Start

34Introduction to Software Evolution

Some observations from Civility

● Current architecture used to the max
● New requirements require new architecture
● The more stable the functionality, the more the

knowledge diminishes
● These systems are really good!
● But nobody knows why anymore...
● So the maintenance process must be very strict:

– maintenance costs high and flexibility low
● Limited use of tooling

35Introduction to Software Evolution

Why Systems Survive

● Organisations have huge investments in their
software systems

● Systems are critical business assets
● Organizations depend on the system
● Organizations know how to use their systems
● (Re) building systems is high risk

36Introduction to Software Evolution

 Business versus IT in
Software Maintenance

• Low costs

• Opportunistic / flexible
• Quick decision making
• Reliability in short time
• IT should understand business
• Protect initial investment
• Standardization
• Problems with IT systems

make companies careful
• Quantity

• Need for adequate resources

• Requires planning / choices
• Hard to predict costs, impact

• Time to deliver quality
• Business should understand IT
• Want something new
• Creativity
• Unpredictability
• Why all these procedures?
• Quality

37Introduction to Software Evolution

Major problems in
Software Maintenance

● Inadequate testing methods
● Performance measurement difficulties
● Knowledge management / documentation
● Adapting to the rapidly changing business

environment
● Large backlog

38Introduction to Software Evolution

Major problems in
Software Management

● Lack of skilled staff
● Lack of managerial understanding and support
● Lack of maintenance methodology, standards,

procedures & tools
● Program code is complex and unstructured
● Integration of overlapping/incompatible systems

39Introduction to Software Evolution

Solutions

● Better architecture
● Incremental (agile)
● Batch large-scale source-to-source renovation
● Automated regression testing (why?)
● Knowledge management
● Automated code inspection
● Better organization -> ITIL / CMM

40Introduction to Software Evolution

Towards a
Software Maintenance Process

● Maintenance should be organized as a structured
process (??)

● ISO/IEC 12207: a standard maintenance process
● ITIL: Information Technology Infrastructure Library
● CMMI: Capability Maturity Model
● Gives an impression of the scope and details of the

maintenance process
● Read about it, but it is not my cup of tea

41Introduction to Software Evolution

ITIL Pointers

● Pink Elephant : www.pinkelephant.com
● ITIL (Libraries) & Service Management directories:

www.itil-itsm-world.com/
● British government ITIL: www.ogc.gov.uk/index.asp?

id=2261
● techrepublic.com.com/5100-6329-1058517.html - Tech

Republic article (subscription required)
● KU’s Program & Service Management Office:

www.ku.edu/~psmo

http://www.itil-itsm-world.com/
http://www.itil-itsm-world.com/
http://techrepublic.com.com/5100-6329-1058517.html
http://www.ku.edu/~psmo

42Introduction to Software Evolution

Intermezzo; The Metaphor Game

● “Software Maintenance” and “Software
Evolution” are metaphors.

● Why these words?
– Does software wear and tear?
– Does software procreate and does software select

partners?
● What is the intented meaning?

43Introduction to Software Evolution

Roadmap

● The Software Volcano
● Introduction to Software Maintenance &

Evolution
● Introduction to Software Renovation
● Introduction to Program Analysis and

Transformation
● Wrapping up

44Introduction to Software Evolution

Roadmap

● The Software Volcano
● Introduction to Software Maintenance &

Evolution
● Introduction to Software Renovation
● Introduction to Program Analysis and

Transformation
● Wrapping up

45Introduction to Software Evolution

Introduction to
Software Renovation

● Legacy system:
– (information) system that defeats further maintenance,

adjustment or renewal due to its size and age
– requires increasing maintenance costs

● System renovation:
– understanding and improvement of legacy systems
– by means of reverse engineering, program

understanding, design recovery, transformation, ...

46Introduction to Software Evolution

Forward Engineering

ImplementationImplementation

SpecificationSpecification

RequirementsRequirements

GoalsGoals

47Introduction to Software Evolution

Reverse Engineering

ImplementationImplementation

SpecificationSpecification

RequirementsRequirements

GoalsGoals

ImplementationImplementation

SpecificationSpecification

RequirementsRequirements

GoalsGoals

Legacy system Renovated system

48Introduction to Software Evolution

A Typical Legacy System

● Different implementation languages
● Job Control Language scripts serve as glue
● Part of programs/databases are obsolete
● Some source text lost or incomplete; version

unknown
● Documentation is incomplete or obsolete

~ 1-100 MLOC

49Introduction to Software Evolution

Typical Renovation Questions

● What is the architecture of this system
● Can we improve its structure?
● Can we generate documentation for it?
● Can we migrate it from COBOL 74 to

COBOL85?
● Can we connect it to Internet?
● Can we migrate it to a client/server architecture?

50Introduction to Software Evolution

Synergy between Renovated and New
Components

Legacy codeLegacy code New business
requirements

New business
requirements

Extracted components New components

51Introduction to Software Evolution

Renovation =
Analysis + Transformation

Legacy codeLegacy code

Renovated systemRenovated system

AnalysisAnalysis

TransformationTransformation

Documentation, object model, types,
metrics, visualization, components, ...

Documentation, object model, types,
metrics, visualization, components, ...

Transformation
rules

Transformation
rules

Human
insight +

tools

52Introduction to Software Evolution

Software Renovation

● Analysis (partly supported by tools):
– architecture recovery
– system understanding

● Transformation (mostly supported by tools):
– systematic repairs
– code improvement/dialect conversion/translation
– architecture improvement/change

53Introduction to Software Evolution

Software Renovation: Analysis

● Extraction of procedure calls and call graph
● Database usage between programs
● Dataflow analysis (at program and system level)
● Type analysis
● Cluster and concept analysis
● Metrics
● Visualization

54Introduction to Software Evolution

Software Renovation: analysis

Legacy codeLegacy code

Documentation, object model, types,
metrics, visualization, components, ...

Documentation, object model, types,
metrics, visualization, components, ...

ExtractExtract

AbstractAbstract

ViewView

FactsFacts

Enriched by
semantic
queries

Elementary
facts

55Introduction to Software Evolution

The Analysis Funnel

Legacy codeLegacy code

Lexical analysisLexical analysis

Syntactic analysisSyntactic analysis

Semantic analysisSemantic analysis

FactsFacts

Volume inhibits
detailed analysis

of all code

56Introduction to Software Evolution

Example: DocGen

● Given the sources of a legacy system, web-based
documentation is generated containing
– overall architecture
– module dependencies & internal structure modules
– database usage
– simple metrics

● Fact: code reading finds two times more defects
than testing

57Introduction to Software Evolution

Software Renovation: Transformation

Legacy codeLegacy code

Renovated systemRenovated systemTransformationTransformationTransformation
rules

Transformation
rules

FactsFacts

58Introduction to Software Evolution

Typical Transformations

● Year 2000
● Euro
● Extending bank account numbers to 10 digits
● Goto elimination
● OO restructuring
● Dialect translation (Cobol 74 -> Cobol 85)
● Language conversion (Cobol -> Java)

59Introduction to Software Evolution

Observations

● Most legacy systems are multi-lingual
● A generic approach is needed to describe all

forms of analysis and transformations for all
required languages

● Languages like COBOL and PL/I are big:
– getting the right grammar is difficult
– many parsing techniques break down

60Introduction to Software Evolution

Needed Technologies

● Lexical scanning & Parsing
● Fact repository & queries
● Search
● Replacement

61Introduction to Software Evolution

Take home messages

● Software evolves in order to stay useful
● Maintenance (= 80% enhancement) enables this

evolution
● Maintenance should be based on a well-defined

process
● Software renovation is needed to extend the life

cycle of a system
● Software renovation can be supported by tools

62Introduction to Software Evolution

The role of Rascal

● Rascal is designed for all this work
– Parsing and lexical analysis
– Relation modeling (facts!)
– Source code locations (links!)
– Patterns (search)
– Visits (replacement)

● Libraries
– Visualization
– SVN, Git, SSH access
– Etc. etc.

63Introduction to Software Evolution

Roadmap

● The Software Volcano
● Introduction to Software Maintenance &

Evolution
● Introduction to Software Renovation
● Introduction to Program Analysis and

Transformation
● Wrapping up

64Introduction to Software Evolution

Roadmap

● The Software Volcano
● Introduction to Software Maintenance &

Evolution
● Introduction to Software Renovation
● Introduction to Program Analysis and

Transformation
● Wrapping up

65Introduction to Software Evolution

Introduction to
Program Analysis and Transformation
● Lexical syntax
● Context-free syntax
● Static semantics
● Dynamic semantics
● Static versus dynamic

analysis

● Control flow graph
● Data flow graph
● Call graph
● Examples of

transformations

66Introduction to Software Evolution

Lexical Syntax

● What are the keywords (if, return, while)

● What are identifiers (rather_long_identifier)

● What are the constants (123, “a string”, false)
● What are the layout symbols (space, tab, newline)

● What are the comments (// ..., /* ... */)
● Related notions:

– lexical grammar (describes lexical syntax)
– lexical scanner (recognizes lexical syntax)

67Introduction to Software Evolution

Context-free Syntax

● What is the structure of declarations/statements
 (if <expr> then <stat> else <stat> end)

● Related notions:
– grammar (describes the context-free syntax)
– syntax analyser, parser (recognizes context-free

syntax and builds a parse tree)
– parse tree, syntax tree (tree that describes structure of

a text, including all layout, keywords, etc.)
– abstract syntax tree (parse tree with textual elements

like layout, keywords, etc. removed)

68Introduction to Software Evolution

Static Semantics
● Pre-execution meaning of language elements:

– are all variables declared?
– are all expressions type correct?
– are all procedure/methods called with correct

parameters?
● Static semantics is conservative: run-time values

are unknown and all possibilities should be
considered

● Related notions:
– type checking, compile-time analysis, model

checking, abstract interpretation

69Introduction to Software Evolution

Dynamic Semantics

● Execution-time meaning of language elements:
– what is the effect of an assignment?
– what is the value of an expression?
– which method should be called?
– what is the result of executing a procedure call?

● Execution behaviour depends on specific input
values

● Related notions:
– run-time semantics, interpreters, compilers

70Introduction to Software Evolution

Static versus Dynamic Analysis, 1

● Many analysis problems can be solved with only
static analysis:
– count number of class declarations
– count number of goto statements
– determine the methods with more than 25 lines of

code
– determine the methods with McCabe complexity

larger than 3

71Introduction to Software Evolution

Static versus Dynamic Analysis, 2

● For other analysis problems, static analysis can
only provide a conservative approximation:
– call graph construction
– dead code determination

● Some language constructs hinder static analysis:
– run-time method selection in Java
– reflection in Java
– pointer indirection in C
– run-time execution of strings as code

72Introduction to Software Evolution

Intermezzo: Quality of analysis

● Binary classification
– False/true positives/negatives
– PPV: precision
– TPR: recall

● Measurement
– Precision vs Accuracy
– Significant digits!
– Units of measure!

● Trade-off efficiency

73Introduction to Software Evolution

Control Flow graph

● Connects statements in the order in which they
may be executed

y := 2;
x := 3;
if x > y then
 print(“greater”);
 y := x
endif
print(“done” + x + y)

x := 3

x > y

print(“greater”)

y := x

print(“done” + x + y)

y := 2

74Introduction to Software Evolution

Data Flow graph

● Connects variable uses with their definitions

y := 2;
x := 3;
if x > y then
 print(“greater”);
 y := x
endif
print(“done” + x + y)

x := 3

x > y

print(“greater”)

y := x

print(“done” + x + y)

y := 2
y

y

yx

x

x

75Introduction to Software Evolution

Call Graph

● Connects procedure calls with their definitions

proc P { ... call Q ...}

proc Q { ... call R...}

proc R { ... call Q ...
 ... call S ... }
proc S { ... }

S

P

Q

R

76Introduction to Software Evolution

Examples of Program
Transformations

● Change the layout of the code according to
standard rules

● Change method names
● Remove goto's
● Remove dead code
● Transform C to Java (very hard!)
● Migrate from some other (incompatible) library
● Migrate to another database system

77Introduction to Software Evolution

Meta programming
● Type-checkers
● Refactoring
● Source-to-source
● Reverse engineering
● Reengineering
● Documentation generation
● Mining version repositories...
● All in the Rascal domain

78Introduction to Software Evolution

Roadmap

● The Software Volcano
● Introduction to Software Maintenance &

Evolution
● Introduction to Software Renovation
● Introduction to Program Analysis and

Transformation
● Wrapping up

79Introduction to Software Evolution

Roadmap

● The Software Volcano
● Introduction to Software Maintenance &

Evolution
● Introduction to Software Renovation
● Introduction to Program Analysis and

Transformation
● Wrapping up

80Introduction to Software Evolution

Resources

● Blackboard: blackboard.ic.uva.nl
● Course: 2011.Software Evolution
● http://www.rascal-mpl.org
● www.acm.org/dl (ACM Digital Library)
● www.computer.org/portal/site/csdl (IEEE digital

Library)
● Access to DLs is restricted (only via UvA).

http://www.acm.org/dl
http://www.computer.org/portal/site/csdl

81Introduction to Software Evolution

Now

● Coffee
● At 11:00 in G0.23-G0.25 and G0.10-G0.12

– Installing and starting Eclipse + Rascal
– Rascal tutor exploring

● Next Monday
– Intro evolution and Rascal (here)
– Rascal interactive course (G0.23-G0.25)

82Introduction to Software Evolution

Take Home Messages

● Software Evolution is a real problem
● Software Maintenance is hard but interesting
● We designed Rascal for meta programming
● The lab is difficult but teaches you a lot

– Metrics
– Visualization

● The essay is important
– Think of your thesis!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

