
8/26/2022

Ada analysis in Rascal

Damien De Campos (ESI TNO)
Supervisors:
Pierre van de Laar (ESI TNO)
Jurgen Vinju (CWI SWAT TU/e)

Ada analysis in Rascal

1

Contents
1. Abstract ... 2

2. Introduction ... 3

2.1. Rascal ... 3

2.2. Ada ... 4

2.3. Libadalang.. 5

3. Exporting data from Ada to Rascal .. 6

3.1. Rascal data types ... 6

3.2. Deserializing a Rascal file ... 9

3.3. Ada library ... 10

3.4. Export function .. 10

3.5. Calling Ada code from Rascal .. 13

4. Building the project ... 15

4.1. Generation ... 15

4.2. How to setup ... 15

5. Example ... 16

5.1. Cyclomatic Complexity .. 16

6. Tests... 18

7. Ways of improvements ... 18

8. Future work ... 18

9. Contributions to the community ... 19

10. Conclusion ... 19

Ada analysis in Rascal

2

1. Abstract

Nowadays software maintenance is an import part of software development. Technologies are fast moving

and you need to upgrade your software if you want to stay competitive. Consumers always want better

and faster software. Some part of software maintenance can be automated or semi-automated using

analysis tools. The issue is that each languages has its own analysis tools and you have to learn different

tools for each language that you want to analyze. That’s the issue that Rascal tries to solved.

Rascal is a domain specific language for metaprogramming, such as static code analysis, program

transformation, program generation and implementation of domain specific languages. It is a general

meta language in the sense that it does not have a bias for any particular software language. Its syntax and

semantics are based on procedural (imperative) and functional programming. It relies on front-ends to

analyze software languages, one front-end is needed for each language. Some of the front-ends are

already quite popular like the Java, C++, and PHP ones. However a lot of programming languages don’t

have a Rascal front-end yet.

One of these languages is Ada, a language that has been designed to meet the requirement of the US

department of defense in the 1980s. It come up with a lot of features such as strong typing, oriented object

programming, generics or exception handling. Ada has a reputation of being safe, that’s why it’s mainly

used in the domain of defense, aerospace, transport, and finance.

At the time of writing this report if you want to analyze an Ada software you have few alternatives, the

main one is Libadalang, a library of parsing and semantic analysis of Ada source code. There is also a tool

called ASIS that is based on the gnat compiler but it is no longer supported. The last option is Rascal but

we are missing an Ada front-end.

The goal of my 3 months internship is to build a Rascal front-end to enable Ada analysis. Instead of building

my own parser that is a very complex task, this front-end is built on top of Libadalang. An already existing

library well tested and popular. Libadalang is already delivered with multiple programming languages to

manipulate its analysis result such as Ada, Python, C, and OCaml API. This front-end will provide a new way

to leverage the Libadalang analysis. Since Rascal was designed for code analysis it will be easier to write

analysis.

https://www.rascal-mpl.org/

Ada analysis in Rascal

3

2. Introduction

2.1. Rascal
Rascal is a domain specific language for metaprogramming. Rascal integrates source code analysis,

transformation and generation on the language level. It relies on front-end to analyze programing

language.

Most Rascal front end works the same way, they rely on an external library, they don’t use their own parser

because that’s a lot of works to write a full parser.

Figure 1: Generic front-end pipeline

Rascal provides a lot of types in its runtime like int, real, bool, str but also a lot of collection types like list,

set, map or relation. There also more high level types like location (an URI), dateTime or node. The node

type is used to build untyped tree structure. However Rascal allows you to declare your own algebraic data

type to build typed tree structure. You can declare values of an algebraic data type by calling the

constructor function. An algebraic data type can have multiple constructors.

The following data declaration defines the datatype MyBool that contains various constants (tt and ff) and

constructors functions (conj and disj).

data MyBool = tt() | ff() | conj(MyBool L, MyBool R) | disj(MyBool L, MyBool R);

Front-ends use their own data types to store the abstract syntax tree and one of the challenge of building

a Rascal front-end is to convert the library AST representation into the Rascal representation. The Rascal

module ValueIO is useful for exporting the data because it provides functions to deserialize Rascal data

from string, binary stream or file.

Some algebraic data types generic to all programming language are already declared in the module

analysis::m3::AST and they are named Declaration, Expression, Statement and Type. Front-ends that use

these types have some analysis for free like the data flow analysis.

Once the data is imported in Rascal you can write your own analysis using the powerful features of Rascal.

For example you can use the M3 model of Rascal. This model is a set of binary relations for programing

Rascal

Parsing

library

Project

Uses

Parses

Exporting data

https://www.rascal-mpl.org/

Ada analysis in Rascal

4

languages that are very useful for writing analysis because it contains semantic information. This model is

very generic and can be used for all programming languages.

data M3(
 rel[loc name, loc src] declarations = {},
 rel[loc name, TypeSymbol typ] types = {},
 rel[loc src, loc name] uses = {},
 rel[loc from, loc to] containment = {},
 list[Message] messages = [],
 rel[str simpleName, loc qualifiedName] names = {},
 rel[loc definition, loc comments] documentation = {},
 rel[loc definition, Modifier modifier] modifiers = {}
) = m3(loc id);

You can see on the type above that it gathers data using locations to reference physical locations on files

or logical locations like the name of declarations. Front-ends can also extend it to add new fields relative

to the specificities of their language. Oriented object language might have the following fields in their m3

model: overrides, inherits, implements etc.

Rascal handles binary operation like addition, subtraction, multiplication or division in a simplistic way.

Whereas in a lot of parsing tools they use some kind of abstraction of binary operators. An addition is often

described in Rascal by a node plus with 2 fields: the 2 operand. That allows to easily identify all the

additions of a program.

Rascal is an interpreted language, its interpreter is written in Java 11. There are different way to use Rascal:

• Eclipse plugin

• Vscode extension

• Command line (REPL) using a jar

 If you choose the last option you need to use the following command:

$ java -Xmx1G -Xss32m -jar rascal-<version>.jar

2.2. Ada
Ada is a complex language with a lot of features. I will introduced you the Ada concepts relevant to this

report.

An Ada project is made of a lot of packages, these packages are usually split into 2 files, the first one is the

specification that described what is defined inside this package (like an header in C/C++), the second one

is the implementation (also called the body) that contains the implementation of the package. In Ada there

is a distinction between a function that returns a value and a procedure that doesn’t. Subprogram is the

word that is used to reference a function or a procedure.

Ada doesn’t use bracket for scope like in a lot of programming language it uses declare block made of the

keywords declare and end. These declare blocks separate declarations and statements, in other words you

can’t declare a variable everywhere. A declare block look like this:

Ada analysis in Rascal

5

declare
 X : Integer;
begin
 X := Integer'Value (Get_Line);
exception
 when Constraint_Error =>
 Put_Line ("Please enter a valid number");
end;

In the Ada code above we are declaring a variable, trying to convert the input string from the command

line to an Integer to set the variable X. If the conversion fails it raises a Constraint_Error exception that is

handled in the exception handler printing “Please enter a valid number”.

In a declare block you can also defined a subprogram that will be visible only inside the declare block.

2.3. Libadalang
Libadalang is a library developed by AdaCore, the main company that maintained the Ada language. The

Libadalang library allows users to analyze Ada software, it provides the abstract syntax tree (AST) and

semantic queries on top of this tree. Users can write their own analysis using the programming language

Ada, Python, OCaml, and C.

You can access each child (or field) of a node in the AST by using functions staring by F_. Sometime fields

are optional because they are optional in the grammar. A simple example of that is when you declare an

object the keyword constant is optional in the declaration. The function F_Has_Constant of object

declaration in Libadalang can return Constant_Present or Constant_Absent depending if the keyword

constant is present or not.

Libadalang used an oriented object style, Ada_Node is the root node, that means that all the other nodes

used in the AST derived from it. Because of this structure, a lot of Libadalang nodes are abstract in the

sense that they aren’t not directly used in the AST, only the concrete nodes derived from abstract nodes

are used. This implementation has a main drawback because some function can’t specify with precision

their returned nodes. Whenever a function can return 2 nodes that are drastically different, their common

parent in the derived hierarchy might be Ada_Node, meaning that this function returns an Ada_Node.

However, the node that is really returned by the function is one of the two nodes mentioned previously

that derived from the root node.

Some nodes are a list of other nodes like: Ada_Node_List, Basic_Decl_List, Compilation_Unit_List…

Functions starting with P_ are used to access properties, they often are semantic queries.

Libadalang provides an abstraction for binary operations, it uses a node named Bin_Op that has 3 fields:

the 2 operands and the operation. Operation nodes are just empty nodes used to identify the operation.

Libadalang is generated by a tools called Langkit. This tools, developed by AdaCore, takes in input an

grammar and the specification of the nodes in the AST and generates a parser for the language.

Ada analysis in Rascal

6

3. Exporting data from Ada to Rascal

This project is named Ada-air for Ada analysis in Rascal. It’s split into 2 main software components, the

first one, written in Rascal, import an AST from a file, the second one, written in Ada, uses Libadalang to

analyze a project and export the AST in a file.

These 2 components are partially generated by a Langkit plugin running during the generation of the

Libadalang library.

The following picture describes how the front-end works. The next sections are explaining in details how

the different part of this project works together.

3.1. Rascal data types

In order to export the AST produced by Libadalang in Rascal you need to defined some algebraic data types.

These Rascal types are mapped on Libadalang nodes so that you don’t need any post processing to export

a Libadalang node into Rascal. Keep in mind that all these Rascal types are generated, more information

in the section 4.1. For example the following Rascal type contains all the statements available in Ada (we

have here only an extract of this type).

data Statement = call_stmt (Expression F_Call)
| assign_stmt (Expression F_Dest, Expression F_Expr)
| case_stmt (Expression F_Expr, list[Statement] F_Alternatives)
...

In order to ease the learning process of users that already know Libadalang, I used the same names. I

expect that the future users of ada-air will be Libadalang users, that’s why I kept the “F_”. As you can see

in the following figure, the assign_stmt constructor in Rascal has the same field name as the Libadalang

node Assign_Stmt.

Java glue

code

Shared Library

Ada export

function

C glue

code

file

Rascal

User
Importation

function

Calls

Calls Deserializes AST

Serializes AST

Calls

Rascal

Interpreter

JNI Binding

Calls

Want to

analyze an

Ada project

Libadalang
Uses

Caption

Glue code

Software

component

Interface

Main

feature
External

library

Partially

generated

Ada analysis in Rascal

7

Figure 2 Libadalang documentation of Assign_Stmt

However, the Rascal algebraic data types aren’t always a perfect mirror image of the Libadalang nodes.

Some nodes aren’t described in Rascal, other are describe in a different way.

• Libadalang abstract nodes aren’t describe because these types exist only for software architecture,

they never appear in abstract syntax trees e.g., Basic_Decl.

• All the list nodes aren’t describe too, instead we will simply use Rascal type List.

Basic_Decl_List is described as list[Declaration]

• Libadalang nodes that end with _Present or _Absent (also named Boolean types in langkit) are

described differently. Instead of using these types, we will use the Rascal list. An empty list for an

absent node and a list containing one node for a present node. In that case we will use the parent

type even if it’s an abstract type because it makes more sense to named it without _Present if

there is no _Absent node. To differentiate real list fields and boolean fields we are using a list alias

with the name “Maybe”.

…_Absent are described as []

…_Present are described as [Parent(…)]

Four Libadalang nodes are inlined to simplify analysis in Rascal: Bin_Op, Un_Op, Relation_Op, and

Membership_Expr. Libadalang provides an abstraction for operators but we don’t want it in Rascal. We

want to directly access the operation name.

Constant_Node

 Constant_Present Constant_Absent Ignored

Described instead of

Constant_Present even

if it’s an abstract node

Ada analysis in Rascal

8

Figure 3 Difference between Libadalang and Rascal AST

However, we still need to be able to differentiate the 4 kind of operators, that’s why the Rascal nodes that

come from these Libadalang nodes have a prefix expect Bin_Op because it’s the most used. Nodes that

come from Un_Op are prefixed by “Un_”, the ones that come from Relation_Op are prefixed by “Relation_”

and lastly the nodes that come from Membership_Expr are prefixed by “Membership_”. Only valid nodes

are creating based on which operator these 4 nodes can contain.

Moreover these prefixes are also useful because multiple constructors with the same name aren’t allowed

in Rascal.

Some Libadalang nodes are merged together to reduce the number of generated Rascal types. For

example, the Rascal type Expression contains the following Libadalang nodes : Expr, Elsif_Expr_Type,

Type_Expr, Others_Designator.

Moreover, some Libadalang fields are Ada_Node because that’s the common parent of all the kind of node

that this field can contain. In Rascal Ada_Node is just a renaming of the untyped node which means that it

can’t be used otherwise this field will be untyped.

Example: the following Libadalang field is an Ada_Node because it can contain a Qual_Expr (derived from

Expr) or a Subtype_Indication (derived from Type_Expr). Since these 2 nodes are merged into the Rascal

type Expression it can be used in the Rascal constructor of Allocator instead of Ada_Node.

function F_Type_Or_Expr
 (Node : Allocator'Class) return Ada_Node;
 -- This field can contain one of the following nodes:
 -- * Qual_Expr
 -- * Subtype_Indication

Constructor of Allocator in Rascal:

allocator (Maybe[Expression] F_Subpool, Expression F_Type_Or_Expr)

However, some Libadalang Ada_Node fields can contain nodes that are too different to be merged into a

single Rascal type. In that case we use a chain rule to avoid using Ada_Node.

For example, if an Ada_Node field can contain a Statement or a Declaration I need to use the following

chain rule:

data Stmt_Or_Decl(loc src=|unknown:///|) = decl_kind(Declaration As_Decl)
| stmt_kind(Statement As_Stmt);

Bin_Op

I 1 +

Plus

I 1

Libadalang AST Rascal AST

Ada analysis in Rascal

9

• If the field contains a Type_Decl I will use decl_kind (type_decl (…)).

• If the field contains an Assign_Stmt I will use stmt_kind (assign_stmt (…)).

Later, while manipulating the AST in Rascal, if you come across this chain rule, you can check whether it’s

a Declaration or a Statement and get the underlying node.

Each constructor of an algebraic data type has named fields, but the same field name may only be used in

different constructors if it has the same type. Due to the merging of lots of different Libadalang nodes into

the same Rascal type it occurs that the same field name is used in different constructors with different

type.

In order to generate valid Rascal code, a python function of the Langkit plugin checks for name collision

and renames the problematic fields to avoid this issue before writing down the types. There are different

renaming rules that are not very robust if there are a lot of collisions but it works fine for now. That’s

maybe somethings to improve in the future.

The renaming rules are presented below, F_X is the original field name (always starting with “F_” like in

Libadalang). They are ordered in priority, the first one is the most used and the last one should be avoided:

Original field Renamed field
list[A] F_X list[A] F_X_List
maybe[A] F_X maybe[A] F_X_Maybe
A F_X A F_X_A
A_B F_X A_B F_X_B
Ada_Node F_X Ada_Node F_X_Node
X F_X X F_X_X

3.2. Deserializing a Rascal file

The Rascal types described previously are used to parse a Rascal file. This text file contains a representation

of the Ada AST using constructors of the algebraic data types. All these constructors nested together are

used to build the tree in Rascal.

The function used to read this file is declared in the Rascal runtime, more precisely in the module ValueIO

that provides functions for reading and writing values in textual and binary format.

Each language handled by Rascal has all its modules starting with lang:: followed by the name of the

language and finally with the name of the module.

The Rascal front-end has 2 modules, the first one, lang::ada::AST, declares all the algebraic data types, the

second one, lang::ada::ImportAST, declares functions to import the AST of an Ada file or all the AST of an

Ada project.

Ada analysis in Rascal

10

3.3. Ada library

The challenge of this project is exporting the data gathered using Libadalang into a Rascal file. Some

analysis rely on Libadalang built in properties but some analysis are ad-hoc. The Ada library in the folder

src/main/ada/ takes care of gathering the data and printing it into a Rascal file. Functions defined in

lang::ada::ImportAST call this Ada library (more information in section 3.5) and parse the generated Rascal

file.

The Ada library is split in 4 folders:

• Glue-code: holding the C functions and some Ada wrapper functions that translate C data types

to Ada data types (see section 3.5 for details).

• Export: holding the code that export the AST into a file.

• M3: holding functions that returns m3 extra data used during the AST export.

• Utils: holding a package for wide wide string manipulation

The generated function of the Ada library is the one that exports the AST in Rascal by writing the

constructors that we have seen before into a file. It’s a recursive function that visits all the AST nodes and

for each one writes the associated Rascal constructor. This function was causing stack overflow on huge

file. The option -Xss32m increases the stack size, it’s mentioned in the Rascal main web site, you must use

it, otherwise you will get stack overflow. You should increase the stack size with this option if you are

facing stack overflow issues.

In the Ada library Wide_Wide_String are used everywhere because I was afraid to not handle utf-16 and

other characters encoding but I think that was a bad idea and I should use classic string anyway because

Libadalang seems to already handle characters encoding properly.

3.4. Export function

The export function is a recursive function with a large case statement that handles each node

independently. For each node we know what its fields are, whether they are optional or whether they

need a chain constructor like Stmt_Or_Decl. It’s important to understand that it’s the parent node that

determines if a node is optional are if it need a chain constructor. The same node can be used in different

fields in different parents and sometimes being optional and sometimes not.

We will see how a node is serialized into Rascal. I took the example of a record component list.

Figure 4 Libadalang documentation of Component_List

Ada analysis in Rascal

11

We can see in the documentation that a Component_List has 2 fields: F_Components and F_Variant_Part.

The first one is an Ada_Node_List that can contains statements (Aspect_Clause and Pragma_Node) and

declarations (Component_Decl and Null_Conponent_Decl). For this field we will use the chain constructor

Stmt_Or_Decl. What the documentation doesn’t tell us but that we know thanks to Langkit is that these 2

fields are optional.

How the export function handle Component_List:

when LALCO.Ada_Component_List =>

 Put (F, Opt);

 Put (F, "component_list(");

 Export_Ast (Print_Context => Context.Add_Indent_Level (Print_Context),
 Type_Context => (N => N.F_Components,
 Is_Optional => True,
 Need_Chained_Constructor => True));

 Put (F, ",");
 Export_Ast (Print_Context => Context.Add_Indent_Level (Print_Context),
 Type_Context => (N => N.F_Variant_Part,
 Is_Optional => True,
 Need_Chained_Constructor => False));

 Put (F, ",");
 Put (F, M3.Analysis.Get_Src_Annotation (N));
 Put (F, ")");
 Put (F, End_Opt);

The Opt and End_Opt variables are matching brackets, respectively “[” and “]” if the current node is

optional otherwise they are empty string.

The Component_List node doesn’t need a chain constructor but we can take a look at the node

Null_Component_Decl that can require a chain constructor. For these nodes, there is one if statement

before and after the serialization of the node to add the additional constructor.

 when LALCO.Ada_Null_Component_Decl =>
 Put (F, Opt);
 if Type_Context.Need_Chained_Constructor then
 Put (F, "decl_kind(");
 end if;
 Put (F, "null_component_decl(");
 Put (F, M3.Analysis.Get_Src_Annotation (N));
 if Type_Context.Need_Chained_Constructor then
 Put (F, "),");
 Put (F, M3.Analysis.Get_Src_Annotation (N));
 end if;
 Put (F, ")");
 Put (F, End_Opt);

Printing “[” if this node is optional

Constructor name of this node

Recursive calls for each fields

Optional field that doesn’t

require chain constructor

Printing m3 fields

Closing all opened parenthesis, bracket…

Optional field that

requires chain constructor

Additional constructor

Ada analysis in Rascal

12

All the other functions of this library aren’t generated because they used stable part of Libadalang that

might not change in the future. Moreover they have a very complex logic that’s hard to generate. It also

makes the plugin simpler by generating less code.

Rascal uses a lot of URI through the location type, those URI can be physical like a path to a file or logical

like the name of a function. The library has a package that handles the creation of Rascal URI. It allows the

creation of a physical location from an Ada_Node by using its Source_Location_Range or by creating a

logical location from a pre-built String. All the characters aren’t allowed in an URI like space, quotes, less

than sign, more than sign etc. These characters are escaped using their hexadecimal value.

Exporting the AST in Rascal was “easy” because data already existed. One of the hardest part of this project

is creating the M3 model. The Ada library add extra data into the AST, this data will be later collected in

Rascal to build the M3 model. This data is the result of ad-hoc analysis.

Libadalang doesn’t provides a property that returns an unique name for a declaration, therefore the Ada

library has its own ad-hoc analysis. For example, you can declare multiple variables with the same name

in different scopes. To assure unique names I took my inspiration from the Java analysis in Rascal that

specify the scope of the declarations.

package body P is
 procedure Test is
 begin
 declare
 My_Var : Integer;
 begin
 ...
 end;
 declare
 My_Var : Integer;
 begin
 ...
 end;
 end Test;
end P;

Ada allows subprogram overloading, so I need also to differentiate 2 functions with the same name but

different signatures:

package P is
 function Test (A : Integer)
 return String;

 function Test (A : Float)
 return String;
end P;

To export these data in Rascal we are using the concept of keyword fields. These fields are not attached

to a constructor but directly to the data type, so you can set these fields using any constructors.

P/Test/scope(0)/My_Var

P/Test/scope(1)/My_Var

P/Test(Float):String

P/Test(Integer):String

Ada analysis in Rascal

13

data Assoc(loc src=|unknown:///|) = aspect_assoc (Expression F_Id, Maybe[Expression]
F_Expr_Maybe);

For now, I’m exporting only 3 fields of the M3 data type:

• declarations: maps declarations to where they are declared.

• containment: what is logically contained in what else.

• uses: maps source locations of usages to the respective declarations.

However, only these 3 fields are already very useful for writing analysis. For example using the

declarations and uses fields you have cross-references and you can jump from a reference to its

declaration. The C++ front-end doesn’t fill all the M3 fields but it’s already used a lot.

After exporting the AST in Rascal, a function visits all nodes and collects all these keyword fields to build

the M3 model.

3.5. Calling Ada code from Rascal

To start your analysis of Ada source code you first need to import the AST in Rascal. To do so you have to

use the module lang::ada::ImportAST that defines 2 functions, depending on whether you want to

import a single file or a project:

Entry_Point importAdaAST(loc file)

map[loc file, Entry_Point Unit] importAdaProject(loc file)

In Rascal you can easily call Java methods using the following syntax to import a method:

public java ReturnType MethodName(ArgumentType ArgumentName, ...);

A Java class named ImportAst publicly exposes 2 methods that are called by the Rascal functions. I can now

call native code from Rascal using the Java Native Interface. The class loads a shared library and calls 2

functions from it.

C function called from Java:

Keyword field

Ada analysis in Rascal

14

extern const char* Ada_Export_Project_Wrapper(const char* ada, const char* out);

JNIEXPORT void JNICALL Java_lang_ada_ImportAst__1importAdaProject
 (JNIEnv *env, jobject thisObj, jstring adaFileName, jstring outFileName) {
 const char *ada = (*env)->GetStringUTFChars (env, adaFileName, NULL);
 const char *out = (*env)->GetStringUTFChars (env, outFileName, NULL);
 const char* e = Ada_Export_Project_Wrapper (ada, out);
 if (e != NULL)
 {
 jclass Exception = (*env)->FindClass(env, "lang/ada/AdaException");
 (*env)->ThrowNew(env, Exception, e);
 }
}

The function GetStringUTFChars converts Java strings into C strings. The Ada wrapper function is called

with the 2 strings decoded. The value returned by this function is a string containing the message of the

exception if an exception occurred in Ada. If the string isn’t empty I’m raising a Java exception called

AdaException. That allow the Rascal user to catch it by doing:

try

 U = importAdaAST(f);

catch JavaException(class, msg): // if an exception occurred in Ada

 println (class + " " + msg);

catch IO(msg): // if an exception occurred when opening the file in Rascal

 println ("IO: " + msg);

Ada analysis in Rascal

15

4. Building the project

4.1. Generation
Libadalang is generated by Langkit, a tools developed by AdaCore. This tools provides a way to a add

plugins that will be run after the generation of Libadalang. That means that the plugin has access to the

data used to generate Libadalang so you can easily generate other features.

In this internship a Langkit plugin that generates the Rascal algebraic data types and the Ada function that

export the AST was developed.

Langkit and the plugin use a template library named mako. This library provided templates with control

statements that facilitated the generation of source code.

The first advantage of generating these 2 software components is that it is easy to move to a new version

of Libadalang, you just need to relaunch the plugin. The others piece of code that aren’t generated are less

affected by the changes of the Libadalang API because they used only stable part of the API. The second

advantage is that the generated code is very repetitive so it will be error prone to manually write it.

4.2. How to setup

You need to first clone the project ada-air with submodules:

$ git clone --recurse-submodules https://github.com/cwi-swat/ada-air.git

In order to generate the missing files and build everything you need Python 3.9 or 3.10, pip, Java (JDK

version 11), alire, and maven installed and the JAVA_HOME environment variable of set to the default

location. You can then run the install script (bash or powershell) based on your OS.

The script first checks that the JAVA_HOME variable is set otherwise it will failed compiling the Ada library.

Then, the first command launched by the script is cloning the branch 22.0 of Langkit in a temporary

directory and installing it with pip. The version of Langkit installed must be the same as the Libadalang

version of the submodule and the one specify in the alire.toml file. At the time of writing this report the

newest version available in alire is the 22.0.

$ pip install -U git+https://github.com/AdaCore/langkit.git@22.0

The next line launches the generation of the Libadalang library together with the langkit plugin.

$ PYTHONPATH=./src/langkit-plugin/ python ./Libadalang/manage.py generate --plugin-

pass=rascal_plugin.RascalPass

The last 2 commands are building the Ada shared library using Alire in the ada directory and compiling the

Java classes using Maven in the root directory. These 2 package managers will download the missing

dependencies.

$ cd src/main/ada/; alr build; cd -

$ mvn compile

https://github.com/cwi-swat/ada-air
https://github.com/alire-project/alire
https://maven.apache.org/

Ada analysis in Rascal

16

5. Example

The following example have been tested on Zip-Ada, an open source library for dealing with zip

compressed archive. This library has been chosen because of its small size, only 25 000 lines of code.

5.1. Cyclomatic Complexity
A simple example of a Rascal script computing the cyclomatic complexity of all subprograms (function and

procedure). Cyclomatic complexity is a software metric used to indicate the complexity of a program by

measuring the number of linearly independent paths through a program's source code.

Importing the project and looping over all subprograms:

void main(list[str] args) {

 loc project = |file:///| + args[0];

 map[loc,Entry_Point] Units = importAdaProject (project);

 for(file <- Units)

 for(/subp_body(_, spec, _, _, stmts, _) <- Units[file]) {

 int c = computeCC(stmts) + 1;

 str subp_name = Get_Name(head(spec.F_Subp_Name).F_Name);

 println("<subp_name> : <c>");

 }

}

This for loop will found all the subprogram implementation, subp_body, (we can also look for task body

and expression function) that are in the AST. The following function visits all the subprogram statements

and increases the complexity if there is a new path. The visit statement goes through all the nodes and

tries to match every node with one case. The first 2 case statements subtract the complexity of their

children so that it doesn’t increase the complexity when the visit statement go through the children in

order to not taking into account exception handler and nested subprogram. All the other case statements

increase the cyclomatic complexity according to the number of branches that the matched node creates.

int computeCC(value N) {

 int c = 0;

 visit(N) {

 case s:exception_handler(_,_,_): c -= computeCC(getChildren(s));

 case s:subp_body(_,_,_,_,_,_): c -= computeCC(getChildren(s));

 case for_loop_stmt(_,_,_): c += 1;

 case while_loop_stmt(_,_,_): c += 1 ;

 case if_stmt(_,_,alternatives,_): c += 1 + size(alternatives);

 case case_stmt(_,alternatives): c += size (alternatives) - 1 ;

 case if_expr(_,_,alternatives,_): c += 1 + size (alternatives);

 case case_expr(_,alternatives): c += size (alternatives) - 1;

 case exit_stmt(_,cond): c+= size (cond);

 case and_then(_,_): c += 1;

 case or_else(_,_): c += 1;

 case quantified_expr(_,_,_): c += 2;

https://en.wikipedia.org/wiki/Software_metric
https://en.wikipedia.org/wiki/Programming_complexity
https://en.wikipedia.org/wiki/Source_code

Ada analysis in Rascal

17

 case select_stmt(Alts,Elses,Abort): {

 c += size(Alts) - 1;

 c += if(isEpmty(Elses)) 0; else 1;

 c += if(isEpmty(Abort)) 0; else 1;

 }

 }

 return c;

}

We can compare the result with the tool gnat metric from AdaCore that also computes, among other

things, the cyclomatic complexity.

Ada-air gnat metric

HufT_build : 39

Repack_contents : 37

UnZipAda : 36

Guess_type_from_name : 35

Process_argument : 34

HufT_build (procedure body at lines 69: 360)
=== Complexity metrics ===
cyclomatic complexity : 39

Repack_contents (procedure body at lines 660: 1327)
=== Complexity metrics ===
cyclomatic complexity : 37

UnZipAda (procedure body - library item at lines 28: 348)
=== Complexity metrics ===
cyclomatic complexity : 36

Guess_type_from_name (function body at lines 307: 384)
=== Complexity metrics ===
cyclomatic complexity : 35

Process_argument (procedure body at lines 200: 302)
=== Complexity metrics ===
cyclomatic complexity : 34

Figure 5: The five most complex subprogram of Zip-Ada

We can see that the results are the same, however the main advantage of using rascal is that you can

tailored the analysis to fit your needs. Moreover the result is easier to reuse in further analysis. Gnat metric

generates a metric file for each Ada file, to reuse its analysis you need to manually post process all the

generated files.

Ada analysis in Rascal

18

6. Tests
It’s not an easy project to test because Ada is a very large programming language with a lot of features.

Therefore, it’s hard to think about all the combination possible in order to be sure to handle all the corner

cases.

The first method of testing used is robustness tests, we tries to parse a lot of different style of Ada code:

generated code, low-level code, parallelized code… With different library such as Libadalang, Langkit, Ada

Web Server, Gnatcoll, xmlada, Ada Drivers Library… That represent nearly 1.5 million of lines of code which

cover more that 90% of all the Rascal constructors. That makes sure the bridge is robust because it’s able

to parse all this code without crashing.

Some properties of the AST are checked in Rascal using the following functions:

• All the nodes need to have a src keyword field

bool allNodesHaveASource(node N) = (true | it && c.src? | /node c <- N);

• All the children of all the nodes must appear in the same order as they appear in the file

bool allNodesAreOrdered(node N) { ... }

These functions are new and they are going to be used to test other front-ends.

However, that’s far away of being enough, we need to be sure that the analysis is correctly exported,

especially the M3 model. That’s the hardest part because it required to write analysis in Rascal and

compare the result with another analysis software or with the same analysis written with another tools.

7. Ways of improvements
Improving tests: for now I mostly test the AST export and not the M3 model that is harder to test because

you need to write complex analysis to be sure that the M3 model is robust and enough complete.

Another step will be to improve the m3 model that is exported. We can for example add the missing fields

like messages, types, names, modifiers. We can also extend the M3 model to add new fields related to Ada

specificities.

We can also use other types that are available in the m3 library like TypeSymbol, Modifier etc. This will

ease the writing of analysis.

8. Future work
The biggest step will be to integrate the way back, in other words be able to rewrite the source code that

you are analyzing. This will drastically improve the user experience and the possible uses of the front-end.

Ada analysis in Rascal

19

9. Contributions to the community
Issues and bugs that was found in Rascal during this project:

• No Java method for getTraversalContext · Issue #1620 · usethesource/rascal (github.com)

• Anchor links broken in docs.rascal-mpl.org · Issue #1619 · usethesource/rascal (github.com)

• ValueIO functions can't read Maybe field · Issue #1615 · usethesource/rascal (github.com)

• Rascal path function gives invalid windows path · Issue #1613 · usethesource/rascal (github.com)

• Documentation not up to date https://www.rascal-mpl.org/start/ · Issue #1606 ·

usethesource/rascal (github.com)

Bug in Libadalang that was found in this project:

• Missing documentation on some F_... functions · Issue #945 · AdaCore/libadalang (github.com)

10. Conclusion
This project is a success, we are able to analyze Ada software using Rascal in only 3 months.

Building a front-end for a complex language such as Ada is not trivial, especially if you don’t know Rascal

or the language that who want to build a front-end for. Already knowing them (Rascal and your language)

helps a lot. Knowing the language that you want to write a front-end for is better than knowing Rascal

because you need to handle every feature that is available in that language. However, you will not use all

the features of the Rascal language.

If you are building your front-end using an already existing parser you need a good understanding of how

it works. Exporting the AST is the “easiest” step but also the most important because this step is the heart

of the front-end. It’s the first building block of the rest of the front-end. To me the hardest part is to build

the M3 model because you need to write complex and robust analysis in order to have correct information.

You can write these analysis in Rascal using only the AST or using the library/parser that you are using if it

offers these kind of features. The choice is up to you.

Libadalang is still the way to go for building complex and robust analysis because it’s more stable than the

Rascal front-end. Powerful queries are available in Libadalang that are not available yet in Rascal. Many

examples exist of analysis written with Libadalang from which you can take your inspiration.

Rascal is the way to go if you want to write simple analysis where you can do some assumptions to simplify

your script. Your script will maybe be less robust but it will be quicker to write. I think that can be a viable

alternative of the Python binding provided by Libadalang.

I found Racal hard to learn because you can often write code that works but isn’t written in a “Rascal way”.

In Rascal you can often write one line function and expression that does a lot of things by combining

collection comprehensions and data queries.

I have deepened my knowledges about Libadalang, even if I had worked for 2 years with Libadalang before

starting this internship I still learnt a lot. Building a front-end requires knowledge about all the features of

the language however I worked mostly with the Ada type system during these 2 years.

I also discovered Rascal that is an amazing project that I will certainly use in the future.

https://github.com/usethesource/rascal/issues/1620
https://github.com/usethesource/rascal/issues/1619
https://github.com/usethesource/rascal/issues/1615
https://github.com/usethesource/rascal/issues/1613
https://github.com/usethesource/rascal/issues/1606
https://github.com/usethesource/rascal/issues/1606
https://github.com/AdaCore/libadalang/issues/945

