
Department of Mathematics and Computer Science
Software Engineering and Technology

DERIVING SYNTAX HIGHLIGHTING GRAMMARS
FROM CHARACTER-LEVEL CONTEXT-FREE
GRAMMARS: ALGORITHM DEVELOPMENT,

ANALYSIS, AND FUTURE DIRECTIONS

Master Thesis

Tar van Krieken

Supervisor: Prof. Dr. Jurgen Vinju

Eindhoven, December 14, 2023



i



Abstract

Formal language developers typically have to specify syntactic information in multiple formats: a context-
free grammar used for parsing, and syntax highlighting grammars (lexing grammars) to help users work
with their language. This spreads syntactic information out over multiple files with a lot of redundancy,
higher maintenance costs, and risk of desynchronization. In this thesis we explore a possible solution:
augmenting context-free grammars with tokenization data, and automatically deriving lexing grammars in
industry formats. We look into the feasibility of such an approach by developing a grammar transformation
pipeline, which transforms a specification grammar into a grammar suitable for syntax highlighting. Sup-
porting this approach, we establish a formalization of regular-expressions that includes capture groups and
lookarounds, together with important operations on these expressions. Finally, the limitations of both the
pipeline and the regular expressions formalism are discussed, while also touching on possible directions
for enhancement.
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CONTENTS 1. INTRODUCTION

1 Introduction

1.1 Motivation

Formal languages are used extensively for interaction between computers and humans. Such languages
have well defined syntax, as well as semantics. These languages encompass various types, including pro-
gramming languages, data exchange languages, and domain-specific languages. Formally defining syntax
and semantics, ensures that there is no mismatch between the intention of the writer, and the computer’s
interpretation. Context-free Grammars (CFGs) are instrumental for precisely defining the syntax of many
formal languages we create. The grammars consists of a finite set of rules that is capable of generating any
of the phrases that are part of an often infinite language. Moreover, computers can use these grammars
to deconstruct the user’s input phrases into computer-interpretable components, through a process called
parsing.

Syntax highlighting is the act of assigning colors to words within sentences of a language, based on
their respective roles. This is a common feature of Integrated Development Environments (IDEs), designed
to assist users in working with formal languages. IDEs divide syntax highlighting into two steps: First,
characters of the user input are grouped into tokens (tokenizing), afterwards, each token is assigned a color
according to its type. The lexers used by IDEs, also referred to as tokenizers, are generalized and thus take
grammars as part of their input. We will refer to these grammars as Lexing Grammars (LGs). Given a LG
and a user input phrase, a lexer produces a token stream as output. Although certain standards exist 1,
different IDEs such as Sublime Text, Visual Studio Code (VSCode), and IntelliJ IDEA may rely on varying
LG formats.

CFGs and LGs both serve to define certain syntactic information of a language, but they have distinct
formats, capabilities, and purposes. When developing new formal languages, developers must define cer-
tain aspects of their language in both types of grammars. The CFGs formalism is amongst other things
used to facilitate parsing, while LG formats serve to enhance user interaction with their language by means
of syntax highlighting. This results in syntactic concerns being spread out over various independent files,
leading to increased maintenance complexity as the language evolves.

One possible way of solving this problem, is to have a single unified grammar format that specifies all
information required for both parsing and syntax highlighting. A new format, however, also requires a
whole new set of tools to operate on it. In order to minimize this set of tools, we would like to be able to
extract CFGs and LGs in existing formats from our custom format. This way, existing tooling can be used
when working with our custom grammar format.

1.2 Project Goal

In this study, we attempt to find a unified grammar format together with an approach to convert it to
existing formats. We believe that an adequate format will allow us to do three things: easily specify existing
CFGs in this new format without much modification, use a transformation pipeline to reach a reduced
form that retains the tokenization data, easily map the reduced form to common LG formats. As such, our
primary research question will be:

RQ 1: Can a static grammar transformation pipeline effectively be used to derive a CFG and a LG from
an augmented CFG?

We attempt to answer this question, by providing such a pipeline and measuring its effectiveness on several
grammars. In order to develop such a pipeline, several intermediate questions have to be answered. First
of all, we should properly understand the problem domain, and know the capabilities and limitations of
common syntax highlighters. It wont be possible to consider all LG formats, but we can consider several
popular formats. This forms our first intermediate research question:

RQ 1.1: What are the capabilities and limititions of syntax highlighters?

1TextMate grammars, tree-sitter grammars
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We can then start to think about developing a pipeline. The first step in this process is coming up with a
grammar format for the pipeline to operate on. This format must be capable of encoding all information
contained in both CFGs as well as LGs. This forms our second intermediate research question:

RQ 1.2: What augmentations can be made to CFGs to allow for specification of syntax highlighting
concerns?

In order to support multiple LG formats, we would like to define a common intermediate form that our
pipeline targets. This form should be capable of being mapped to existing LG formats. This way we do not
need to develop a separate pipeline for each format we target. This forms our third intermediate question:

RQ 1.3: What form of grammar could easily be mapped to various LG formats?

Finally, we can think about the actual grammar transformations of the pipeline. Converting our initial spec-
ification grammar to a LGs will require many transformations. We would like each of these transformations
to keep all tokenization concerns of the grammar in tact, such that final LG defines an equivalent tokeniza-
tion for all inputs that were part of the language of the original specification. This forms our last and most
important intermediate question:

RQ 1.4: What tokenization preserving transformations can be applied to obtain a LG?

1.3 Research Background

The CFG format considered in this research is that of Rascal. Rascal is a meta-programming language with
native and syntactical support for CFGs. This allows us to both write our pipeline in Rascal, and operate
on Rascal’s CFGs format. Rascal’s grammars operate on source-code characters directly, a departure from
the approach taken by many parser generators, which separate lexing concerns from CFG concerns. This is
known as scannerless parsing, and has been studied extensively [1, 2].

Character-level grammar specification is not unique to Rascal, the formal model of CFGs also allows for
this, but the resulting grammars often become either ambiguous or complex. Ambiguity is primarily related
to the semantics mapped onto sentences in a language, meaning multiple interpretations are possible for
a given sentence according to the specification. There are two lexical concerns that can easily result in
ambiguity:

1. Many languages contain both identifiers (such as variables) and keywords, which are both sequences
of alphanumeric characters

2. Identifiers do not have a fixed length

If we have a language with keywords if and else, we want to ensure that else is not parsed as an identifier,
while textmate is. It is possible to use traditional CFG constructs to specify all possible identifiers except
for a given set of keywords, but this results in large and hard to read definitions. One has to essentially
encode a binary decision tree to specifically exclude a certain set of keywords. Similarly if we have a binary
operator in, and whitespace between operators and operands is optional as is the case for many languages,
valueinset could both be parsed as the binary operator in operating on value and set, or as the single identifier
valueinset.

These issues are prevented by tokenizers by the following behaviors respectively:

1. If multiple regular expressions match, the one with highest priority is chosen

2. A regular expression greedily consumes as many characters as it can when matched

Rascal provides two features covering these behaviors, that can be used for disambiguating grammars:
Reserve declarations, and negative follow declarations. Reserve declarations allow you to exclude a set of
words from a given symbol. This way you can specify that an identifier is any non-empty alphanumeric
character sequence, excluding the set of keywords. Negative follow declarations can be used to specify that
a certain set of characters or words may not follow a given symbol. This can be used to forcefully match
the longest possible sequence, by disallowing any character that could be included in the sequence to be
matched after the sequence. This way only the longest possible match becomes valid. Rascal also supports a
positive follow variant, which expects a certain sequence to follow, and both positive and negative precede
variants, which expect a certain sequence to (not) precede a sequence.

Deriving syntax highlighters 2
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1.3.1 Existing Unified Grammar Formats

Besides disambiguating features, Rascal also already provides syntax highlighting capabilities based on the
same grammars that are used for parsing. Every production of a Rascal grammar can be augmented with
a set of metadata attributes, which can include category strings. These categories take the place of tokens
of lexing grammars. These categories are used for tokenizing, by considering the parse-tree itself. For
every character leaf of the tree, the path to the root is traced and the first encountered source production
that contains a category is used to assign a token to this character. This is similar to what this research
is interested in, since it unifies parsing and highlighting capabilities. The approach taken by Rascal skips
the intermediate LG and therefore is different from our goal with this research and comes with various
drawbacks, as well as benefits.

The most noticeable drawback becomes immediately obvious when using this highlighter on chang-
ing inputs: syntactically invalid input is not highlighted at all. Since Rascal’s grammars are intended for
parsing, no valid parse trees are provided for syntactically incorrect inputs. This also means that no syn-
tax highlighting based on this parse tree can be provided. Rascal simply removes all syntax highlighting
whenever the input is syntactically invalid, leading to an unpleasant typing experience.

Skipping the intermediate LG also results in less tooling support. Many different approaches already
exist for syntax highlighting, and certain tools heavily rely on their own tokenization approaches. As such,
it might be difficult to use Rascal’s highlighting within these tools. In Rascal’s VSCode extension, this
can be noticed first-hand. When using a grammar defined in Rascal for syntax highlighting, a slight but
noticeable highlighting delay can be observed while typing, compared to the instantaneous highlighting
changes when using first-party highlighting grammars. Rascal’s VSCode extension relies on the semantic
highlighting Application Programming Interface (API) to achieve its custom highlighting, but this approach
requires more steps and is not executed synchronously like the native highlighting is. Moreover, in other
IDEs or text editors it might not be possible at all to use custom highlighting approaches.

Most LGs formats are less powerful than the CFG format however. Therefore making use of the full
CFGs capabilities for highlighting can be very powerful. As such our approach of attempting to generate
LGs is not strictly better than using CFGs directly, but is of practical interest never the less.

Finally, it is worth mentioning that tree-sitter – a parser generator – takes the same highlighting ap-
proach as Rascal but largely removes our first drawback. tree-sitter has powerful error recovery capabilities,
meaning that a parse tree is also provided for syntactically invalid input, such that highlighting continues
to work as expected. This, however, does not solve the issue of lacking compatibility with other tooling.

1.4 Contributions

The relation between parsing and syntax highlighting has not been formally defined before, and there has
not been any practical implementation of context-free grammar to highlighting grammar conversion either.
We provide the following contributions:

TLRE Tagged Lookaround Regular Expressionss (TLREs) are a generalization of classical regular expres-
sions, to include lookaround and subtraction operators as well as capture groups in the form of tags.
Syntax and semantics for these expressions are provided in Section 3.1, together with several trans-
formation functions in Chapter 4.

TCNFA Tagged Contextualized Non-deterministic Finite Automata (TCNFA) are a generalization of Non-
deterministic Finite Automata (NFA) to capture contextual lookaround and tag information, that can
serve directly as semantics for TLRE. Definitions, semantics, and a derivation from TLREs are pro-
vided in Section 3.1.4. A complete implementation of TCNFAs in Rascal is also provided, as discussed
in Chapter 5.

CG Conversion Grammars (CGs) are a generalization of CFGs to serve as the bridge between CFGs and
syntax highlighting grammars. These grammars support precede and follow constraints, tag assign-
ment to non-terminal symbols, and TLREs. Syntax and semantics for these grammars are provided in
Section 3.2.
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LCG Lexing Conversion Grammars (LCGs) are a subset of CG that are structured like syntax highlighting
grammars, specified in Section 3.3. These grammars can be mapped to various industry highlighting
grammar formats such as TextMate, Ace, Monarch, and Pygments grammars.

Scope grammar Scope grammars are syntax highlighting grammars that function like TextMate grammars.
Syntax and semantics for these grammars are provided in Section 4.5.1.

PDA grammar Pushdown Automaton (PDA) grammars are syntax highlighting grammars that function
like Ace, Monarch, and Pygments grammars. Syntax and semantics for these grammars are provided
in Section 4.5.2.

Conversion pipeline A grammar conversion pipeline is introduced in Chapter 4 that obtains TextMate,
Ace, Monarch, and Pygments grammars from any CG. Three conjectures are introduced about this
pipeline. Conjecture 1 states that this mapping is complete, obtaining a highlighting grammar given
any CG. Conjectures 2 and 3 together relate to the soundness of the pipeline, specifying the pipeline is
sound for a subset of possible CGs. An implementation of this pipeline is provided in Rascal, together
with a testing and experimentation procedure, as discussed in Chapter 5.

Rascal-vis Rascal-vis is a Rascal value exploration tool introduced in Section 5.1. This tool can be used for
testing and debugging of Rascal code, by giving users the ability graphically explore various types of
values encountered in Rascal.

These contributions combined make it possible to construct and evaluate an automatic mapping from Ras-
cal grammars to TextMate and Pygments highlighters. We have left a number of proof obligations to future
work, in favor of empirically validating (testing) our approach on real language constructs.

1.5 Thesis Outline

Our research questions provide a good structure for tackling our problem. This structure is largely reflected
in the chapters of this report:

• In Chapter 2 we analyze a couple of highlighting technologies that are popular in industry, in order
to determine their capabilities and limitations.

• In Chapter 3 we introduce our own CFG format that supports encoding of highlighting information.
Before discussing this format, a custom regular expression formalism is introduced to support it.
Finally, we briefly discuss how our new formalism relates to the explored LG formats.

• In Chapter 4 a grammar transformation pipeline is introduced, together with a final mapping step
resulting in a lexing grammar.

• In Chapter 5 we describe the technical setup for the empirical evaluation in Chapter 6.

• In Chapter 6 the pipeline is tested on various grammars, and the results are discussed.

• In Chapter 7 we summarize the results of this thesis, and provide suggestions for future research.

Deriving syntax highlighters 4
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2 Highlighters

In this chapter we will analyze various highlighters used in industry, in order to determine what we need
to achieve with our grammar transformation pipeline. This analysis is based on the combination of avail-
able documentation, and reverse engineering by developing and testing grammars. We will consider the
following lexing grammar formats:

• TextMate grammars: A format introduced by the text editor TextMate, which by now is a format
supported by various other text editors and IDEs.

• Monarch grammars: A format introduced by VSCode for syntax highlighting before they switched to
TextMate grammars. These grammars are still used by Monaco for syntax highlighting on the web.

• Ace grammars: A format introduced by the Ace editor for syntax highlighting in their web-based text
editor.

• Pygments regex grammars: A format introduced by Pygments for syntax highlighting for various
output formats, which is also used by the syntax highlighter Minted for LATEX.

We will first give an overview of each of the formats, and then discuss their similarities and differences.
Before getting into the different formats, it is important clarify what the purpose of these lexing grammars
exactly is. Tokenizers typically group input characters together into distinct tokens to simplify the input.
In order for these tokens to be used for syntax highlighting, information is needed for what characters a
given token is generated from. As such, syntax highlighters typically output sequences of tokens where
each token contains the token type, and the start and end position of the token in relation to the input text.
Within this report, we abstract away from the exact interface, and instead act as if the output is a token
type sequence, where each character in the input is mapped to a token type. This means that the number of
token types – from now on referred to as tokens – in the output is always equal to the number of characters
of the input.

2.1 TextMate

TextMate’s grammars have become somewhat of an industry standard for syntax highlighting in IDEs.
They are supported by IDEs and code editors such as VSCode, Sublime Text and of course TextMate itself.
Documentation for TextMate’s grammar format is available, but does not cover all intricacies [3].

TextMate’s tokenization interface is more complex than most tokenizers intended for syntax highlight-
ing. The output of this tokenization is not a sequence of atomic tokens taking the place of each character
in the input. Instead each character is assigned a so called ”scope”. A scope is a sequence of categories,
where every category is a sequence of category components. Both of these sequences represent hierar-
chies. The top-level sequence, the sequence of categories, represents a dynamic hierarchy in the user input
being tokenized. Consider the value true in the fragment {{true}}, this could be tokenized using the
scope block, block, boolean. Here block and boolean are categories, and a hierarchical structure of the user
input is followed. This structure can be used by highlighting themes to highlight differently depending
on the context that a category appears in. The hierarchy within a category represents a hierarchical clas-
sification nature of different code-constructs. Instead of simply using the category boolean, we could use
constant.boolean. This emphasizes that a boolean belongs to the parent class of constants. This hierarchy
within category definitions does not play a role within the tokenization process, and is something we can
largely ignore. This is merely used for providing better themes, where we can for instance target all cat-
egories belonging to constant, even ones that we are not aware exist. This is for instance useful when a
custom language has a novel type of constant. They can use the category constant.myConstant that en-
sures their new constant is highlighted as a constant by exist themes, while allowing for custom themes to
highlight this specific constant type differently from the other constants.

The grammar format of TextMate is quite declarative and focusses on the grammars intention, rather
than how it is used by the syntax highlighter’s internal algorithm. This format is rather minimal compared
to many other formats, but is too much to discuss here nevertheless. We will focus on the most important
aspects of the format. A grammar provides a list of patterns, as well as a repository. The repository is a
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mapping of custom names to patterns, which can then be referred to by this name. We can distinguish
two types of matching-patterns: simple patterns, and hierarchical patterns. The simple pattern specifies a
regular expression – called match – and a map of captures. This map of captures is a mapping from numeric
identifiers – representing capture groups – to categories. If the regular expression of such a pattern matches,
the characters captured by each of the capture groups are assigned the category as indicated by the captures
map. Since capture groups can be nested, multiple categories might be assigned to the same character. This
is not a problem, since the output of this lexer is a scope per character, rather than a single category. The
order of the categories follows the nesting of the captures, where a deeper nesting corresponds to occurring
later in the scope. The hierarchical pattern provides two regular expressions, begin and end, each with their
corresponding map of captures. They also specify a list of patterns – called patterns – and optionally a
content name. The begin regular expression and map of captures behaves the same as for the simple rule,
but after this rule is matched the context for processing the rest of the input changes. Now patterns is used
to process the remainder of the input, until the end expression can be matched. When the end expression
is matched, its categories are assigned similar to the begin match, and the rest of the input is processed
according to the original list of patterns. When the patterns of this hierarchical rule are used, the provided
content name is prefixed to the scopes assigned by these rules, leading to the hierarchical structure in the
output.

Besides matching patterns, we can also identify two important types of structural patterns: inclusion
patterns, and list patterns. Inclusion patterns simply refer to another pattern by name as defined in the
repository. This allows grammars to have recursive definitions, similar to those found in CFGs. List patterns
are simply patterns that include a list of other patterns. They behave the same as if the outer list that they
occur in (potentially using include patterns) were flattened. These list patterns allow a single pattern name
in the repository, to refer to multiple patterns at once. Grammar 1 shows an example TextMate grammar
encoded in JavaScript Object Notation (JSON).

{

"name": "scoped-booleans",

"scopeName": "source.scoped-booleans",

"patterns": [{"include": "#scope"}],

"repository": {

"scope": {

"begin": "(\\{)",

"beginCaptures": {"1": {"name": "open"}},

"end": "(\\})",

"endCaptures": {"1": {"name": "close"}},

"contentName": "block",

"patterns": [{"include": "all"}]

},

"boolean": {

"match": "(true)|(false)",

"captures": {

"1": {"name": "boolean.true"},

"2": {"name": "boolean.false"}

}

},

"all": {"patterns": [{"include": "#boolean"}, {"include": "#scope"}]}

}

}

Grammar 1: Scoped Boolean TextMate

Merely understanding the documented format is not enough, it is important to understand the accom-
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panying semantics. The semantics are mostly implied in the documentation, but are not well defined. We
figured out the most important details by experimenting with several grammars. When tokenizing an in-
put, the syntax highlighter tracks the active patterns and its current position in the input. It starts with the
patterns defined at the top-level, and start at the first row and column. From the current list of patterns, it
checks whether any of them apply to current column of the given row. Only the characters on this line are
considered, it is not able to look past linefeed character boundaries, and the linefeed boundary character of
the current line is present at the end of the line. Within the list of patterns, the first one that applies at the
current column is chosen. If no patterns match, the current column is skipped. When a regular expression
matches, all captures are assigned the appropriate corresponding scope, and the lexer jumps to the end of
the overall match to start its next token from. A regular expression can sometimes match multiple different
lengths of sequences starting at the given column, in which case one is greedily chosen. This applies to all
LG discussed from here on out. Inclusion and list patterns are simply substituted and flattened out when
considering the patterns to apply. After an hierarchical pattern is matched it becomes active and the end pat-
tern is checked against before any of the active patterns are checked. This means that the end expression has
highest priority. An extra parameter can be used to change this to the lowest priority however, on a per pat-
tern basis. Only the end expression of the pattern whose sub-patterns are currently active will be checked.
If a hierarchical pattern X is active and occurred within another hierarchical pattern Y, Y’s end expression
is not checked until X becomes inactive after having matched its end expression. The active patterns form
a stack, meaning that one pattern definition can be active multiple times in different places in this stack.
This stack also tracks the corresponding content names, in order to form appropriate scopes. Fragment 1
shows a per character tokenization of {{true}}true{false} encoded in JSON (with comments), according
to Grammar 1.

This tokenization process is largely deterministic. Applying patterns is done greedily, and the high-
lighter never reconsiders its choices. This means that if multiple patterns are applicable at once, but one
leads to token being skipped later on while the other does not, the tokenizer chooses a pattern purely based
on definition order and might end up skipping tokens. The only aspect of the tokenizer that is not de-
terministic, is regular expression matching. Within a regular expression, backtracking or other means of
dealing with non-determinism takes place.

[

["open"], // {

["block", "open"], // {

["block", "block", "boolean.true"], // t

["block", "block", "boolean.true"], // r

["block", "block", "boolean.true"], // u

["block", "block", "boolean.true"], // e

["block", "close"], // }

["close"], // }

[], // t

[], // r

[], // u

[], // e

["open"], // {

["block", "boolean.false"], // f

["block", "boolean.false"], // a

["block", "boolean.false"], // l

["block", "boolean.false"], // s

["block", "boolean.false"], // e

["close"] // }

]

Fragment 1: Boolean Tokenization
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A notable observation is that Oniguruma regular expressions are used, which feature unrestricted pos-
itive and negative lookarounds [4]. These lookarounds can be used to define multiple patterns matching
the same text, without having them apply for the same input. The surrounding characters of the captured
text can be used to differentiate between these patterns. This can help to deal with the restrictions resulting
from the tokenizer’s deterministic nature. The only limitation in this, is that these lookarounds are not able
to cross line boundaries either. But the lookarounds can be used to perform empty matches in begin or end
expressions, which only activate in specific contexts. This allows multiple hierarchical patterns to be exited
at once, by using non-capturing regular expressions.

2.2 Monarch

Monarch grammars have similar capabilities to TextMate grammars, but the interface of its tokenizer is
simpler. Each character is merely assigned a single category, rather than a scope. This category again con-
sists of multiple components. Theming is done based on Cascading Style Sheets (CSS), and each category
component is used as a class name that can be targeted by these style sheets. This means that the hierarchy
of category components is not based on the ordering of components themselves, but is instead determined
by the selectors in the style sheets. By using categories directly instead of scopes, these grammars can not
retain the hierarchy of user input in their tokenization.

Monarch’s format is a little less declarative, and reveals more about the inner workings of the tokenizer.
it is also more extensive than TextMate’s format, and provides several features not found in TextMate, as
described in its documentation [5]. It for instance allows for more dynamic behavior, making use of capture
group data. After a capture, this capture data can be referenced in various places, including assigning
categories, switching states, and starting embedded tokenizers. These advanced capabilities as well as
various others won’t be discussed here, since they do not have an obvious counterpart in CFGs. Moreover,
despite these grammars being specified in JavaScript, they do not allow dynamic JavaScript callbacks to be
used during tokenization. This prevents us from using these advanced features for simulating exact CFG
semantics.

Grammars in Monarch’s format have to specify a map of states, together with a reference to the initial
state. A state has a name that can be referred to, and consists of a list of patterns. We can distinguish 4
types of matching patterns: simple patterns, push patterns, pop patterns, and switch patterns. Each of
these patterns features a regular expression of text to match, together with a list of categories to assign
to each of the matched capture groups. Due to these grammars outputting categories rather than scopes,
only a single capture group may apply to a given character. Moreover, this format requires every character
matched by the regular expression to occur in exactly one capture group, and requires each capture group
in the expression to be matched. Hence it is not possible to provide an alternation of capture groups, since
only one of these capture groups would be matched for one given input. These are very strict constraints
on the capture groups of regular expressions, that are not required by TextMate. Besides these expressions
and categories, a push pattern specifies a state name to push to the stack, a pop pattern specifies to pop a
state from the stack, and the switch pattern specifies a state to replace the top of the stack by. This grammar
format also features inclusion patterns, which allow the list of patterns of one state to be included in the
list of patterns of another state by reference. This once again allows for recursive definitions, similar to
those seen in CFGs. Grammar 2 illustrates a Monarch grammar encoded in JavaScript, specifying similar
tokenizations to the ones in Grammar 1.
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{

tokenizer: {

open: [

[/\{/, {token: "open", next: "@all"}]

],

all: [

{include: "@open"},

[/\}/, {token: "close", next: "@pop"}],

[/true/, {token: "boolean.true"}],

[/false/, {token: "boolean.false"}]

]

},

start: "open",

includeLF: true

}

Grammar 2: Scoped Boolean Monarch

The semantics of these grammars are easier to figure out than those of TextMate grammars. The struc-
ture of the grammar already implies the use of a stack of states. These tokenizers in fact very closely
resemble single state Deterministic Push Down Automata (DPDAs) both in how they function and in use
of terminology. The tokenizer contains a stack of state names, where the top of the stack represents the
state the tokenizer is currently in. This stack is initialized to only contain the initial state. Once again, the
tokenizer tracks the current position in the input, which is initialized to be the first row and column. For
the given state, all patterns are checked in order, and the first one that matches is applied. If no patterns
match, this column is skipped. Once again, patterns are matched only on the currently active line. In order
to include the linefeed character to match against at the end of the line, a special flag ”includeLF” has to be
provided in the grammar. Moreover, only the text starting at the current column is matched against. This
means that lookbehinds can not be used to differentiate between patterns based on context. Inclusion pat-
terns are simply substituted out in the list of applicable patterns. If the applied pattern is a push pattern, the
provided state will be pushed to the stack, if it is a pop pattern the top state is popped, and if it is a switch
pattern a pop is performed followed by a push of the provided state. Once again, the tokenizer is fully
deterministic with the exception of checking whether a regular expression applies. Fragment 2 shows a per
character tokenization of {{true}}true{false} encoded in JSON (with comments), according to Grammar
2.
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[

"open", // {

"open", // {

"boolean.true", // t

"boolean.true", // r

"boolean.true", // u

"boolean.true", // e

"close", // }

"close", // }

"", // t

"", // r

"", // u

"", // e

"open", // {

"boolean.false", // f

"boolean.false", // a

"boolean.false", // l

"boolean.false", // s

"boolean.false", // e

"close" // }

]

Fragment 2: Boolean Tokenization Categories

Even though the patterns we discussed are the main intended patterns, due to the exact format used it
is possible to combine these types. The push/pop/switch states can be provided per capture group of the
regular expression. This means that arbitrary sequences of pushes and pops can be used, by adding any
number of capture groups – matching a sequence of zero characters – to the end of the intended regular
expression. Fragment 3 shows how this can be used to make a closing bracket pop three states from the
stack.

[/(\})()()/, [{token: "close", next: "@pop"}, {token: "close", next: "@pop"},

{token: "close", next: "@pop"}]],↪→

Fragment 3: Multiple Pops Pattern Monarch

2.3 Ace

Ace grammars are very similar to Monarch grammars. They are based on DPDAs and output categories
whose components are used as class names that are highlighted using CSS. Despite the documentation
making no reference of state pushing and popping, these features are supported [6]. We will not explain
these grammars from scratch, but instead go over important similarities and differences with Monarch
grammars. These grammars do not specify an initial-state, and instead requires the state collection to
contain a state called ”start”. Just like Monarch grammars, the underlying format which the grammars are
defined in is JavaScript. For Monarch grammars this is not very important, but Ace allows users to define
callbacks for when a pattern is matched. These callbacks allow the grammar to interact with the state of the
tokenizer. The format has no dedicated syntax to push and pop multiple states at once, but this and much
more can be achieved by making use of these callbacks. The restrictions on regular expressions are also
less strict than Monarch’s, dropping the requirement of every capture group having to be matched. The
requirement of every matched character being present in a capture group also applies to these grammars
however. Inclusion patterns are not a core feature either, but can be provided and are subsequently factored
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out using a built-in function call. This will simply perform substitutions before the tokenizer makes use of
the grammar. Grammar 3 illustrates a Monarch grammar encoded in JavaScript, specifying the exact same
tokenizations as the ones in Grammar 2.

const BooleanGrammar = function() {

this.$rules = {

start: [{regex: /\{/, token: "open", push: "all"}],

all: [

{include: "start"},

{regex: /\}/, token: "close", next: "pop"},

{regex: /(true)|(false)/, token: ["boolean.true", "boolean.false"]}

]

};

this.normalizeRules();

};

Grammar 3: Scoped Boolean Ace

Just like Monarch grammars, regular expressions are matched line by line. The linefeed characters are
not included in this in these lines. Unlike Monarch grammars, there is no option to add linefeed characters
this. When checking if a regular expression matches, the start of the line is included for context, just like
TextMate does.

2.4 Pygments

Pygments allows for syntax highlighting according to any Python class that implements the appropriate
lexing interface, as described by their documentation [7]. This interface expects the lexer to output one
category per character, where each category is a list of category components. Like TextMate grammars, the
hierarchical structure of these components is determined by the order of components themselves. Most
of Pygments lexers are defined using their helper ”RegexLexer” class, which uses a declarative grammar
for tokenization. These grammars are once again very similar to Monarch grammars, and are based on
DPDAs. Once again we will only cover some important similarities and differences between this format
and previously discussed formats. Just like Ace grammars, no initial state can be specified, and instead the
state collection has to contain a state called ”root” to represent the initial state. One important difference
with any of the previously discussed tokenizers, is that this tokenizer does not operate on a single line at
a time. A regular expression is allowed to cross line boundaries. This format also supports pushing and
popping of multiple states at a time, in the form of a dedicated syntactic feature. Grammar 4 illustrates a
Monarch grammar encoded in JavaScript, specifying the same tokenizations as the ones in Grammar 2.

class BooleanLexer(RegexLexer):

tokens = {

'root': [include('open')],

'open': [(r'\{', Token.Open, 'all')],

'all': [

include('open'),

(r'\}', Token.Close, '#pop'),

(r'(true)|(false)', bygroups(Token.Boolean.True, Token.Boolean.False))

]

}

Grammar 4: Scoped Boolean Pygments
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2.5 Lexing Grammar Similarities

Many of these formats appear to be DPDA based and follow similar structures. TextMate is the one ex-
ception, but is also the most common format amongst them. TextMate’s tokenization interface is the most
powerful amongst the discussed formats, but its language recognition capabilities is the weakest. The hier-
archical patterns of TextMate can be simulated by the DPDA based grammars as long as no content name
is present. This is done by using a push pattern of the begin expression of the pattern, which pushes a new
state that includes a list of patterns representing TextMate patterns, with a pop pattern of the end expres-
sion inserted at the start of these patterns. Simulating DPDA based grammars using a TextMate grammar
is not as obvious. The behavior of pushing and popping a combination of states as seen in DPDA based
grammars has no obvious counterpart in TextMate grammars.

We will use the discussed capabilities of TextMate grammars as our target. This will ensure that in terms
of recognition, all other formats that we are interested in can be derived as well. In the process of deriving
DPDA based grammars, we might lose some information of the exact assigned scopes however, since they
have to be transformed into single categories.
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3 Formalizations

We now know what our source format is and understand the capabilities of our target format. These formats
are quite different, especially regarding the aspect of regular expressions. Rascal’s CFG source format does
not support regular expressions with tags, while this forms a crucial aspect of LGs. For this reason, we
introduce our own CG format. This format combines the capabilities of both formats. This allows us to
easily map a Rascal grammar to a CG, apply several transformation rules to get rid of constructs that are
not supported by the target grammar format, and finally map the resulting CG to the target LG format.

This CG format could also serve as our unified grammar format, containing both tokenization and
parsing information. From a grammar in this format, a CFG in Rascal’s format could be derived using a
mapping scheme. For implementation purposes, we will consider Rascal’s format as the unified source
format, since Rascal has dedicated syntax built in to their language for defining CFGs in this format. This
makes it convenient to stick with their format for specifying grammars.

In this chapter, we will introduce this CG format, including a formalization. In order to support this
format, we will first formalize the notion of regular expressions that include lookarounds and capture-
groups. Finally we will discuss the relation between our grammar format, Rascal’s CFG format, and LG
formats.

3.1 Regular Expressions

Regular expressions play an important role in all of the LGs formats that we have considered. The theory of
regular expressions is well defined and researched after Kleene introduced Regular Languages in 1951 [8].
Unfortunately, there is a disconnect between the basic formalism of regular expressions, and the capabilities
commonly found in tools that support regular expressions for pattern matching. Notably, the classical
formalism does not support lookaround operators such as lookaheads and lookbehinds, and has no notion
of capture groups. Formal regular expressions were originally intended to define infinite languages using
finite syntax. Within this context, there simply is no obvious notion of lookaround operators and capture
groups. In regular expression tools, lookarounds are used to match phrases in the language only if they
appear in an appropriate larger context. This is for instance used when performing searches. A positive
lookahead could for instance specify to only match (and return) a certain pattern, if it is followed by another
pattern. Capture groups are used to split a pattern match into distinct parts, and retrieve the matched text
for each part individually. In order to support these features within a formal framework, we have to alter
our notion of languages.

We will first consider a formalization of regular expressions with lookarounds and a separate formal-
ization with capture groups, before combining the two. There is an interplay between these concepts, but
looking at them in isolation helps to properly understand the idea. Finally we consider how to reason with
regular expressions defined in our format, by introducing an automaton formalism.

3.1.1 Lookaround Regular Expressions

Regular expressions with lookaheads have received more attention in recent years, and have been re-
searched most notably by Takayuki Miyazaki et al. and by Martin Berglund et al. [9, 10]. This research
does however not include lookbehinds, and can not trivially be extended to include lookbehinds. We will
therefore define our own notion of lookarounds. This notion shares several similarities to these works, but
is syntactically inspired by Rascal’s precede and follow operators.

In order to add lookarounds to regular expressions, we have to make sure there is a notion of context in
the corresponding languages. A regular expression defined over the alphabet Σ typically defines a language
that is a subset of Σ∗. Here X∗ denotes the Kleene closure of set X. It represents the smallest set that contains
the empty string ε and all sequences of one or more symbols that exist in X: X∗ = {ε} ∪ X ∪ X2 ∪ X3 ∪ ... .
The language that our regular expression defines will instead be a subset of Σ∗ × Σ∗ × Σ∗. The entries in
this language consist of three parts:

• The prefix that is allowed before the body

• The body that is matched
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• The suffix that is allowed after the body

These prefix and suffix parts form the context of the match. When relating this to a search problem, one
could consider the concatenation of all three character sequences as the text that was searched in, and the
body as the match that was found by the regular expression. For example, the tuple (a, b, c) would represent
that b was found in the overall input of abc. In addition to lookarounds, we will also add the notion of
subtraction to our regular expressions.

Lookaround regular expressions can be defined inductively, according to grammar

R ::= 0 | 1 | ε | a | R+R | RR | R+ | R>R | R<R | R 6>R | R 6<R | R−R | (R)

for every a ∈ Σ. The expression r1>r2 represents a positive lookahead, expressing that a match of r1
should be followed by a match of r2 without r2 being included in the overall match, as it would be for
concatenation. Meanwhile r1 6>r2 represents a negative lookahead, expressing that a match of r1 may not
be follow by a match of r2. r2<r1 and r2 6<r1 represent a lookbehind and negative lookbehind respectively,
representing r1 should (not) be preceded by r2. We define the precedence levels and associativity as follows:

1. 0 | 1 | ε | a | (R)

2. R+

3. RR which is left-associative

4. R+R which is associative

5. R−R which is right-associative

6. R>R | R 6>R which are right-associative

7. R<R | R 6<R which are left-associative

In this list, the base cases numbered 1 have the highest precedence, while the lookbehinds have the lowest
precedence. Alternation R+R being associative can be confirmed by the semantics we will now assign.

The exact language of a given lookaround regular expression r can then be derived by following its
inductive structure. Let r1 and r2 be two regular expressions which possibly make up the expression of r.
The language for any possible shape of r is defined as follows:

L(0) = ∅
L(1) = {(p, w, s) | p, w, s ∈ Σ∗}
L(ε) = {(p, ε, s) | p, s ∈ Σ∗}
L(a) = {(p, a, s) | p, s ∈ Σ∗}

L(r1+r2) = L(r1) ∪ L(r2)

L(r1r2) = {(p, αβ, s) | (p, α, βs) ∈ L(r1) ∧ (pα, β, s) ∈ L(r2)}
L(r+1 ) = ∪i≥1Si(r1)

L(r1>r2) = {(p, w, s) ∈ L(r1) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(r2)}
L(r1 6>r2) = {(p, w, s) ∈ L(r1) | ¬∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(r2)}
L(r1<r2) = {(p, w, s) ∈ L(r2) | ∃ α, β ∈ Σ∗ . p = αβ ∧ (α, β, ws) ∈ L(r1)}
L(r1 6<r2) = {(p, w, s) ∈ L(r2) | ¬∃ α, β ∈ Σ∗ . p = αβ ∧ (α, β, ws) ∈ L(r1)}
L(r1−r2) = L(r1)\L(r2)

L((r1)) = L(r1)

We define Si(r1) for a lookaround regular expression r1 inductively as the sequence of i elements in the
language of r1 :

S0(r1) = L(ε) = {(p, ε, s) | p, s ∈ Σ∗}
Si+1(r1) = {(p, αβ, s) | (p, α, βs) ∈ Si(r1) ∧ (pα, β, s) ∈ L(r1)}
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Note that our base expressions 1, ε and a all define languages that include all possible prefixes and
suffixes paired with their respective body. This means that their respective bodies can be matched within
any context. Similarly, the concatenation and Kleene star operations preserve all prefixes and suffixes, but
they also ensure that the the combined bodies are indeed allowed by the respective prefix or suffix they
are combined with. More specifically, concatenation only concatenates a triplet x with another triplet y, if
the start of the suffix of x matches the body of y, and symmetrically the end of the prefix of y matches the
body of x. If lookarounds were not added, this would essentially leave us with a more complex formulation
of the same semantics as is present in classical regular expressions. The extra notions of lookarounds and
subtractions are not used to define new entries in the language like the classical regular expression operators
do, instead they serve to filter out some entries present in the language defined by a sub-expression.

3.1.2 Tagged Regular Expressions

Next we consider how to deal with capture groups. We do this by tagging characters of words in the
language with the identifier of a given capture group. This way the language itself encodes what char-
acter sequences belong to which capture group. In order to achieve this, we introduce the concept of tag
groups into the syntax, which can then be used as capture groups if every tag group specifies a unique tag.
Moreover, in this thesis we are interested in assigning categories to characters, which tags can be used for
directly, skipping the intermediate capture group structure. These regular expressions are expressions over
an alphabet Σ and a tag universe T. The resulting language is a subset of (Σ × P(T))∗. Note that every
character in words of our language is now paired with a subset of the tag-universe, rather than exactly 1
tag.

The idea of encoding capture groups in regular expressions using tags is not new. Ville Laurikari used
tags to efficiently encode capture groups, and came up with the notions of tagged (non-)deterministic au-
tomata to efficiently match such regular expressions [11]. Their notion of tags does however differ from
ours, and focusses on regular expression matching, rather than language analysis.

Tagged regular expressions of this format can once again be defined inductively, according to grammar

R ::= 0 | ε | a | R+R | RR | R+ | (〈t〉R) | (R)

for every a ∈ Σ and t ∈ T. The precedences of operators here are the same as specified in the previous
section, with (〈t〉R) belonging to the base-case group with the highest precedence.

Again, the exact language of a given tagged regular expression r can then be derived by following its
inductive structure. Let r1 and r2 be two regular expressions which possibly make up the expression of r.
The language for any possible shape of r is defined as follows:

L(0) = ∅
L(ε) = {ε}
L(a) = {(a, ∅)}

L(r1+r2) = L(r1) ∪ L(r2)

L(r1r2) = {αβ | α ∈ L(r1) ∧ β ∈ L(r2)}
L(r+1 ) = ∪i≥1Si(r1)

L((〈t〉r1)) = {(w, {t} ∪ T′) | (w, T′) ∈ L(r1)}
L((r1)) = L(r1)

We define Si(r1) for a tagged regular expression r1 inductively as the sequence of i elements in the
language of r1 :

S0(r1) = L(ε) = {ε}
Si+1(r1) = {αβ | α ∈ Si(r1) ∧ β ∈ L(r1)}
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The set of tags is not actively considered by any expression constructs, except for the operator that as-
signs tags. This tag assignment operator augments the words in the language defined by its sub-expression,
with the specified tag.

Note that we implicitly switch the form of the main body from (Σ× T∗)∗ to Σ∗ × (T∗)∗ in the tag oper-
ator language definition. This makes it easier to separate the character sequence from the scope sequence,
but there still is a one to one correspondence between characters and scopes which is not immediately clear
in this notation. This implicit conversion will be used in multiple places. Additionally, the union notation
is not used entirely properly either. It specifies that the union between a tag set sequence T′ and a single tag
set t is taken, while intending to represent taking the union with t for every tag set in the sequence of T′.

In the language defined by a tagged regular expression, a given character sequence might occur multiple
times, with different tags associated per character. Regular expressions and languages for which such a
character sequence exists, are said to be tag-ambiguous.

3.1.3 Tagged Lookaround Regular Expressions

Now that we understand the concepts of tags and lookarounds in isolation, we can merge these notions
to define tagged lookaround regular expressions. For a given alphabet Σ and tag universe T, we declare
R(Σ, T) to be the universe of tagged lookaround regular expressions, inductively defined according to
grammar:

R ::= 0 | 1 | ε | a | R+R | RR | R+ | R>R | R<R | R 6>R | R 6<R | R−R | (〈t〉R) | (R)

for every a ∈ Σ and t ∈ T. The precedences for these operators are the same as specified in the previous
sections. In order to make some common structures easier to write, we can also introduce some additional
shorthand notation:

• (>R) = ε>R

• (R<) = R<ε

• ( 6>R) = ε 6>R

• (R 6<) = R 6<ε

• (−R) = 1−R

• R∗ = ε+R+

For the semantics of these expressions, the concepts of the previously defined expressions can largely
be merged straightforwardly. The language of tagged lookaround regular expressions will be subsets of
(Σ×P(T))∗ × (Σ×P(T))∗ × (Σ×P(T))∗. This means that the contextual parts of the language may also
contain tags, and thus special care has to be taken with lookarounds and concatenation. Tags present in
the contextual section of a language have to be merged with the corresponding part of the other language
appropriately. Let r1 and r2 be two regular expressions which possibly make up the expression of r. The
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language for any possible shape of r is defined as follows:

L(0) = ∅
L(1) = {(p, w, s) | p, w, s ∈ (Σ× {∅})∗}
L(ε) = {(p, ε, s) | p, s ∈ (Σ× {∅})∗}
L(a) = {(p, (a, ∅), s) | p, s ∈ (Σ× {∅})∗}

L(r1+r2) = L(r1) ∪ L(r2)

L(r1r2) = {((p, Tp
1 ∪ Tp

2 ), (α, Tα
1 ∪ Tα

2 )(β, Tβ
1 ∪ Tβ

2 ), (s, Ts
1 ∪ Ts

2))

| ((p, Tp
1 ), (α, Tα

1 ), (β, Tβ
1 )(s, Ts

1)) ∈ L(r1) ∧ ((p, Tp
2 )(α, Tα

2 )), (β, Tβ
2 )), (s, Tp

2 )) ∈ L(r2)}
L(r+1 ) = ∪i≥1Si(r1)

L(r1>r2) = {((p, Tp
1 ∪ Tp

2 ), (w, Tw
1 ∪ Tw

2 ), (αβ, Ts ∪ (TαTβ)))

| ((p, Tp
1 ), (w, Tw

1 ), (αβ, Ts)) ∈ L(r1) ∧ ((p, Tp
2 )(w, Tw

2 ), (α, Tα), (β, Tβ)) ∈ L(r2)}
L(r1 6>r2) = {((p, Tp

1 ), (w, Tw
1 ), (s, Ts)) ∈ L(r1)

| ¬∃ α, β ∈ Σ∗, Tp
2 , Tw

2 , Tα, Tβ ⊆ T . s = αβ ∧ ((p, Tp
2 )(w, Tw

2 ), (α, Tα), (β, Tβ)) ∈ L(r2)}
L(r1<r2) = {((αβ, Tp ∪ (TαTβ)), (w, Tw

1 ∪ Tw
2 ), (s, Ts

1 ∪ Ts
2))

| ((α, Tα), (β, Tβ), (w, Tw
1 )(s, Ts

1)) ∈ L(r1) ∧ ((αβ, Tp), (w, Tw
2 ), (s, Ts

2)) ∈ L(r2)}
L(r1 6<r2) = {((p, Tp), (w, Tw

2 ), (s, Ts
2)) ∈ L(r2)

| ¬∃ α, β ∈ Σ∗, Tα, Tβ, Tw
2 , Ts

2 ⊆ T . p = αβ ∧ ((α, Tα), (β, Tβ), (w, Tw
2 )(s, Ts

2)) ∈ L(r1)}
L(r1−r2) = {((p, Tp

1 ), (w, Tw
1 ), (s, Ts

1)) ∈ L(r1) | ¬∃ Tp
2 , Tw

2 , Ts
2 ⊆ T . (p, Tp

2 ), (w, Tw
2 ), (s, Ts

2)) ∈ L(r2)}
L((〈t〉r1)) = {(p, (w, {t} ∪ Tw), s) | (p, (w, Tw), s) ∈ L(r1)}
L((r1)) = L(r1)

Again Si(r1) for a tagged lookaround regular expression r1 is defined inductively as the sequence of i
elements in the language of r1 :

S0(r1) = L(ε) = {(p, ε, s) | p, s ∈ (Σ× {∅})∗}

Si+1(r1) = {((p, Tp
1 ∪ Tp

2 ), (α, Tα
1 ∪ Tα

2 )(β, Tβ
1 ∪ Tβ

2 ), (s, Ts
1 ∪ Ts

2))

| ((p, Tp
1 ), (α, Tα

1 ), (β, Tβ
1 )(s, Ts

1)) ∈ Si(r1) ∧ ((p, Tp
2 )(α, Tα

2 )), (β, Tβ
2 )), (s, Tp

2 )) ∈ L(r1)}

These definitions have gotten a fair bit more complex, but are mostly an intuitive combination of the
previously explored concept. Concatenation and positive lookarounds take care of merging the tagsets
properly, while negative lookarounds and subtraction ignore the tags provided in the second expression by
using an existential quantifier over all possible tags.

The tag semantics provided by our formalism are slightly different than what most practical regular
expressions engines support. Firstly, using this approach we can not differentiate not matching a capture
group, which happens when the capture group occurs in an alternation that was not used, or capturing an
empty string. Most regex engines differentiate this behavior, by providing a null value when the capture
group was not matched. Secondly, most regular expression engines only return the last capture of a capture
group. Hence if a capture group occurs within an iterative construct, some of the capture data may be lost.
The difference between empty captures and no capture is irrelevant for our purpose and can be ignored,
the difference in behavior within iterative constructs is of importance however, and will require special care
later in our transformation pipeline to ensure our theory does not yield incorrect results. The discussion
provides some possibilities for solving these issues to obtain a wider applicable formalism.

3.1.4 Tagged Contextualized Non-deterministic Finite Automata

In the field of language theory, the notion of regular expression is accompanied by the concepts of NFAs and
Deterministic Finite Automata (DFA) [12, 13]. All three of these formalisms can define regular languages,
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and are equally powerful. Regular expressions are great for constructively building up a language in an
intuitive way, but DFAs have the nice property of being easy to compute with. Given two DFAs defining
languages L1 and L2, we can easily construct a DFA representing any of the following languages: L1 ∪ L2,
L1 ∩ L2, or Σ∗\L1. Mosts importantly, it is trivial to check whether the language represented by a given
DFA is empty. A given regular expression can be translated to a NFA with an equivalent language, which
in turn can be translated into a DFA with an equivalent language.

Within the context of this research, being able to take the intersections and complements of the languages
of two regular expressions is very valuable. These operations combined with a check for whether the
language is empty, allow us to answer any of these questions:

• Are two given regular expressions semantically equivalent?

• Do any of the words defined by a regular expression form a prefix of words of another regular expres-
sion?

• Does a given regular expression define empty words?

All of these questions later become important questions, that should be answered in an automated way
to make informed decisions during our grammar conversion process.

For this reason, we define automata with similar capabilities that support the language format of tagged
lookaround regular expressions: Tagged Contextualized Deterministic Finite Automata (TCDFA) and TC-
NFAs. We will first introduce the TCNFAs model, and then relate it to the TCDFA model.

Our automata are defined in relation to classic NFAs. Therefore we will first formally define NFAs. A
NFA is a tuple (Q, Σ, R, i, F), where:

• Q is a finite set of states

• Σ is a finite set of symbols, defining the alphabet

• R ⊆ Q× ({ε} ∪ Σ)×Q is a transition relation

• i ∈ Q is the initial state

• F ⊆ Q is the set of final states

The language of a given N = (Q, Σ, R, i, F) is defined as follows:

L(N) = {w ∈ Σ∗ | δ(i, w) ∩ F 6= ∅}

In this definition δ ⊆ Q × Σ∗ × P(Q) specifies the set of reachable states for a given word. Using the
reflexive transitive closure R∗ε of Rε = {(u, v) | (u, ε, v) ∈ R}, we can δ as follows:

δ(q, ε) = {s | (q, s) ∈ R∗ε}
δ(q, aα) = {v | (q, s) ∈ R∗ε ∧ (s, a, u) ∈ R ∧ v ∈ δ(u, α)} for a ∈ Σ, α ∈ Σ∗

A TCNFA is defined by a tuple (Qp, Qw, Qs, Σ, T, R, i, F), where:

• Qp is a finite set of prefix states

• Qw is a finite set of main states, disjoint from Qp

• Qs is a finite set of suffix states, disjoint from Qp and Qw

• Σ is a finite set of symbols

• T is a finite set of tags

• R ⊆ (Qp ∪Qw ∪Qs)× ((Σ×P(T)) ∪ {ε, 〈, 〉})× (Qp ∪Qw ∪Qs) is a transition relation

• i ∈ Qp is the initial state
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• F ⊆ Qs is the set of accepting states

We say that TCNFA(Σ, T) is the universe of all TCNFAs with the given alphabet and tags universe.
The language represented by a TCNFA is a subset of (Σ×P(T))∗ × (Σ×P(T))∗ × (Σ×P(T))∗. This

language can be described in terms of the language of a NFA. Given a TCNFA C = (Qp, Qw, Qs, Σ, T, R, i, F),
we can define a NFA N = (Qp ∪Qw ∪Qs, (Σ×P(T))∪ {〈, 〉}, R, i, F). The language of C is then defined as:

L(C) = {(p, w, s) ∈ (Σ×P(T))∗ × (Σ×P(T))∗ × (Σ×P(T))∗ | p〈w〉s ∈ L(N)}

A TCNFA essentially makes tags an intrinsic part of the alphabet, and uses special separation characters 〈
and 〉 to split phrases of the language into 3 parts separating the context from the main match. We will refer
to transitions matching either 〈 or 〉 as bracket transitions.

Considering this definition of the language, stricter conditions could be added to the transition relation
of a TCNFA without affecting the universe of languages that can be defined by TCNFAs. This comes from
the 〈 and 〉 symbols always having to occur exactly once in a fixed order within the language specified by
the corresponding NFA. Therefore we can specify the bracket constraint, which requires R to be a subset of:

Qp × ((Σ×P(T)) ∪ {ε})×Qp

∪ Qw × ((Σ×P(T)) ∪ {ε})×Qw

∪ Qs × ((Σ×P(T)) ∪ {ε})×Qs

∪ Qp × {〈} ×Qw

∪ Qw × {〉} ×Qs

The universe of TCDFAs is a subset of that of TCNFAs. If a TCNFA does not contain any ε-transitions,
and its relation is a function, it is said to be a TCDFA. These requirements alone do however not ensure that
the δ-function of the corresponding NFA always reaches exactly one state, as would be the case for a DFA.
This is an important property of DFAs, that allows their complement to be calculated. They achieve this
by requiring totality of the transition function, but this unfortunately contradicts the bracket constraint that
we just set on the transition relation of a TCNFA. Instead we will directly add the following, less trivial to
achieve, totality requirement: ∀ p, w, s ∈ (Σ×P(T))∗ . |δ(p〈w〉s)| = 1

Converting a TCNFA C to a TCDFA Cd with an equivalent language can now be done using the standard
NFA to DFA subset construction approach. For the NFA corresponding to C, we calculate a DFA D with an
equivalent language. We then partition the states of D according to the paths they can be reached through.
For a given state q, and every path π that it can be reached through:

• If π contains neither 〈 nor 〉, q belongs to Qp

• If π contains a 〈 but not 〉, q belongs to Qw

• If π contains both 〈 and 〉, q belongs to Qs

This scheme will perfectly assign each state to a single state set, except for possibly q = ∅. This is the
case because all reachable states in C must be reached through a path that adheres to constraints of a TCNFA
transition relation, which are designed to ensure this. The sink state q = ∅ does however not follow these
path constraints. In case we do care about the determinism aspect of our TCNFA, but do not require it to be
a full TCDFA, all we have to do is delete this ∅ state and all its corresponding transitions. Because this state
forms a sink and is not accepting, the described language is unaffected by this modification. After deleting
this sink state, the totality requirement can still be met by defining three sink states, one for each state set of
the partition: sp ∈ Qp, sw ∈ Qw, and ss ∈ Qs. Then for a given a given transition relation R of D, with the
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empty state transitions removed, we can augment R by the following transitions:

{s (a,t)−−→ sp | s ∈ Qp ∧ (a, t) ∈ Σ×P(T) ∧ ¬∃ v ∈ Qp . s
(a,t)−−→ v ∈ R}

∪ {s (a,t)−−→ sw | s ∈ Qp ∧ (a, t) ∈ Σ×P(T) ∧ ¬∃ v ∈ Qw . s
(a,t)−−→ v ∈ R}

∪ {s (a,t)−−→ ss | s ∈ Qp ∧ (a, t) ∈ Σ×P(T) ∧ ¬∃ v ∈ Qs . s
(a,t)−−→ v ∈ R}

∪ {s 〈−→ sw | s ∈ Qp ∧ ¬∃ v ∈ Qw . s
〈−→ v ∈ R}

∪ {s 〉−→ ss | s ∈ Qw ∧ ¬∃ v ∈ Qs . s
〉−→ v ∈ R}

In this notation, s a−→ u simply represents a tuple (s, a, u), while hinting at this tuple representing a
transition.

TCNFA(0) =

TCNFA(1) =
〈 〉

∗ ∗ ∗

TCNFA(ε) =
〈 〉

∗ ∗

TCNFA(a) =
〈 a 〉

∗ ∗

Figure 1: Base TCNFA Automata

A regular expression can be mapped to a TCNFA with an equivalent language, using an inductive
definition. Given a tagged lookaround regular expression r, TCNFA(r) will define the TCNFA of r, such
that L(r) = L(TCNFA(r)). The base cases of the inductive definition can be defined directly:

TCNFA(0) = ({p}, ∅, ∅, Σ, T, ∅, p, ∅)

TCNFA(1) = ({p}, {m}, {s}, Σ, T, {p
〈−→ m, m

〉−→ s} ∪ {p
(a,∅)−−−→ p, m

(a,∅)−−−→ m, s
(a,∅)−−−→ s | a ∈ Σ}, p, {s})

TCNFA(ε) = ({p}, {m}, {s}, Σ, T, {p
〈−→ m, m

〉−→ s} ∪ {p
(a,∅)−−−→ p, s

(a,∅)−−−→ s | a ∈ Σ}, p, {s})

TCNFA(a) = ({p}, {m1, m2}, {s}, Σ, T, {p
〈−→ m1, m1

a−→ m2, m2
〉−→ s} ∪ {p

(a,∅)−−−→ p, s
(a,∅)−−−→ s | a ∈ Σ}, p, {s})

Figure 1 illustrates each of these automata graphically. This figure follows standard automata conventions
where the double ring indicates the accepting state, and the incoming arrow without a starting state indi-
cates the initial state. Specific to our illustration is that ∗ represents any character transition, but does not
match 〈 or 〉.
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The base automata do not have to be defined in terms of other automata, and are therefore fairly straight-
forward. The inductively defined operators pose more of a challenge. Let r1 and r2 be two regular expres-
sions, with their corresponding TCNFAs:

• (Qp
1 , Qw

1 , Qs
1, Σ, T, R1, i1, F1) = TCNFA(r1)

• (Qp
2 , Qw

2 , Qs
2, Σ, T, R2, i2, F2) = TCNFA(r2)

Using these sub-automata, automata of inductively defined syntax can be specified. Most of these au-
tomata take a shape very similar to product automata, essentially simulating the execution of both sub-
automata in parallel, while synchronizing their actions where necessary. We can define TCNFA(r1r2) =
(Qp, Qw, Qs, Σ, T, R, i, F) where:

Qp = Qp
1 ×Qp

2

Qw = (Qw
1 ×Qp

2 ) ∪ (Qs
1 ×Qw

2 )

Qs = Qs
1 ×Qs

2

R = {(s1, s2)
ε−→ (s′1, s2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s1

ε−→ s′1 ∈ R1}

∪ {(s1, s2)
ε−→ (s1, s′2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s2

ε−→ s′2 ∈ R2}

∪ {(s1, s2)
(a,T1∪T2)−−−−−→ (s′1, s′2)

| s1 ∈ (Qp
1 ∪Qw

1 ∪Qs
1) ∧ s2 ∈ (Qp

2 ∪Qw
2 ∪Qs

2) ∧ s1
(a,T1)−−−→ s′1 ∈ R1 ∧ s2

(a,T2)−−−→ s′2 ∈ R2}

∪ {(s1, s2)
〈−→ (s′1, s2) | s1 ∈ Qp

1 ∧ s2 ∈ Qp
2 ∧ s1

〈−→ s′1 ∈ R1}

∪ {(s1, s2)
ε−→ (s′1, s2) | s1 ∈ Qw

1 ∧ s2 ∈ Qp
2 ∧ s1

〉−→ s′1 ∈ R1 ∧ s2
〈−→ s′2 ∈ R2}

∪ {(s1, s2)
〉−→ (s1, s′2) | s1 ∈ Qs

1 ∧ s2 ∈ Qw
2 ∧ s2

〉−→ s′2 ∈ R2}
i = (i1, i2)

F = F1 × F2

This definition essentially encodes a synchronization between the two given automata. Epsilon transitions
may occur non-synchronized, but character transitions are always synchronized and their corresponding
tags are merged. The match-start symbol of the first automaton may be taken at any point, and does not
have to be synchronized. The match-end symbol of the first automaton does however need to be synchro-
nized with the match-start symbol of the second automaton, and is replaced by an epsilon transition in
the resulting automaton. Finally the match-end symbol of the second automaton may appear at any point.
Figure 2 gives an example of how two specific TCNFAs can be used to define an automaton specifying
their concatenation. Note that the initial TCNFAs that the concatenation are built-up from are simplified
versions of the TCNFAs that would be obtained from our inductive definition to improve readability. Fig-
ure 3 illustrates more abstractly how the structure of the concatenation TCNFA is built-up from any two
TCNFAs. In this diagram, the 3 distinct parts – prefix, match, and suffix – that any TCNFA is built-up from
are highlighted. Every state in the combined automaton is formed by combining a state of both automaton
as indicated by the grey connection lines. Most notably, this figure illustrates how bracket transitions are
combined, for instance synchronizing the match-end transition of the first automaton with the match-start
automaton of the second automaton to form an epsilon transition in the final automaton.

The definition of a lookaround TCNFA very closely resembles that of a concatenation TCNFA, but
changing how synchronization on match-start and match-end symbols is performed. Figure 4 shows a
specific example of how a lookahead TCNFA is constructed, and Figure 5 illustrates more abstracticly how
the structure of the lookahead TCNFA is built-up from two TCNFAs.

Deriving syntax highlighters 21



CONTENTS 3. FORMALIZATIONS

TCNFA((aa+ac)) = p1 m1
1 m1

2

m1
3

m1
4

s1

∗

〈 a
a

c

〉
〉

∗

TCNFA((a<b)) = p2
1 p2

2 m2
1 m2

2 s2

∗

a 〈 b 〉

∗

TCNFA((aa+ac)(a<b)) =

(p1, p2
1)

(p1, p2
2)

(m1
1, p2

1)

(m1
2, p2

2)

(m1
2, p2

1)

(m1
3, p2

2)

(m1
3, p2

1)

(m1
4, p2

1)

(s1, m2
1) (s1, m2

2) (s1, s2)

∗

a

〈 a

a
a

a

c

ε b 〉

∗

Figure 2: Concatenation TCNFA Example

TCNFA(r1) = rp
1 rw

1 rs
1

〈 〉

TCNFA(r2) = rp
2 rw

2 rs
2

〈 〉

TCNFA(r1r2) =
〈 〉

ε

rp
1 rw

1 rs
1

rp
2 rm

2 rs
2

State
Original character-
transition states
New character-
transition states
Bracket transition
replaced states

Figure 3: Concatenation TCNFA Structure
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TCNFA((aa+ac)) = p1 m1
1 m1

2

m1
3

m1
4

s1

∗

〈 a
a

c

〉
〉

∗

TCNFA((a<b)) = p2
1 p2

2 m2
1 m2

2 s2

∗

a 〈 b 〉

∗

TCNFA((aa+ac)>(a<b)) =

(p1, p2
1)

(p1, p2
2)

(m1
1, p2

1)

(m1
2, p2

2)

(m1
2, p2

1)

(m1
3, p2

2)

(m1
3, p2

1)

(m1
4, p2

1)

(s1, m2
1) (s1, m2

2) (s1, s2)

∗

a

〈 a

a
a

a

c

〉 b ε

∗

Figure 4: Lookahead TCNFA Example

TCNFA(r1) = rp
1 rw

1 rs
1

〈 〉

TCNFA(r2) = rp
2 rw

2 rs
2

〈 〉

TCNFA(r1>r2) =
〈 〉

ε

rp
1 rw

1 rs
1

rp
2 rm

2 rs
2

State
Original character-
transition states
New character-
transition states
Bracket transition
replaced states

Figure 5: Lookahead TCNFA Structure
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We can formally define TCNFA(r1>r2) = (Qp, Qw, Qs, Σ, T, R, i, F) where:

Qp = Qp
1 ×Qp

2

Qw = Qw
1 ×Qp

2

Qs = (Qs
1 ×Qw

2 ) ∪ (Qs
1 ×Qs

2)

R = {(s1, s2)
ε−→ (s′1, s2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s1

ε−→ s′1 ∈ R1}

∪ {(s1, s2)
ε−→ (s1, s′2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s2

ε−→ s′2 ∈ R2}

∪ {(s1, s2)
(a,T1∪T2)−−−−−→ (s′1, s′2)

| s1 ∈ (Qp
1 ∪Qw

1 ∪Qs
1) ∧ s2 ∈ (Qp

2 ∪Qw
2 ∪Qs

2) ∧ s1
(a,T1)−−−→ s′1 ∈ R1 ∧ s2

(a,T2)−−−→ s′2 ∈ R2}

∪ {(s1, s2)
〈−→ (s′1, s2) | s1 ∈ Qp

1 ∧ s2 ∈ Qp
2 ∧ s1

〈−→ s′1 ∈ R1}

∪ {(s1, s2)
〉−→ (s′1, s2) | s1 ∈ Qw

1 ∧ s2 ∈ Qp
2 ∧ s1

〉−→ s′1 ∈ R1 ∧ s2
〈−→ s′2 ∈ R2}

∪ {(s1, s2)
ε−→ (s1, s′2) | s1 ∈ Qs

1 ∧ s2 ∈ Qw
2 ∧ s2

〉−→ s′2 ∈ R2}
i = (i1, i2)

F = F1 × F2

The definition for a lookbehind is symmetric. Defining a negative lookahead/lookbehind works similarly,
except the complement of the TCNFA of r2 is used. This is done by converting the TCNFA of r2 to a
TCDFA and setting its final states to Qs

2\F2. Some special care has to be taken here regarding the match-end
symbol of r2, or else the described language will end up encoding something along the lines of {(p, w, s) ∈
L(r1) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) 6∈ L(r2)}, where the negation moved inside the existential
quantifier.

The exact definitions for all constructions have been provided in Appendix A. This also includes the
definition and explanation of the Kleene plus operator, which is the most complex of the operators. Finally
we will give the definition of the tag operator here. We define TCNFA((〈t〉r1)) = (Qp

1 , Qw
1 , Qs

1, Σ, T, R, i1, F1)
where:

R = {s ε−→ s′ | s ∈ (Qp
1 ∪Qw

1 ∪Qs
1) ∧ s ε−→ s′ ∈ R1}

∪ {s 〈−→ s′ | s ∈ Qp
1 ∧ s

〈−→ s′ ∈ R1}

∪ {s 〉−→ s′ | s ∈ Qw
1 ∧ s

〉−→ s′ ∈ R1}

∪ {s (a,T1)−−−→ s′ | s ∈ (Qp
1 ∪Qs

1) ∧ s
(a,T1)−−−→ s′ ∈ R1}

∪ {s (a,{t}∪T1)−−−−−−→ s′ | s ∈ Qw
1 ∧ s

(a,T1)−−−→ s′ ∈ R1}

Appendix B contains more detail on the implementation of these TCNFA and the conversion algorithm.
This includes condensed character transitions to deal with large alphabets and a normal form on these
condensed TCNFAs for simple language equivalence testing.

We can now use these automaton to provide answers to questions about regular expressions in an auto-
mated way:

• Are two given regular expressions semantically equivalent? Answered by checking whether the TC-
NFAs of both expressions define the same language, using one of the following approaches:

– Determine whether a bisimulation exists [14].

– Determine whether the symmetric set difference of the languages is empty using union, comple-
ment, and product automata.

– Check automata equality after normalization see Appendix B for more details [15].
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• Do any of the words defined by a regular expression form a prefix of words of another regular expres-
sion? See overlap merging in Section 4.3.3.

• Does a given regular expression define empty words? Check whether the language of the product
automaton with the TCNFA(ε) automaton is empty.

3.2 Conversion Grammars

The CG model is an extension of the formal CFG model. Because we are interested in encoding tokeniza-
tions into our grammars too, our grammars contain a set of tags used in the grammar as categories. Instead
of using a sequence of terminal and non-terminal symbols for our productions, production components
will be used. The universe of these production components is infinite, and is defined inductively in terms
of the finite sets of terminal and non-terminal symbols:

• Any regular expression over the set of terminals is a production component

• Any reference to a non-terminal, combined with a sequence of tags is a production component

• Any production component with a positive/negative follow/precede restriction of another produc-
tion component, is a production component

• Any production component with the language of another production component deleted, is a pro-
duction component

• Any production component with the constraint that it has to appear at the start or end of a line, is a
production component

In order to properly reason about the grammar transformations we will perform, we want to formalize
these grammars together with the language and tokenizations they define. To do this, we will first look at
traditional CFG formalizations. Traditional CFGs are defined by a tuple (V, Σ, R, s), where:

• V is a finite set of non-terminal symbols

• Σ is a finite set of terminal symbols

• R ⊂ V × (V ∪ Σ)∗ is a finite set of production rules

• s ∈ V is the start symbol

Sentences in the language of such a grammar can be obtained by starting from the start symbol of
the grammar, and applying substitutions rules defined in R until the resulting sequence only consists of
terminal symbols. More precisely, we can define the language L(G) of a CFG G = (V, Σ, R, s) as follows:

L(G) = {w ∈ Σ∗ | s ⇒∗ w}

This ⇒∗ relation used here is defined as the transitive reflexive closure of the relation ⇒ ⊆ (V ∪ Σ)∗ ×
(V ∪ Σ)∗ which is defined as follows:

∀ α, β, γ ∈ (V ∪ Σ)∗, S ∈ V . αSβ ⇒ αγβ iff (S, γ) ∈ R

This way of defining the language of our CFG is simple and intuitive, as it is based on rewrites that can
easily be performed by hand. But it will not work well for the production components of our language.
The language of a CFG can also be defined in terms of fixed-points [16]. For every v ∈ V, let D ⊆ (V ∪ Σ)∗

be the set of all sequences that v can substitute to: ∀ d ∈ D . (v, d) ∈ R. Then we can create the a language
equation for this non-terminal v as follows:

L(v) = ∪d∈D L(d)
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We then define the language of a symbol sequence d ∈ (V ∪ Σ)∗ as follows:

L(ε) = {ε}
L(aα) = {a} · L(α) for a ∈ Σ, α ∈ (V ∪ Σ)∗

L(vα) = L(v) · L(α) for v ∈ V, α ∈ (V ∪ Σ)∗

Here the · operator represents pairwise concatenation between all sequences in each of the languages:

X · Y = {αβ | α ∈ X, β ∈ Y}

From all these language equations a single function f could be defined, which takes a vector of the
current language for each symbol, and outputs the new language according to the equations. The language
of a CFG G = (V, Σ, R, s), is the language specified for s in the least fixed-point of f . For conciseness, we will
say this is the least fixed-point of L(s) from here on out. This language can be approximated by iteratively
augmenting the language per symbol. The first approximation is initialized as an empty language for
each non-terminal v ∈ V, namely: L0(v) = ∅. The next approximation can be calculated in terms of the
previous: Li+1(v) = ∪d∈D Li(d), where Li(d) uses the same equations as previously defined, except using
approximation i of the language for each non-terminal. Since the target language is infinite in many cases,
this approximation process would not terminate. Any sentence that is part of the language, does belong to
approximation Li(s) for some sufficiently large i however, making this approximation process valuable in
understanding the actual infinite language.

Now we will define a similar formalization of our CG format, and use fixed-point equations to define
the language of a given grammar. A CG is defined by a tuple (V, Σ, T, R, s), where:

• V is a finite set of non-terminal symbols

• Σ is a finite set of terminal symbols

• T is a finite set of tags

• R ⊂ V × C(V, Σ, T)∗ is a finite set of production rules

• s ∈ V is the start symbol

We then define the production component universe C(V, Σ, T) inductively. We have two base-elements:

ref (v, t) ∈ C(V, Σ, T) for v ∈ V, t ∈ T∗

regex(r) ∈ C(V, Σ, T) for r ∈ R(Σ, T∗)

To assure that the language corresponding to this grammar is well defined, we have to add some additional
constraints to the regular expressions that may be used:

• Positive lookarounds may not contain tags, in order to prevent tags from occurring in the prefix or
suffix part of the regular expression’s language

• Any nested tag declaration must be an extension of its closest ancestor tag. This makes sure a proper
ordering is defined on the tags of the language. I.e. forall (〈t〉r) and their closest ancestor (〈t′〉r′), we
have that ∃ m ∈ T . t = t′m.

In addition to these base-elements, the universe of productions components also contains several inductive
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elements, all of which specify constraints:

follow(s, f ) ∈ C(V, Σ, T) for s, f ∈ C(V, Σ, T)
not-follow(s, f ) ∈ C(V, Σ, T) for s, f ∈ C(V, Σ, T)

precede(s, p) ∈ C(V, Σ, T) for s, p ∈ C(V, Σ, T)
not-precede(s, p) ∈ C(V, Σ, T) for s, p ∈ C(V, Σ, T)

except(s, e) ∈ C(V, Σ, T) for s, e ∈ C(V, Σ, T)
atStartOfLine(s) ∈ C(V, Σ, T) for s ∈ C(V, Σ, T)
atEndOfLine(s) ∈ C(V, Σ, T) for s ∈ C(V, Σ, T)

The language of a CG is different than most typical languages. Similar to how the language universe
for our custom regular expressions had to be augmented to support tags and lookarounds, we have to use
a more complicated language universe for a CG in order to support precede and follow declarations and
to encode tokenizations. It is not simply a subset of Σ∗ as is the case with CFGs, but instead is a subset of
Σ∗ × (Σ× T∗)∗ × Σ∗. This means that every sentence in the language is a triple, consisting of:

• The prefix: a sequence of terminals allowed before the main body

• The main body: a sequence of terminal symbols, each accompanied by a sequence of tags that apply
to that symbol

• The suffix: a sequence of terminals allowed after the main body

These tags represent the categories of our tokenization, and thus T∗ represents a scope. Using the language
L(G) of a conversion grammar G, we could define all possible tokenizations T (w, G) for a given input
w ∈ Σ∗ as follows:

T (w, G) = {h | (ε, (w, h), ε) ∈ L(G)}

From our definition of T (w, G), it becomes clear that not every input sentence w necessarily has one unique
tokenization. It may not have not have any tokenizations, or might instead have multiple valid tokeniza-
tions. If a sentence does not have any tokenization, we say it does not belong to the language. Syntax
highlighters deal with the problem of an input possibly not having a tokenization by assigning default
tokens to certain characters in the input while skipping them. This ensures that every possible input gets
at least some tokenization, even if it is not a meaningful one. When there exists a language with multiple
tokenizations, we say the grammar is tag-ambiguous. More formally, a grammar G is tag-ambiguous if and
only if ∃ w ∈ Σ∗ . |T (w, G)| ≥ 2. Syntax highlighters always obtain a single tokenization per word by
making greedy choices. These greedy choices are performed throughout the algorithm, which may lead
to skipping of characters even if the given input had a properly defined tokenization if other choices were
made earlier on. We will get back to this in Section 4.4.

We can now use fixed-point equations to define the language for a given grammar. For every v ∈ V, let
D ⊆ C(V, Σ, T)∗ be the set of all sequences that v can substitute to: ∀ d ∈ D . (v, d) ∈ R. Then we can create
the language equation for this non-terminal v as follows:

L(v) = ∪d∈D L(d)

We then define the language of a sentential form d ∈ C(V, Σ, T)∗ as follows:

L(ε) = {ε}
L(cα) = L(c) · L(α) for c ∈ C(V, Σ, T), α ∈ C(V, Σ, T)∗

To support this definition, we need to define the language for a single component. We also use a different
definition for the concatenation operator · in order to consider the allowed prefixes and suffixes. This
concatenation operation takes inspiration from our regular expression definition, and ensures that it only
concatenates a triplet x with another triplet y, if the start of the suffix of x matches the body of y, and

Deriving syntax highlighters 27



CONTENTS 3. FORMALIZATIONS

symmetrically the end of the prefix of y matches the body of x. The binary concatenation operator · on
two sets of triples is then more precisely defined as follows:

X · Y = {(p, (w1w2, t1t2), s) | (p, (w1, t1), w2s) ∈ X, (pw1, (w2, t2), s) ∈ Y}

Finally, we define the language for each of the different production component types:

L(ref (v, t)) = {(p′, (w, tt′), s′) | (p′, (w, t′), s′) ∈ L(v)}
L(regex(r)) = {(p, (w,F (Tw ∪ {ε})), s) | ((p, Tp), (w, Tw), (s, Ts)) ∈ L(r)}

L(follow(s, f )) = {(p′, (w, t), s′) ∈ L(s) | ∃ α, β ∈ Σ∗, γ ∈ T∗ . αβ = s′ ∧ (p′w, (α, γ), β) ∈ L( f )}
L(not-follow(s, f )) = {(p′, (w, t), s′) ∈ L(s) | ¬∃ α, β ∈ Σ∗, γ ∈ T∗ . αβ = s′ ∧ (p′w, (α, γ), β) ∈ L( f )}
L(precede(s, f )) = {(p′, (w, t), s′) ∈ L(s) | ∃ α, β ∈ Σ∗, γ ∈ T∗ . αβ = p′ ∧ (α, (β, γ), ws′) ∈ L(p)}

L(not-precede(s, f )) = {(p′, (w, t), s′) ∈ L(s) | ¬∃ α, β ∈ Σ∗, γ ∈ T∗ . αβ = p′ ∧ (α, (β, γ), ws′) ∈ L(p)}
L(except(s, e)) = {(p′, (w, t), s′) ∈ L(s) | ¬∃ γ ∈ T∗ . (p′, (w, γ), s′) ∈ L(e)}

L(atEndOfLine(s)) = {(p′, (w, t), s′) ∈ L(s) | s′ = ε ∨ ∃ α ∈ Σ∗ . s′ = \nα}
L(atStartOfLine(s)) = {(p′, (w, t), s′) ∈ L(s) | p′ = ε ∨ ∃ α ∈ Σ∗ . p′ = α\n}

The language for a given regular expression relies on the tag-filter function F (S) ⊆ P(T∗)× T∗, which is
defined as:

F (S) = t ∈ S such that ¬∃ t′ ∈ T . |t′| > |t|
For any regular expression with the required constraints, exactly one longest scope will exist.

The ref component simply augments the language of the non-terminal that is referenced by the specified
tag-sequence. The variants of the follow and precede conditions use either the suffix or prefix of triples in
the language of symbol s to filter out some entries. For example, the follow component only keeps the
triples for which the suffix starts with a terminal symbol sequence that is part of the language of the second
symbol f . Except filters out entries that are also contained in the second language, modulo the provided
scopes. The end of line component makes sure that the suffix is either empty (indicating the end of the
sentence) or indicates the start of a new line. Symmetrically the start of line components makes sure the
prefix ends in a linefeed character. This formalization of the language of a grammar also highlights how all
inductively defined components merely serve as additional constraints to filter certain phrases out of the
language. This mirrors the intended behavior of analogous constructs in Rascal that are meant to reduce
ambiguity.

The language L(G) of a given grammar G = (V, Σ, T, R, s) is now defined as the least fixed-point of
L(s). Note that the function representing our language equations is not monotonic, and thus there might
not be unique least fixed-point. In fact, we can easily construct a grammar for which there is no least
fixed-point, using a single production and start-symbol A where A → except(regex(a), ref (A, ε)). Using
our iterative approximation scheme, we find the first approximation of the language includes a, then this
phrase is filtered out in the second approximation, and reinserted in the third. More precisely, we find that
any odd indexed approximation includes the phrase a, while any even indexed approximation does not. In
order to prevent such behavior, CGs disallow recursive reference loops where the non-terminal reference
appears as the second argument of a production component, which is used for filtering of entries. The
resulting function is still not monotonic, but we believe it does have a well defined unique fixed-point, as it
is no longer possible for the language of a given non-terminal shrinking to cause it to grow again later.

3.3 Grammar Relationships

In order for the CG format to be of use, it has to be related to the grammar formats we are trying to convert
between: Rascal’s format, and TextMate’s format.

The CG format is designed in a way to make it easy to convert a Rascal grammar to a CG. The CG does
not have nearly as many features as Rascal’s format does, but any grammar making use of these features
can be refactored into a grammar with an equivalent language that uses only the features we support. As
terminal symbols, Rascal supports character classes, literal case sensitive strings, and literal case-insensitive
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strings. All of these constructs can be mapped to regular expressions. Our formal regular expression model
does not include character classes, but our practical implementation does support these as specified in Ap-
pendix B. Rascal’s layout statements for defining optional whitespace are automatically interwoven into
productions of the defined grammar, meaning that this feature is directly and automatically factored out.
In order to make grammars more concise and require fewer non-terminals, Rascal supports syntax for reg-
ular operations. Rascal already provides a way of factoring out these operations, by considering them to be
non-terminals and generating corresponding definitions for these non-terminals. Finally precedence and
associativity can be specified for productions in Rascal to deal with ambiguity stemming from productions
that are left or right-recursive. Such productions are common in grammars that describe binary operators,
or unary prefix or suffix operators. Precedence and associativity however only deal with ambiguity re-
garding nesting of productions in parse trees, without affecting the language described by the grammar.
Therefore, these constructs can simply be ignored in our mapping, without changing the intended lan-
guage. All remaining features map onto features included in the CG format quite trivially. The CG format
features production component constraints for each of Rascal’s constraint types including precede, follow,
reservation, and end of line constraints. Categories are attached as production attributes in Rascal, and can
be transferred to the ref and regex components of a CG constructed for the corresponding production.

Lexing grammars are much more restrictive than our format, hence not every CG can be converted to
a LG. For a CG to be converted to a LG, each non-terminal has to adhere to two requirements. It has to
have an empty production, making every non-terminal optional, and every production must have one of
the following shapes:

• A→ ε

• A→ regex(x) ref (A, ε)

• A→ regex(x) ref (B, t) regex(y) ref (A, ε)

We will call a CG adhering to these constraints a LCG. This format forces the corresponding grammars to
behave similar to how LGs behave. A non-terminal now essentially represents a pattern collection. After
matching one of these patterns, we can continue matching other patterns of the same collection. This is
enforced by requiring productions to be right-recursive. However, if all productions were right-recursive,
the grammar would not contain any finite phrase. Therefore we enforce every non-terminal to have an
empty production, simulating that every non-terminal can have its patterns match zero or more times. This
empty production does not have to be mapped to any construct of a LG, and instead is implicitly present in
the semantics of any LG. The second production form can be mapped to a simple pattern consisting of the
regular expression x. Finally, the third production form can be mapped to a hierarchical pattern. Special
care has to be taken regarding the accompanying non-terminal scope if it consists of more than 1 category,
but we will cover this in more detail in the Chapter 4.5.1.

In the next chapter we will have a look at how this mapping is performed exactly, and at how we obtain
a grammar with these constraints, from an arbitrary CG. To help with readability, we will from now on
abstract away from the exact notation and formalism described in this chapter. These formalisms have
been introduced to form a strong foundation that allows us to reason about language transformations, but
are not very concise or well suited for giving an overview of the transformation pipeline. Instead we will
make use of the following notational conventions:

• A: Uppercase characters at the start of the alphabet represent non-terminal symbols, as well as
non-terminal symbol references when occurring as a production component: A = ref (A, t)
for arbitrary t

• (〈t〉A): Regex tag notation is also used to represent tag non-terminal references with specific tags,
e.g. (〈t〉A) = ref (A, t)

• Ai: A non-terminal symbol indexed at some i represents the ith production of this non-terminal,
e.g. given A→ α, A1 = α

• /a/: Regular expressions are often wrapped in forward slashes, to distinguish them from other
operations
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• x: Lowercase characters at the end of the alphabet represent arbitrary regular expressions or
regular expression components, e.g. x = /a>b/ or x = regex(/a>b/)

• ẋ: A regular expression character, or non-terminal reference character, with a dot specifies that
the regular expression or reference does not specify any non-empty scopes. e.g. ẋ = /a>b/
or Ȧ = ref (A, ε) but ẋ 6= /(〈t〉a>b)/ and Ȧ 6= ref (A, t)

• x: A regular expression character with an underlines specifies that the regular expression does
not contain the newline character

• α: Lowercase characters at the start of the greek alphabet represent arbitrary production com-
ponent sequences, e.g. α = precede(ref (A, t), ref (B, ε)) regex(/a/). These are sometimes
also used to represent other types of sequences.

• JxK: Any production component nested in double brackets represents that the compo-
nent is nested in zero or more inductive production components, e.g. JAK =
precede(ref (A, t), ref (B, ε))
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4 Conversion

In this section, a conversion pipeline is introduced. This pipeline ensures that any conversion grammar Gs
is converted to a final LG. Before reaching the final LG, the transformation pipeline obtains a LCG Gl . This
is expressed by the following conjecture:

Conjecture 1. The introduced pipeline transforms any CG Gs to a LCG Gl .

Proving termination of the pipeline forms the main difficulty in proving this conjecture, as discussed in
Section 4.3. The pipeline attempts to ensure that the tokenizations of Gs for a given word w are also present
in the tokenizations of Gl for w more formally phrased as: ∀ w ∈ Σ∗ . T (w, Gs) ⊆ T (w, Gl). This is not a
property that this pipeline can always ensure. In many cases we can however determine that the performed
transformations are safe and retain this property. The pipeline will therefore keep track of a set of warnings
and errors regarding tokenization equivalence. If no errors are generated, the lexing grammar should have
an equivalent tokenization for all possible inputs. If errors are generated, it is possible that some inputs
have different tokenizations. This information can be used to manually change Gs to obtain the desired Gl .
This is expressed by the following conjecture:

Conjecture 2. If the conditions of Lemmas 1-3 are met during conversion from CG Gs to LCG Gl then Gl
contains all tokenizations of Gs.

The mapping from our formal LCG to an actual LG can also be problematic. The semantics of LG are
based on greedy choices, while LCG are not. Moreover, Gl may even be ambiguous, even if Gs was not.
Therefore in order to ensure that the mapping is correct, the LCG should not contain any choices. What this
entails exactly, will be discussed in Chapter 4.4. Before mapping Gl to an industry format, we will map it to
an intermediate custom format, in order to abstract away from exact syntax. We introduce Scope grammars
and PDA grammars to represent these industry formats for which exact semantics will be specified. These
semantics obtain exactly a single tokenization for any possible word over the grammar’s alphabet. Finally,
a LCG should not have any left-recursive cycles either. More formally, for any non-terminal symbol A
that can be substituted by αAβ using any number of substitutions, α should contain a regular expression
that does not accept the empty sequence ε. If this property does not hold, a tokenizer might get stuck
in a non-productive loop and not halt. Using some special care, we can ensure that there are no non-
productive recursive loops in grammars obtained from our pipeline. These conditions together form our
last conjecture:

Conjecture 3. If the conditions of Lemmas 4-6 are met when obtaining a Scope or PDA grammar G f from
LCG Gl then for any word tokenized by Gl , G f obtains a single equivalent tokenization.

Note that this conjecture states that the single tokenization of G f for a given word is equivalent to the
tokenizations obtained from Gl , which implies Gl contains either no tokenization or a single tokenization
per word. This is specified by the condition of Lemma 4.
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Conversion Pipeline

toConversionGrammar.rsc
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The overall conversion pipeline

A step in the pipeline
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Figure 6: Conversion Pipeline Overview

We will first describe steps to obtain a LCG: regular expression conversion, prefix conversion, and shape
conversion. We then specify checks that can establish whether the resulting grammar is free of choices. Af-
ter this, the intermediate formal LGs Scope grammars and PDA grammars are introduced, and a mapping
to industry formats is described. Finally, an optional step is introduced to deal with some of the potential
non-determinism in output grammars by means of improving lookaheads in the input grammars. Figure 6
provides an overview of the complete pipeline.

4.1 Regex Conversion

The first step in the conversion pipeline is to convert elements in the grammar into regular expressions
whenever possible. This is an important step, because LGs can deal with arbitrarily complex regular ex-
pressions, but put many restrictions on the production format. Every transformation made in this step
ensures that the resulting grammar describes a fully equivalent language, contributing to the following
lemma:

Lemma 1. The regular expression conversion step preserves all the grammar’s tokenizations without adding new
tokenizations.

After this, all remaining constraint production components are removed from the grammar. The goal
is to have pushed all constraints into the level of regular expressions, but in case this was not successful, a
warning is generated. These warnings do not relate to our tokenization equivalence assurance, but rather
try to help pinpoint what might have caused errors generated later in the pipeline. Removing constraints
will only broaden the language, and not remove any tokenizations. Hence if the final grammar is free of
choices and has no errors, its tokenization is maintained despite these warnings.
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When converting CFG constructs into regular expression constructs, there are two limiting factors present
in tokenizers that we have to consider: regular expression capture groups only capture the last occurrence,
and tokenizers operate line by line. This former behavior prevent us from using tag constructs within iter-
ation constructs, since this would result in tokenizers only properly assigning tokens to the last occurrence
in the match. The latter behavior prevents us from concatenating anything after a newline character in a
regular expression. If we were to create a regular expression defining a language in which a linefeed is
followed by any other character, the tokenizer would not be able to match this entry at all.

The conversion is based on a set of rewrite rules on productions of a conversion grammar. Inference
rule notation is used for these, to clearly distinguish the rewrite rules in the grammar itself from the rewrite
rules performed on the grammar. This notation represents that the premises can be replaced by the given
conclusion, while preserving our desired tokenization property. The notation A 6→ is used to indicate that
symbol A has no productions other than the ones listed as premises. Below is an example for a gram-
mar rewrite rule specifying that a sub-sequence of a production can be replaced by a non-terminal with a
production of that sub-sequence:

A→ α β B 6→
A→ B β B→ α

naming
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A→ α x y β

A→ α /xy/ β
concatenation

A→ α x β A→ α y β

A→ α /x+y/ β
alternation

A→ α x β A→ α β

A→ α /x+ε/ β
ε-alternation

A→ α J(〈s〉B)K β B→ x B 6→
A→ α J/(〈s〉x)/K β

substitution

A→ α (〈s〉B) β B→ JxK · · · J(〈t〉A)K B 6→
A→ α J/(〈s〉x)/K · · · J(〈st〉A)K β

sequence-substitution

A→ /(〈s〉ẋ)/ Ȧ A→ α A 6→
A→ /(〈s〉ẋ∗)/ α

right-repetition

A→ α A→ Ȧ /(〈s〉ẋ)/ A 6→
A→ α /(〈s〉ẋ∗)/

left-repetition

A→ /(〈s〉ẋ)/ Ȧ A→ α A→ Ȧ /(〈s〉ẋ)/ A 6→
A→ /(〈s〉ẋ∗)/ α /(〈s〉ẏ∗)/

bi-repetition

A→ α except(x, y) β

A→ α /x−y/ β
delete-lowering

A→ α follow(x, y) β

A→ α /x>ẏ/ β
follow-lowering

A→ α not-follow(x, y) β

A→ α /x 6>y/ β
not-follow-lowering

A→ α precede(x, y) β

A→ α /ẏ<x/ β
precede-lowering

A→ α not-precede(x, y) β

A→ α /y 6<x/ β
not-precede-lowering

A→ α atEndOfLine(x) β

A→ α /x(( 6>.)+(>\n))/ β
eol-lowering

A→ α atStartOfLine(x) β

A→ α /((. 6<)+(\n<))x/ β
sol-lowering

Rewrite 1: Regular Expression Grammar Rewrite Rules

The regex conversion is based on repeated application of the Rewrite Rules 1. For either of the substi-
tution rules, special care has to be taken when adding a tag to an existing regular expression, in order to
ensure scope order is properly encoded. If a scope s ∈ T∗ is added to a regular expression x, resulting
in regular expression (〈s〉x′), x′ should be a copy of x where s has been concatenated in front of any tag
constructs present in x. Assuming that x itself follows our regex requirements of not containing tags in
lookarounds, (〈s〉x′) will also adhere to the requirements. The dot in the end-of-line and start-of-line low-
ering transformations represents an alternation of all symbols in the alphabet, meaning that it would match
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any character.
In consideration of tokenizers operating on one line at a time, no newline character may be present in

the regular expression that forms the start of a sequence. This can be seen in the rewrite rules for concatena-
tion, repetition, and lookaround-lowering. The language of the expression resulting from the start-of-line
lowering transformation does not adhere to this, but the corresponding language always includes this same
phrase without the newline character prefix due to the provided alternative. Therefore tokenizers will deal
with this expression appropriately, even if executed line by line. Similarly, no scopes are allowed within the
iteration structures, which is enforced by the rewrite rules. The rewrite rules for precede and follow do ap-
ply to regular expressions regardless of the presence of scopes, but the tag structures have to be filtered out
from the lookaround. For instance follow((〈s〉z), (〈t〉w)) will be rewritten to /(〈s〉z) > w/. This preserves
the semantics, because scopes in constraint components do not become part of the language.

In addition to these rules, we also apply tag lifting. This attempts to merge tag constructs together
whenever possible. Consider the expression /(〈s〉ẋ)(〈s〉ẏ)/, this expression would not match the required
structure for any of the repetition rewrites, while the expression (〈s〉ẋẏ) with an equivalent language does.
This process of merging tags constructs could be described in terms of rewrite rules, but can be performed
more generally by analyzing a regular expressions’ language using TCNFAs. Tag usage in transitions of a
TCNFAs can easily be analyzed to determine whether it can be lifted. Any tag that appears in exactly all
character transitions going out of main-states can safely be lifted. Lifting of a tag t from expression x is
done by filtering out all tag constructs specifying t resulting in expression x′, and then using /(〈t〉x′)/ as
the lifted expression.

In the code implementing regular expressions, a special constructor is provided that pairs a regular
expression with a TCNFA. This is used to cache the TCNFA for a corresponding regular expression, such
that it does not have to be recalculated every time some language check has to be performed on a given
regular expression. When applying any of these transformation rules, the corresponding TCNFA is also
immediately calculated and cached for the new expression.

These rewrite rules are applied in a fixed order, to prevent unnecessary condition checking. Empty non-
terminals are immediately removed from the language by applying the sequence-substitution rule specifi-
cally on the non-terminals specifying only an empty sequence, e.g. B→ ε. Similarly, the concatenation rule
is applied exhaustively on all productions immediately. After this a loop is entered that keeps repeating
until no transformations are being made anymore. Within this loop, every non-terminal is iterated over,
and the following compound transformations are attempted in order:

• Unioning: applies both alternation transformations in exhaustively on a non-terminal. If successful,
this also exhaustively applies concatenation and scope lifting on the resulting productions

• Substitution: Attempts to apply the substitution transformation to remove this symbol from the gram-
mar. If successful, this also exhaustively applies concatenation, constraint lowering, and scope lifting
on the resulting productions

• Repetition: Attempt to apply any of the repetition transformation rules to obtain a single production.
If successful, this also exhaustively applies concatenation and scope lifting on the resulting production

When none of these compound transformations are effective on any of the non-terminals anymore, sequence-
concatenation is applied on all symbols and if effective, the main loop is entered again to perform more
compound transformations. This repeats until sequence-concatenation can not be applied anymore. Se-
quence concatenation is performed at the very end, because it is more generally applicable than regular
concatenation, but regular concatenation has priority. This process trivially terminates, since applying any
of the compound rules will result in fewer non-terminal symbols in the grammar, or an equal number of
non-terminal symbols and a smaller number of production components in the grammar.

After all rules have been applied exhaustively, the remaining constraints are removed from the grammar,
and corresponding warnings are generated.

4.2 Prefix Conversion

After regex conversion finishes, we know that every production in the grammar only contains reference or
regex production components and does not contain any hierarchical components anymore. The second step
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of the conversion applies transformations to make every production start with a regular expression. This is
done because LGs patterns always start with a regular expression used to deterministically choose the next
pattern to apply. This conversion step ensures that every production in the resulting grammar starts with a
regular expression, and that the language of the input grammar is a subset of the output grammar. As such,
it ensures that the original tokenization is maintained, but it might introduce additional tokenizations for a
given input, making the tokenization ambiguous. This superset guarantee can not always be achieved, in
which case corresponding errors are generated. This is for instance the case when a left-recursive pattern
specifies a scope to be applied to the left recursion. This conversion step also ensures that any cycles are
removed.

A→ B α A 6= B
A→ α A→ B1 A · · · A→ Bn A

left-expansion

A→ (〈ε〉A) α

A→ α A→ ε A ∈ S
detect-self-recursion

A→ α B A ∈ S A 6= B
A→ α B A

symbol-right-recursion

A→ α x A ∈ S
A→ α x A

regex-right-recursion

A→ /x+ε/ α
A→ x α A→ α

ε-cycle-removal

Rewrite 2: Prefix Conversion Grammar Rewrite Rules

The step is based on the Rewrite Rules 2. Note that these rewrite rules do not ensure that the language
of the resulting grammar is equivalent. Instead, they ensure that the language of the resulting grammar is a
superset of the original language. This is obvious for the first rewrite rule, which expands the productions
of an non-terminal B into A and specifies that anything else of A may now follow it, which now includes
the remainder of the original production. The self-recursion and right-recursive rules are a bit more com-
plex, and have to be considered in combination with one and another. Set S tracks what symbols of the
grammar are left-recursive. If at any point a left-recursive self-loop is detected, this loop is removed and
the symbol as a whole is said to be left-recursive. For this rewrite rule to indeed maintain the language,
A ∈ S should be seen as a guarantee that any right-hand side of a production in A ends with a A, except
for the empty production. This is achieved if the right-recursion rules are exhaustively applied. Consider
non-terminal A with left-recursive production A → A α and base production A → x β. For any phrase
in the language, the left-recursion of A α must eventually terminate, so at some point this A is substi-
tuted for x β, e.g. A→ A α→ A α α→ x β α α. Now if instead all productions are made to be right
recursive, resulting in A → α A A → x β A A → ε, the same final phrase is obtainable as follows:
A→ x β A→ x β α A→ x β α α A→ x β α α. Clearly this also allows for derivations that were not part of
the original language, but all that matters is that it guarantees the original phrases can also still be derived.
Finally the ε-removal transform also maintains the exact language by simply splitting the given production
in two, eliminating the epsilon match in the regular expression. There are however regular expressions that
do not match this exact pattern, and also accept empty matches, such as /(a+ε)(b+ε)/. Therefore TCNFAs
are used to detect presence of empty phrases in the language of the regular expression x, in which case x
is said to be nullable, and an inductive function is used to obtain a regular expression y whose language is
equivalent to x’s except for any empty phrases being removed.

In order to define such a function, we generalize our goal. Given a regular expression x, we want to
obtain three regular expressions. More precisely we specify a function D : R(Σ, T)→ R(Σ, T)×R(Σ, T)×
R(Σ, T) which given a regular expression x outputs three regular expression m, e, and c such that:

• L(x) = L(m+e+c)
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• e = ε ∨ e = 0

• L(ε) ∩ L(m) = ∅, i.e. m does not contain any empty phrases

• L(c)\L(ε) = ∅, i.e. c only contains empty phrases

Additionally, we would like to guarantee that L(ε) 6= L(c), since c should represent empty matches with
additional constraints such as /ε>a/. Being able to fully accurately separate empty-match regular expres-
sions with restrictions from those without restrictions has practical uses, but is not strictly required for our
algorithm, and hence won’t be covered here due to the extra complexity. To achieve the desired specifica-
tion, an inductive function can be used. Let r1 and r2 be regular expressions, and let (m1, e1, c1) = D(r1)
and (m2, e2, c2) = D(r2) represent the inductive results. Then the function D can be defined as follows:

D(0) = (0, 0, 0)

D(1) = (.+, ε, 0) where . = +a∈Σ a
D(ε) = (0, ε, 0)
D(a) = (a, 0, 0)

D(r1+r2) = (m1+m2 e1+e2, c1+c2)

D(r1r2) = (m1m2+m1e2+m1c2+e1m2+c1m2, e1e2, e1c2+e1e2+c1e2)

D(r+1 ) = (r∗1m1r∗1 , e1, c+1 )
D(r1>r2) = (m1>r2, 0, (e1+c1)>r2)

D(r1<r2) = (r1<m2, 0, r1<(e2+c2))

D(r1 6>r2) = (m1 6>r2, 0, (e1+c1) 6>r2)

D(r1 6<r2) = (r1 6<m2, 0, r1 6<(e2+c2))

D(r1−r2) = (m1−r2, 0, (e1+c1)−r2)

D((〈t〉r1)) = ((〈t〉m1), e1, c1)

D((r1)) = (m1, e1, c1)

In this definition, the alphabet must be known to perform the transformation of 1, since an alternation of
all possible symbols in the alphabet is used here. Alternatively we could simply use 1−ε, but we want
to try minimize usage of the subtraction operator. We do this because most regular expression engines
do not support subtraction, but do have concise notation to represent the entire alphabet. The iteration
case in this function is particularly interesting. One might expect that the language r+1 cannot contain any
empty strings, because it requires at least one iteration of r1. This is however clearly not the case, since
the language of r1 might include an empty phrase itself, meaning that one iteration of an empty phrase
match still results in an empty phrase. Then one might expect that m+

1 would be sufficient, since it forces
at least one iteration to be present, and this iteration to be non-empty. We have to be a bit more careful
however, we want to describe the original expression, but force at least one iteration to be non-empty,
which more directly translate to the following: r∗1m1r∗1 . These expressions happen to describe an identical
language for regular expressions without tags, since any iterations that do not match any characters can at
most restrict what may be seen before or after, and thus do not augment the language compared to only
taking non-empty iterations. This is however not the case when tags are present in positive lookarounds,
since they do not only restrict the language, but also modify the characters matched before or after this
iteration. Similarly the iteration is important to be included in the empty constraints part of this regular
expression: c+1 . Only performing a single iteration is not equivalent here, if multiple expression can assign
different tags. Additional simplification rules can be used for this inductive function, to filter unnecessary
alternations and other constructs. Consider for instance the expressions used for concatenation, if c1 = 0
then L(c1m2) = L(0), and L(0+x) = L(x), hence the term c1m2 could be stripped from the alternation
expressions.

The specified rewrite rules are applied per symbol on the entire grammar iteratively until no more
rewrites can be performed. We keep track of the set of all left-recursive symbols, which is initialized to be
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empty. Then per symbol, we obtain a list of new productions by mapping each production to a new one
with transformation rules applied. We also always add the empty production A → ε, since we know our
final LCG will have to include this in any case. The first step in the mapping of a production is checking
whether it is of the shape A → x α and x is nullable. If this is the case, D is used to extract a non-nullable
expression y, and the production is mapped to A → y α while the remainder A → α is still processed
for further mapping. α could start with another nullable regular expression, so this first step is performed
iteratively. Then we check whether the production is of the shape A→ (〈t〉B) α, where we distinguish two
cases B 6= A and B = A. If the former is the case, the production is mapped to A→ α and every production
of B → β is copied as A → β A. We call this symbol expansion. During this mapping process, special
care is taken regarding scopes. If t 6= ε, this scope t has to be transferred to the expanded productions:
A → (〈t〉β) A. There is no scoping construct for arbitrary sequences β in our conversion grammar format,
so these scopes will have to be carried to the individual components in the sequence, similar to what we
saw in the sequence substitution used in regular expression conversion. In the later case where B = A, we
simply map the production to A→ α and add A to the set of left-recursive symbols. If t 6= ε we generate an
error, since this scope can not be properly dealt with. In this case, we use Rewrite Rule 3, and tokenization
is not guaranteed. More constructively we can say:

Lemma 2. If for all encountered productions matching A → (〈t〉A) α for some sequence α we have t = ε, the
grammar’s tokenizations are preserved by the prefix conversion step.

This lemma follows from the set of transformations being language preserving when performed exhaus-
tively. A proof for this should be worked out in further detail in the future.

Finally, if A belongs to the left-recursive symbols set, we check if the production A → α matches α =
β (〈ε〉A) for some β and if not, is transformed to A → α (〈ε〉A). By performing these transformations
iteratively until no more transformations apply, the right-recursion property will eventually be reached,
even if it is not reached immediately when left-recursion is detected. It is not obvious that this procedure
eventually terminates. In case the grammar contains recursive references, you might think that we could
keep performing symbol expansion forever. This is however not the case, because every expansion will
reduce the length of the recursive loop by one, until eventually a direct self-recursion is reached and dealt
with properly. Hence this conversion step will eventually terminate, and ensure all productions start with
regular expressions.

A→ (〈t〉A) α t 6= ε

A→ α A→ ε A ∈ S inapplicableScopeError
detect-self-recursion-error

Rewrite 3: Prefix Conversion Grammar Unsafe Rewrite Rule

4.3 Shape Conversion

After prefix conversion is done, every reachable symbol contains an empty production, every reachable
production only consists of reference and regular expression components, and every reachable production
starts with a regular expression. The next step is to convert every production to the exact shape we need,
meaning that it should be of the form A→ x B y (〈ε〉A), A→ x (〈ε〉A), or A→ ε. Additionally we would
like to deal with the issue of non-determinism here, making sure that only a single production is applicable
at a time. Similar to the prefix conversion step, our goal is to make sure that the language of the output
grammar includes the original language, not for the languages to be equivalent. This conversion does not
properly deal with all possible scenarios, and appropriate errors for these cases will be generated. Such
errors are only generated for scopes on non-terminal symbols, or left-recursive loops.

This step provides the following guarantee about tokenization preservation:

Lemma 3. If none of the premises of Rewrite Rules 5, 8, 12, or 18 apply during conversion, the grammar’s tokeniza-
tions are preserved by the shape conversion step
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This lemma follows from each transformation rule being language preserving, and the initial produc-
tions of convSeq(p), unionRec(O), and closed(s, c) realizing the language that is expected from the symbol.

The shape conversion step does not merely convert a given grammar; instead, it constructs a new gram-
mar based on the one provided. It does however collect all productions including the provided source
productions in a single grammar and replaces the start symbol. This makes it so most original symbols
become unreachable. This way the reachable symbols can be constructed to have the correct shape, while
still operating on only a single grammar. After conversion has fully finished, all unreachable symbols will
be removed from the grammar. We define three custom non-terminal symbol constructors that are used to
construct these new productions:

• convSeq(p) for p ∈ (C(Vi, Σ, T) ∪ TCNFA(Σ, T∗))∗

• unionRec(O) for O ⊆ Vi

• closed(s, c) for s, c ∈ Vi

Here Vi represents the non-terminal set of the CG that is operated on at some moment in time. When a new
non-terminal is created using one of these constructors, this set of non-terminals is augmented and defines
the new set of terminals Vi+1. The structure of these new non-terminals plays no role in the semantics of the
CG that includes them, but it does play a role within the conversion algorithm. Each of these non-terminals
also has a corresponding specification, which the productions we create for them try to achieve:

• convSeq(p) defines the same language as its arguments: L(convSeq(p)) = L(p). The symbol only
contains a single production, starting with a regular expression.

• unionRec(O) defines a superset of any sequence consisting of these non-terminals: L(unionRec(O)) ⊇
(∪o∈OL(o))∗. These symbols always contain an empty production. Every non-empty production
starts with a regular expression, and no production contains two consecutive non-terminals.

• closed(s, c) defines a superset of sequences with the first and second argument alternating:
L(closed(s, c)) ⊇ (L(s) · L(c))∗. These symbols always contain an empty productions, and every
production is of one of the valid shapes for LCGs: A→ x B y (〈ε〉A), A→ x (〈ε〉A), or A→ ε.

Additionally, we introduce the notion of alias productions and symbols, which simply redirect to another
symbol. Thus a given symbol A is said to be an alias, if it only has a single production of the shape
A → (〈ε〉B). The exact production requirements of the custom constructor symbols described may not
be satisfied if the symbol is an alias, but these aliases will be inlined eventually.

The conversion starts by replacing the start symbol s by closed(s, convSeq(E)) where E = /ε 6>./ rep-
resenting the end of file match. We know no symbols may follow E, and thus the specification states the
resulting language is a superset of (L(s) · L(E))∗ = {ε} ∪ L(s) · L(E). For tokenization we care about
inputs that have an empty prefix and suffix, thus this start symbol will correctly include our specified tok-
enization.

The remainder of the algorithm attempts to generate productions for all custom symbols reachable from
the start symbol, including the stat-symbol itself. Creating the productions for one symbol may introduce
references to new custom symbols that are not defined in the grammar yet. Therefore an iterative approach
is used that continues until no new symbols are left to be defined:

1. Find all reachable unionRec(O) symbols that have not yet been defined

2. If such symbols are found, define them and return to step 1

3. Otherwise deduplicate the grammar and continue

4. Find all reachable closed(s, c) symbols that have not yet been defined

5. If such symbols are found, define them and return to step 1

6. Otherwise conversion is finished
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The deduplication of the grammar is what introduces alias symbols. This attempts to detect different
symbols that have equivalent languages, and introduces aliases for them. Additionally any occurrences
of the symbol in the grammar is substituted by the symbol it is aliasing. It is important to keep the alias
in the grammar however, to prevent the same symbol from being generated again in the future, when we
know it will simply be replaced again. Using aliases like this makes the grammar smaller, but also may
speed up conversion by preventing generation of entire trees of custom symbols, which ultimately would
all have another symbol in the grammar with an equivalent language. Detecting equivalent symbols is
done using partition refinement. We only consider symbols that already have defined productions here. A
set of equivalence classes is defined, which is initialized to only contain one class consisting of all symbols
in the language. Then we find a production in the grammar which partitions a given equivalence class into
two non-empty classes: one that contains this production, and one that does not. If no such production can
be found anymore, the current partition accurately describes equivalence classes. We will not fully define
the type of equivalence used here, but it is clear that it ensures the languages of symbols in each class are
equivalent. This does however not guarantee that symbols in different classes describe different languages,
and thus this notion of equivalence should not be mistaken for language equivalence. Instead of testing for
fully equivalent productions, we can once again replace regular expressions by TCNFAs in order to abstract
over the exact used syntax. Moreover, when checking of two productions are equivalent, we do not require
reference non-terminals to be equivalent, but only to belong to the same equivalence class of the current
partition. Additionally two symbols closed(s, c) and closed(s′, c) are determined to be equivalent if s and s′

belong to the same equivalence class. This helps us to detect equivalences between productions that rely
on symbols that have not yet been defined, which are assumed to belong to different classes by default.

4.3.1 Sequence Definition

The component sequence convSeq(p) is used to allow a single symbol to refer to a given production com-
ponent sequence. We construct such a symbol from a given production component sequence, and when
we find that the symbol is already in the grammar, we do not have to redefine it. TCNFAs are used in the
constructor instead of regular expressions in order to abstract over the exact syntax being used, to increase
the chances of the sequence already being present in the grammar. These productions are generated at the
time the non-terminal is constructed. In order to ensure these productions start with a regular expression,
we use transformation rules on the symbol itself. These rules are similar to production rewrite rules, but
operate on symbols directly before adding them to a production. Rewrite Rule 4 specifies this relaxation
rule that is language preserving, while Rewrite Rule 5 generates an error when applied. The other two sym-
bols can be created when a symbol according to the defined specification is needed, and their productions
can later be generated based on the arguments of the constructors.

convSeq((〈ε〉A1) · · · (〈ε〉An) x α)

unionRec({A1 · · · An, convSeq(xα)})
prefix-sequence

Rewrite 4: Prefix Sequences

convSeq((〈t1〉A1) · · · (〈tn〉An) x α) t1 6= ε ∨ · · · ∨ tn 6= ε

unionRec({A1 · · · An, convSeq(x α)}) inapplicableScopeError
prefix-sequence-error

Rewrite 5: Prefix Sequences Unsafe
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4.3.2 Union Definition

To define the productions of unionRec(O), we first initialize it with the empty production:
unionRec(O) → ε. Then any production belonging to a symbol in O is copied and made right-recursive
according to Rewrite Rules 6. As discussed before, there may be aliases, in which case the first production
symbol is not a regular expression. Such aliases are followed until the symbol with actual productions is
reached, as described in rule define-alias-unionRec(O).

A ∈ O A→ x α

A→ x α unionRec(O)→ x α (〈ε〉unionRec(O))
define-unionRec(O)

A ∈ O A→ A1 · · · A→ An An → x α

A→ A1 · · · A→ An A→ x α unionRec(O)→ x α (〈ε〉unionRec(O))
define-alias-unionRec(O)

Rewrite 6: Union Definition Rules

After defining all productions of unionRec(O) this way, we want to make sure it contains no two con-
secutive non-terminals. This is done according to the Rewrite Rules 7.

A→ α (〈t〉A) (〈t〉B) β

A→ α (〈t〉unionRec({B, C})) β
merge-consecutive

A→ α (〈ε〉A) /x+ε/ (〈ε〉B) β

A→ α (〈ε〉unionRec({B, C, convSeq(x)})) β
merge-regex-consecutive

Rewrite 7: Consecutive Merging

These transformations use new unionRec(O′) symbol to simulate a sequence of non-terminals. This
language will contain phrases from the original sequence, as well as phrases from many other – newly
allowed – sequences. For the second transformation rule, we once again use TCNFAs to detect whether a
regular expression accepts an empty word, and use our function D to obtain a regular expression matching
only the non-empty words. When performing the pattern matches, the scopes are ignored. If the scopes
happen to not match the pattern, an error is generated but the pattern is still applied, as illustrated in
Rewrite Rules 8. This defined productions should now match the specification of a given unionRec(O)
symbol.

A→ α (〈t〉A) (〈t′〉B) β t 6= t′

A→ α (〈ε〉unionRec({B, C})) β inapplicableScopeError
merge-consecutive

A→ α (〈t〉A) /x+ε/ (〈t′〉B) β t 6= ε ∨ t′ 6= ε

A→ α (〈ε〉unionRec({B, C, convSeq(x)})) β inapplicableScopeError
merge-regex-consecutive-error

Rewrite 8: Consecutive Merging Unsafe

Finally the created productions are deduplicated, removing any productions that define an equivalent
language as another production for this same symbol. This is done based on the same production equiva-
lence check as used in grammar deduplication. In summary, unionRec(O) defining consists of 3 steps:
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1. Copy productions from the sources

2. Combine consecutive non-terminals

3. Deduplicate productions

When creating new unionRec(O) symbols in the grammar, transformation rules are used to obtain a nor-
mal form. These transformations ensure that the specified language remains unchanged, while decreasing
the number of symbols that have to be defined. Rewrite Rules 9 contains these simplification rules.

unionRec({unionRec(O), o1, . . . , on})
unionRec(O ∪ {o1, . . . , on})

flatten

unionRec({A, o1, . . . , on}) A→ B
unionRec({B, o1, . . . , on}) A→ B resolve-alias

Rewrite 9: Simplify Unions

4.3.3 Closing Definition

Defining of closed(s, c) symbol productions is done similar to defining unionRec(O), but requires additional
transformations to reach the desired form. Again, the symbol is initialized to have an empty production:
closed(s, c) → ε. Then for any production of s and any production of c, their right-recursive sequence can
be added as described in Rewrite Rule 10.

s→ x α c→ y β

s→ x α c→ y β closed(s, c)→ x α y β (〈ε〉closed(s, c))
de f ine−closed(s, c)

Rewrite 10: Closing Definition Rules

Again, if s or c is an alias, their alias sequence will be followed until a prefixed production is reached
similar as for unionRec(O) symbols. These initially defined productions are then deduplicated, the same
way unionRec(O) symbol productions were deduplicated in the end. We then combine consecutive non-
terminal symbols, the same way as was done for unionRec(O) symbols.

Next, direct left-recursion is removed according to Rewrite Rule 11.

A→ /x+ε/ (〈ε〉B) · · · /z+ε/ (〈ε〉A) α

A→ x (〈ε〉B) · · · /z+ε/ (〈ε〉A) α

...
A→ z (〈ε〉A) α

A→ α
remove-direct-recursion

Rewrite 11: Remove Direct Recursion

This rule is applied to any sequence of nullable production components being followed by the pro-
duction symbol itself. Every non-terminal is assumed to be nullable, and whether a regular expression is
nullable can be checked using its TCNFA. For every nullable regular expression, a production where this
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regular expression is the first of the production and is not nullable is added. Finally a production is added
of the remainder that can follow the self-reference. If the scopes do not match this pattern, we apply Rewrite
Rule 12 instead, and generate an appropriate error indicating that not all tokenizations could be preserved.

A→ /x+ε/ (〈t1〉B1) · · · /z+ε/ (〈tn〉A) α t1 6= ε ∨ · · · ∨ tn 6= ε

A→ x (〈ε〉B1) · · · /z+ε/ (〈ε〉A) α

...
A→ z (〈ε〉A) α

A→ α inapplicableScopeError
remove-direct-recursion-error

Rewrite 12: Remove Direct Recursion Unsafe

We then partially remove redundant closing expressions as describe in Rewrite Rule 13. This deals with
potentially unnecessary complexity that is added by how the closed(s, c) productions are defined.

closed(s, convSeq(x))→ α x s x (〈ε〉closed(s, convSeq(x)))
closed(s, convSeq(x))→ α x (〈ε〉closed(s, convSeq(x)))

partially-remove-redundancy

Rewrite 13: Partially Remove Redundancy

We can safely remove s and x here, because we know that closed(s, convSeq(x)) can match any number
of these. Therefore removing the requirement of matching it at least once, will only broaden the defined
language. Moreover, all closed(s, c) expressions we define will be such that c = convSeq(x) for some reg-
ular expression x. To generalize this rule, we do not actually check whether the exact regular expression x
occurs twice as specified in the rewrite rule, but instead check whether the two regular expressions define
an equivalent language by making use of their TCNFAs. This transformation is used to simplify the pro-
ductions, and prevent the algorithm from defining unnecessary extra symbols and productions later. Pro-
ductions matching this shape are commonly created as a result of the overlap transformation rule, which
is the next applied rule described by Rewrite Rule 14. This is an important step, combining overlapping
regular expressions that would cause non-determinism.

A→ /x+z/ α w γ A→ /y+z/ β w γ

A→ /x+y+z/ unionRec({convSeq(α /(>w)/), convSeq(β /(>w)/)}) w γ
combine-overlap

Rewrite 14: Combine Overlapping Productions

In order to generalize this rule, we detect overlap by using TCNFAs of the regular expressions to cal-
culate the product automaton and check if its language is non-empty. When talking about a product au-
tomaton of TCNFAs, we refer to an automaton that contains words included in both automata and merges
the corresponding tags, similar to how tags are merged in a TCNFA concatenation automaton. If we are
interested in an automaton consisting of words and tag assignments that are shared exactly between two
automata, we call this a strict product automaton. Here we are, however, interested in detecting over-
lap modulo tags and thus care for the non-strict product automaton. Moreover, we do not merely check
whether there are words that are contained in both regular expressions, but instead check whether both
regular expressions could apply at once. This is not only the case when they match the same exact word,
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but also when a word matched by one of the expressions forms a prefix of a word matched by another ex-
pression. Therefore to check if two regular expressions x and y overlap, we compute the product automata
for /x.∗/ and y as well as x and /y.∗/ to perform non-empty language intersection checks on. Instead
of applying this rewrite rule on two productions at a time, all overlapping productions are collected at
once and reduced to a single production. When doing this, it is important to realize that this notion of
overlap is not transitive. Consider regular expressions x = /ab/, y = /a/, and z = /ac/. We can see
that x and y overlap, since they can both start a match when encountering ab, similarly y and z overlap
since they can both start a match when encountering ac, but x and z do not overlap and can never both
start a match at the same index for any given input. Therefore when collecting all overlapping expressions,
overlap with any expressions in the overlap class has to be checked, rather than relying on a single ex-
pression to be representative of the class when checking for inclusion. Something else that is not captured
in our schematic rewrite rule overview, is how convSeq(α) is defined in a way that α always start with a
regular expression. In case α = B1 · · · Bn w′ η for non-terminal symbols B1 to Bn, we replace convSeq(α)
by unionRec({B1, . . . , Bn, convSeq(w′ η))}. In this case we end up with nesting in our unions, such as
unionRec({unionRec({B1, . . . , Bn, convSeq(w′ η)}), convSeq(β)}). If any of B1 to Bn contained non-empty
scopes in the original component sequence, an error is generated since these scopes have to be dropped. It
is important to note that the transformations applied so far ensure that for any two productions, a common
w γ suffix exist. For some productions this shared suffix may be longer than for others, but there is always
a common shared suffix. This transformation rule always uses the longest shared suffix. Adding this w
as a lookahead for the component sequences prevents consecutive non-terminal symbol merging when the
union symbol they belong to is defined. This lookahead is also the reason the previous transformation rule
is often applicable. Similarly, we can also keep the longest shared prefix when applying this rule, since
overlapping symbols will be merged in following iterations anyhow. We can also decide that the suffix
should not end on a regular expression but may end on any symbol. When this is done, we do not add any
lookahead to the sequences in the union, and the shared non-terminal should be added to the union itself
in order to not have two consecutive non-terminals. This makes the grammar less strict, which can cause
more non-determinism. In our test-cases this did however not cause any additional non-determinism, but
did greatly reduce generation times. This will be demonstrated in our results.

Next, the remaining redundant sequences are fully removed according to Rewrite Rule 15. This trans-
formation is similar to the one before, but does not guarantee the resulting productions to have a common
suffix starting with a regular expression. This was an important property before applying the overlap
merging but is no longer relevant.

closed(s, convSeq(x))→ α s x (〈ε〉closed(s, convSeq(x)))
closed(s, convSeq(x))→ α (〈ε〉closed(s, convSeq(y)))

remove-redundancy

Rewrite 15: Remove Redundancy

The remaining productions may have an arbitrary length, so they have to be changed to be of a fixed
length using Rewrite Rules 16. Every production that is not of the shape A→ x (〈ε〉A) or A→ x B y(〈ε〉A)
will be converted to be of the shape A → x B y(〈ε〉A). We know this is the case because no consecutive
non-terminals can appear in any production after the above rewrite steps have been performed, and all
productions start with a regular expression. Therefore any remaining production are either of the desired
shape, or match this pattern.
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A→ x α y A α 6= B
A→ x convSeq(α /(>y)/) y A

split-sequences

Rewrite 16: Split Sequences

Finally we add a closing expression to our hierarchical productions as described by Rewrite Rule 17.
This ensures that any production reachable from a closed(s, c) production also is a closed(s′, c′) production
and thus has the desired shape.

A→ x (〈t〉B) y A
A→ x (〈t〉closed(B, convSeq(/(>y)/))) y A

carry-closing

Rewrite 17: Carry Closing

One last issue that possibly remains, is possible presence of left-recursive cycles. The first regular ex-
pression of production may be nullable, for instance in the form of a lookahead. Due to the direct recursion
removal, it is not possible that there is any direct recursion, but there may still be indirect recursion. This is
checked by following any paths that may not consume any characters, and if this at any point arrives back
at closed(s, c), a cycle exists. In this case, our approach offers no good way of dealing with this, and instead
generates an error and removes the recursion by narrowing the language as described by Rewrite Rule 18.

A→ /x+ε/ B1α B1 → /y1+ε/ B2 γ1 · · · Bn → /yn+ε/ A γn

A→ /x/ B1 α B1 → /y1+ε/ B2 γ1 · · · Bn → /yn+ε/ A γn cycleError remove−recursion

Rewrite 18: Remove Recursion

In summary, closed(s, c) defining consists of 10 steps:

1. Merge productions from the sources

2. Deduplicate productions

3. Combine consecutive non-terminals

4. Remove direct self-recursion

5. Partially remove redundant closing sequences

6. Combine overlapping productions

7. Fully remove redundant closing sequences

8. Split sequences into sub-symbols

9. Carry closing expressions

10. Check indirect self-recursion

Deriving syntax highlighters 45



CONTENTS 4. CONVERSION

4.3.4 Termination

It is not obvious this algorithm will terminate. In fact, in its current state, it might not terminate at all.
Both unionRec(O) and closed(s, c) symbol structures are defined in terms of other symbols, and can not
but can not directly contain nested symbols of their own type. closed(s, c) may contain a unionRec(O)
for its argument s or c, but no unionRec(O) can contain another unionRec(O′) ∈ O or closed(s, c) ∈
O. As such, when only dealing with these custom symbols, only a finite number of possible combi-
nations to construct such symbols exists, and hence termination would be guaranteed. This however
does no longer hold with the introduction of convSeq(α) symbols. The length of every sequence α is
bounded in terms of the maximum length of a production in the original grammar, but its nesting com-
plexity is not bounded. Consider grammars with if-statements for example. After an if-statement, we
can usually see an optional else-statement. The current conversion algorithm essentially creates a gram-
mar that encodes how many if-statements have been seen in its production rules, such that at most an
equivalent number of else-statements may be seen afterwards. This is encoded in sequences such as:
convSeq(/else/ unionRec({Stmt, convSeq(/else/ Stmt /(>end)/)}) /(>end)/). The algorithm will keep
generating new symbols, each of which deepen the nesting more. This is a problem for which this thesis
provides no proper fix, and is left for future research. A quick fix has been implemented however, where
the algorithm checks for nested structures whenever any new convSeq(α) created, and generalizes sequence
when nesting is found. Detecting nested patterns is done by considering the top-level sequence α, search-
ing through any nested convSeq(β) components within α, and checking whether their shape is equivalent
when only considering the language of regular expressions of the sequences. If such a nesting is detected
in a non-terminal B, the new convSeq(α) definition will be relaxed according to Rewrite Rule 19.

convSeq(α B β)

unionRec({convSeq(α), B, convSeq(β)})
relax-sequence

Rewrite 19: Relax Sequence

By limiting what custom symbols can be generated, we cause only a finite number of custom symbols
to be obtainable. Since the algorithm can only define a finite number of these, it must eventually terminate.
This however only holds if all recursive structures are properly detected, and is even then more of a theo-
retical guarantee than a practical guarantee. The output grammar might require an exponential number of
symbols in relation to the size of the input grammar. And as such, there is a lot of room for improvement,
as we will see in Section 6.5.

After this main loop has stopped, a little bit of cleanup is performed. Many of the non-terminal sym-
bols in the grammar are used within custom symbol definitions, but are not actually reachable within the
grammar. These non-terminals and their productions can now safely be removed from the grammar. Ad-
ditionally, the grammar may still have some indirections in the form of alias symbols, these can also be
removed from the grammar. In order to remove these, every occurrence of an alias symbol should be re-
placed by the symbol that it is aliasing. After this cleanup, the grammar is a proper LCG.

4.4 Determinism Check

After performing all these conversion steps, a proper LCG is obtained. We assume no errors to be generated
during this process, and if there are, the grammar should be modified to resolve these. Having an error free
LCG does, however, not ensure that syntax highlighters using this grammar now highlight according to
our specification grammar. Even though the LCG guarantees to include the original tokenization, more
valid tokenization for phrases in the original language may have been added, hence the grammar might
have become ambiguous. In this case, our LCG obtains multiple tokenizations for a given input, and it is no
longer known which of these is the one intended. Detecting of ambiguity in CFGs in general is undecidable
and is therefore something we can not do. Fortunately we are interested in a stronger property than the
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grammar being unambiguous, we need it to be deterministic. Even if the grammar defines only a single
tokenization per input, tokenizers will make deterministic choices that might not obtain this single valid
tokenization. Therefore we are interested in checking whether tokenizers only have a single valid option
at every critical area in the grammar. This would ensure that their greedy tokenization is indeed a correct
tokenization. For this, 4 types of choices made by tokenizers have to be considered:

• Which of the active patterns should be applied?

• Should the currently active patterns become inactive, returning to the previous patterns?

• How many characters should be matched by the matching regular expression?

• Which tokenization of the matching regular expression should be used?

For each of these questions, tokenizers make a greedy choice that could lead to an incorrect tokenization.
To choose a pattern to apply, the fist pattern whose regular expression matches a prefix of the remainder
of the input is chosen. This requires the patterns to be sorted, in order to have a well-defined notion of
”first”. Moreover, most tokenizers do not check whether the regular expression match is empty or not. This
allows us to use lookaheads that do not capture any of the input to start a new rule. It, however, also allows
for loops that never consume any input and thus never terminate. This is already taken care of during the
conversion steps, by explicitly checking for cycles and removing them. To decide whether to deactivate a
set of patterns, different tokenizers provide different degrees of control. This choice is generally based on
whether a regular expression matches a prefix of the remainder of the input. The various levels of control
come down to choosing whether deactivation of patterns has priority, or some other pattern in the active
patterns has priority. This is only a priority, and thus the choice is ultimately still greedy and deterministic.
The two remaining choices are actually results of a single choice made by the tokenizers: what path in the
regular expression’s NFA should be taken. Regular expression engines generally take the first path through
which an accepting state is reached. The number of characters consumed by this is therefore not something
the tokenizer directly chooses, and is not necessarily the longest nor shortest possible match. Multiple paths
consuming the same number of characters might exist with different tokenizations. Since the tokenizer just
chooses an essentially arbitrary path amongst these, an arbitrary tokenization is also chosen. We call a LCG
without any of these types of choices, a choice-free LCG.

We define the following lemma regarding these choices:

Lemma 4. If a LCG is choice-free, it defines at most 1 tokenization per word.

This can be argued by considering the fixed-point equations that define the language of a LCG. With
some inductive reasoning, we can show that the language for any production component, component se-
quence, and non-terminal symbol only has a single tokenization per word. The language of a regular
expression component specifies only a single tokenization per word if the regular expression is not tag-
ambiguous by definition. Additionally, if there is no choice for number of characters to be matched by a
regular expression per word, no match in the language forms the prefix of another match in the language.
Besides containing only a single tokenization per word, we show that in the language of a component se-
quence if a match w is a prefix of another match y, the remainder of y after removing prefix x is also in the
language. The language of a component sequence regex(x) ref (A, ε) satisfies these properties, under the as-
sumption the language of A does. No matches in L(x) forming a prefix of another match in L(x) is essential
for this. Similarly, the language of a sequence regex(x) ref (B, t) regex(y) ref (A, ε) satisfies these properties,
under the assumption the language of B and A do. For this to hold for sub-sequence ref (B, t) regex(y), it
is essential that no match of any first regular expression of B forms a prefix of a match of y or vice versa,
as is the case if the LCG is choice-free. Lastly, if all these properties are met for every possible component
sequence, and all alternations start with regular expressions for which no match forms the prefix of another
match, the properties also hold for the language of any non-terminal symbol. Therefore the properties
ultimately hold for the language of the choice-free LCG itself.

For each of these possible choices, we will perform a check on our grammar to see whether only a single
choice exists. The shape conversion step already ensures that only a single active pattern per non-terminal
is applicable at a time. Therefore no check has to be performed to ensure only a single active pattern can be
applied. We do however have to perform a check to ensure no active pattern applies while a corresponding
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closing expression also applies. Hence for every production A→ x B y A and production B→ z α we check
for overlap between y and z. This overlap check is performed the same way overlap was detected within
the shape conversion step. If overlap between such regular expressions y and z is detected, a corresponding
error is generated since we can not guarantee a correct tokenization for all inputs.

The two mentioned regular expression choices are results of the same greedy choice made by a tokenizer,
but should be considered independently nevertheless. One could check whether only exactly one path
exists for the NFA of a regular expression for every input, but this is a stronger condition than what we are
interested in. To check whether only a single valid answer exists for the number of characters to be matched
by a regular expression x, we check whether any word exists in both x and /x.+/. This is done by creating
the TCNFAs for both expressions, and checking whether the product automaton is empty. If this product
is not empty, it is possible to encounter an input for which two different length prefixes are both matched
by the same regular expression. In this case the tokenizer has to make a greedy choice, which might not be
the choice that leeds to a correct tokenization where no input has to be skipped. Hence if such a regular
expression is detected, a corresponding error is generated.

Finally, a single regular expression might be ambiguous and contain multiple tokenizations for the same
input. In this case the grammar is fundamentally tag-ambiguous, and as such it is not the deterministic
nature of a tokenizer that forms a problem, but it is really the grammar itself. Note that these types of
ambiguities may be created by our conversion process, even if the input grammar was not ambiguous.
These ambiguity cases might also exist in the grammar in ways that are not contained to a single regular
expression, but these cases are all covered by the stronger determinism constraints. Fortunately presence
of tag-ambiguity within regular expressions is decidable.

To calculate whether a regular expression x is tag-ambiguous, we first obtain x’s TCDFA d. Since d is
deterministic, only a single path per input exists. This input is a combination of characters and the tags
(tokens) belonging to each character. The tags information can then be removed from d resulting in a
TCNFA n, simply by replacing every tag set in a given transition by an empty set. If x contains multiple
tag assignments for the same input, n must contain multiple paths for the same input. Hence our problem
is reduced to detecting whether multiple accepting paths exist in a NFA that obtain the same word. This is
known a ambiguity detection in NFAs, for which any known algorithm can be used [17]. We have reasoned
that if x is tag-ambiguous, n must be ambiguous. But for this problem to be fully reduced to ambiguity
detection, we also have to reason that if x is not tag-ambiguous, n is also not ambiguous. Assume this is
not the case; x is not tag-ambiguous yet n is ambiguous. Then two paths matching the same input sequence
exist in n, but because x is not tag-ambiguous, these paths have the same tokenization in d. This means d
must not have been deterministic, and hence we reached a contradiction. Therefore n must be unambiguous
if x is not tag-ambiguous.

When we detect a regular expression to be tag-ambiguous, a corresponding error is generated. If no
errors are generated in this process nor the CG conversion process, we know that tokenizers will always
produce the correct tokenizations when tokenizing according to the given grammar.

4.5 Mapping Lexing Conversion Grammars to Industry Formats

We now a proper LCG, and know that it is deterministic. The final step that has to be taken is converting
this grammar to the desired LG format. This is mostly straight forward, but does still require us to perform
a couple of interesting steps. Additionally, we will convert the LCG to a couple of intermediate formats
that encodes a LG architecture without using the exact expected syntax. This allows us to share some of
this structure between multiple different LGs. We introduce two intermediate models: scope grammars,
and the PDA grammars. We will provide an approach for mapping from LCGs to scope grammars, and
an approach for mapping from scope grammars to PDA grammars. Scope grammars can then be mapped
to TextMate grammars, while PDA grammars can be mapped straightforwardly to Monarch, Ace, and
Pygments grammars.

4.5.1 Scope Grammars

Scope grammars consist of a start symbol and a list of patterns per grammar symbol. Patterns come in
three forms: inclusion of other symbol patterns, simple patterns, and hierarchical patterns. A simple pat-
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tern specifies a regular expression to be matched, and what categories to assign per capture group. A
hierarchical pattern consists of an opening regular expressions with associated categories, a symbol with
an optional category for this symbol, and a closing regular expression with associated categories. Here reg-
ular expressions are no longer tagged with categories directly, but instead with indices of capture groups.
Every capture group index can then be used to obtain the corresponding category from the list of categories.
More formally, a scope grammar is defined by a tuple (V, Σ, T, R, s), where:

• V is a finite set of non-terminal symbols

• Σ is a finite set of terminal symbols

• T is a finite set of tags

• R : V → Ps(V, Σ, T)∗ is a mapping from symbols to pattern lists

• s ∈ V is the start symbol

We then define the pattern universe Ps(V, Σ, T) as the minimal set satisfying:

include(v) ∈ Ps(V, Σ, T) for v ∈ V
simple((r, t)) ∈ Ps(V, Σ, T) for r ∈ R(Σ, N), t ∈ T∗

hierarchical((rb, tb), (v, s), (re, te)) ∈ Ps(V, Σ, T) for rb, re ∈ R(Σ, N), tb, te ∈ T∗, v ∈ V, s ∈ T ∪ {ε}

To ensure the capture group index to category mapping is well-defined, we also have some additional
requirements for every regular expressions: natural numbers in tags must be smaller or equal to the number
of categories, no tags may be present within lookarounds, and tags must be assigned incrementally. This
last constraint is intended to correspond to how regular expression engines number capture groups. This
is done by an in order tree walk on the syntax of the regular expression, assigning each capture group an
identifier starting at one incrementing by one for every next group. Finally we require that the include(v)
patterns do not reference each other recursively.

We will define the semantics of such a grammar directly in terms of the tokenization it provides for a
given input. These semantics will match those of LGs, such that exactly a single tokenization is created
for every possible input sequence. Our semantics map a given input to a tokenization, which specifies per
character of the input what the corresponding scope is. To define this function Tc : Σ∗ → (T∗)∗, we rely
on several other recursive functions. We will first define a function As that can be used to apply regular
expressions and assign their corresponding tokenization. This function will have several arguments: The
tokenization state in (Σ∗ × (T∗)∗)× Σ∗ consisting of the already tokenized input and the remainder of the
input, the current scope in T∗, and the regular expression and categories to apply in R(Σ, N) × T∗. The
output will be a new tokenization state in (Σ∗ × (T∗)∗) × Σ∗. Therefore we can specify the signature as
follows: As : ((Σ∗ × (T∗)∗)× Σ∗)× T∗ × (R(Σ, N)× T∗) → ((Σ∗ × (T∗)∗)× Σ∗). This function will itself
rely on two helper functions to map the natural numbers to the corresponding categories. These functions
can be defined as follows:

As : ((Σ∗ × (T∗)∗)× Σ∗)× T∗ × (R(Σ, N)× T∗)→ ((Σ∗ × (T∗)∗)× Σ∗)

As(((p, t), i), s, (r, c)) = ((pw, t Ms(s, t′, c)), i′) where ((p, ∅), (w, t′), (i′, ∅)) ∈ L(r) ∧ wi′ = i
= ((p, t), i) otherwise

Ms : T∗ ×P(N)∗ × T∗ → (T∗)∗

Ms(s, tα, c) = (s · Es(t, c, 0)) ` Ms(s, α, c)
Ms(s, ε, c) = ε

Es : P(N)× T∗ ×N→ T∗

Es(T, ε, i) = ε

Es(T, cα, i) = c · Es(T, α, i + 1) where i ∈ T
= E(T, α, i + 1) otherwise
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In this notation, the · operator represents sequences concatenation, and ` represents sequence prefixing
adding a single element to the start of another sequence. This function then simply says that if some match
for the regular expression exists that starts at the remainder of the input to be tokenized, such a match is
chosen. The tags of this match are then translated to the corresponding categories and combined with the
provided scope. If the regular expression does not match, the tokenization state remains unmodified.

The tokenization function Tc will be an application of a generalized function T ′c . This generalized
function has multiple arguments: a tokenization state in (Σ∗ × (T∗)∗) × Σ∗, a active scope state in V ×
T∗, the scope deactivation regular expression and categories in R(Σ, N) × T∗, and the pattern queue in
Ps(V, Σ, T)∗. The function in turn outputs a new tokenization state (Σ∗ × (T∗)∗)× Σ∗. The idea is that this
helper function tokenizes input until either the end of the input is reached, or the end pattern is matched.
Tc and T ′c are defined as follows, using the grammar’s tokenization rules R and start symbol s:

Tc : Σ∗ → (T∗)∗

Tc(i) = t where ((i, t), ε) = T ′c (((ε, ε), i), (s, ε), (/0/, ε), R(s))

T ′c : ((Σ∗ × (T∗)∗)× Σ∗)× (V × T∗)
× (R(Σ, N)× T∗)×Ps(V, Σ, T)∗ → (Σ∗ × (T∗)∗)× Σ∗

T ′c ((p, ε), (v, s), c, q) = (p, ε)

T ′c (i, (v, s), c, q) = o where o = As(i, s, c) ∧ o 6= i

T ′c (((p, t), aα), (v, s), c, ε) = T ′c (((pa, t a s), α), (v, s), c, R(s))

T ′c (i, (v, s), c, include(v′)β) = T ′c (i, (v, s), c, R(v′)β)

T ′c (i, (v, s), c, simple(p)β) = T ′c (o, (v, s), c, R(v)) where o = As(i, s, p) ∧ o 6= i

= T ′c (i, (v, s), c, β) otherwise

T ′c (i, (v, s), c, hierarchical(b, (v′, s′), c′)β) = T ′c (T ′c (o, (v′, ss′), c′, R(v′)), (v, s), c, R(v))
where o = As(i, s, b) ∧ o 6= i

= T ′c (i, (v, s), c, β) otherwise

In this notation, a is used to specify that one element is added to the end of a sequence. This function
recurses until all characters in the tokenization state have been tokenized. For each symbol, the list of ap-
plicable patterns is loaded and tested one at a time. The inclusion pattern modifies the list of remaining
patterns to be tested against. If such an inclusion pattern has a circular reference, this would recurse indefi-
nitely, but this has been prohibited by the constraints for our grammar. When a simple pattern matches, it is
used to update the tokenization state, and all patterns will be checked again on the next character to be pro-
cessed. Finally, if a hierarchical pattern matches, the tokenization state is updated just like with the simple
pattern, but we then start tokenizing with a new closing pattern and active scope state. This tokenization
will resolve either when all characters are consumed, or when the closing pattern has been matched. The
resulting tokenization state is processed with the original closing pattern and active scope state.

Mapping a LCG to a scope grammar is mostly straight forward, as was described in Section 2.5. A LCG
only has three production forms, each of which can be mapped to a pattern that retains the corresponding
semantics:

• A→ ε is implicitly present in the semantics of scope grammars, and can be skipped

• A→ x (〈ε〉A) can be mapped to some pattern (A, simple((y, t)))

• A→ x (〈t〉B) y (〈ε〉A) can be mapped to some pattern (A, hierarchical((x′, tx), (B, t′), (y′, ty))) ∈ R

The patterns corresponding to a given production end up not containing the right-recursive self-reference
to the production symbol. Since our grammars often include the same patterns for multiple symbols, we try
to reuse these patterns to make the grammar shorter. For any component sequence α a dedicated symbol Sα
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is defined, only specifying the pattern corresponding to α. Then for any production A→ α in the grammar,
we add a corresponding pattern (A, include(Sα)) ∈ R.

Despite the mapping being mostly straightforward, several minor discrepancies are left to be solved.
One minor issue is that a LCGs may define a scope t of arbitrary length for a non-terminal B, while scope
grammars can only apply a single scope per hierarchical pattern. This can be dealt with by performing a
transformation rule on the LCG exhaustively, in order to remove any productions in which such a scope is
present:

A→ x (〈t1t2α〉B) y (〈ε〉A) A′ 6→
A→ /(>x)/ (〈t1〉A′) y (〈ε〉A) A′ → x (〈t2α〉B) /(>y)/ (〈ε〉A′)

split-scopes

This transformation maintains an equivalent language, and simply splits the scopes into single category
scopes. The remaining discrepancies relate to regular expressions. The regular expression model we used
is different from regular expressions used by tokenizers. Therefore we want to convert regular expressions
in our format to equivalent expressions that translate straightforwardly to common regular expression syn-
taxes. There are three issues that have to be dealt with:

• A regular expression may make use of our binary lookaround operators, while mosts regex engines
make use of unary operators. This can be dealt with using rewrites based on the following equiva-
lences:

– L(/x>y/) = L(/x(>y)/)

– L(/x 6>y/) = L(/x( 6>y)/)

– L(/y<x/) = L(/(y<)x/)

– L(/y 6<x/) = L(/(y 6<)x/)

• A regular expression encodes scope tags directly in its syntax, while tokenizers rely on capture groups

• A regular expression may make use of the subtraction operator, which is not commonly supported by
regex engines

Extracting scopes from a regular expression is quite straight forward, as was hinted at earlier. Here we
formalize this by providing a recursive function E that operates on a regular expression and a category
list and outputs a new regular expression only containing numbered capture groups together with a list
of categories corresponding to every capture group. The fully definition of this function can be found in
Appendix D. Since this function is rather trivial, we only provide a condensed overview below:

E(0, s) = (0, s)
...

E(r1+r2, s) = (r′1+r′2, s′′) where (r′1, s′) := E(r1, s) ∧ (r′2, s′′) = E(r2, s′)
...

E((〈t〉r1), s) = ((〈|st|〉r′1), s′) where (r′1, s′) := E(r1, st)

Then for a regular expression x, we can simply obtain a regular expression and category list pair by apply-
ing E(x, ε). Before doing this, all subtraction operators should be removed however.

This process is not trivial. We attempt to replace subtraction operators by negative lookaheads or neg-
ative lookbehinds. This approach is not guaranteed to be successful however, in which case this mapping
process may yield a new error. Consider the regular expression x = /[a−z]∗−word/ specifying all alpha-
betic words, except word. Here the shorthand [a−z] is used to describe the alternation of all alphabetic
characters. A first attempt to get rid of the subtraction operator might be to use a negative lookbehind as
follows: x′ = /[a−z]∗(word 6<)/. This expression specifies that it may see any word, as long as it does not
end in word. This is not exactly the same however, since the check for word can start anywhere. It can start
before the first character matched by /[a−z]∗/, on the first character as we intend, or after it. Consider
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the input word, where the first character w has already been consumed. Then the remainder ord would
be matched by x, but x′ would not capture it, due to w being part of the prefix. If our original regular
expression provides more context, it might be possible to detect that such cases can not happen however.
Consider for instance y = /A([a−z]∗−word)/ where A is simply a literal uppercase character. Then we
could define another regular expression y′ = /A([a−z]∗(word 6<))/ that replaces the subtraction with a
negative lookbehind. Now we see that the disallowed word capture could never start before the first match
of /[a−z]∗/, since none of the characters in word are equal to A, thus they can not overlap this character.
The only importance of this A prefix is that it provides information about the surrounding context that
may occur, it is not important that this is part of the actual match itself. As such, the negative lookbe-
hind that is commonly specified for identifier patterns has the same effect: /[a−z] 6<([a−z]∗−word)/ can
be transformed to /[a−z] 6<([a−z]∗(word 6<))/ which does not disallow any additional words based on the
context of the words. Another issue does remain however, where aword would be matched by y but not
by y′. Since y′ still only checks for whether the word does not end in word, this check can start after the
first character of /[a−z]∗/ is matched. To prevent this, more context can be provided to the subtracted
term. The contextual information present in concatenation distributes over subtraction, hence y can be
transformed to /(A[a−z]∗)−Aword/. The subtraction can be then be replaced by a negative lookbehind
to obtain y′′ = /(A[a−z]∗)(Aword 6<)/. In this expression the Aword match could never start after having
performed the first match of /[a−z]∗/, because A has no overlap with this expression. Therefore these lan-
guages are in fact equivalent. Once again, the same would apply for a version where lookarounds are used:
L(/[a−z] 6<([a−z]∗−word)/) = L(/([a−z] 6<[a−z]∗)(([a−z] 6<word) 6<)/). This means that the common ex-
pression used to specify identifiers in Rascal grammars can perfectly be translated to a regular expression
that does not make use of subtraction operators.

This idea is generalized to define an algorithm for automatically removing subtraction operators from
regular expressions. This algorithm does not guarantee that the resulting regular expression has an equiv-
alent language, but does generate errors if and only if the resulting regular expression does not define an
equivalent language. This is done by making use of the expressions’ TCNFAs to determine whether the
language was maintained. The algorithm attempts to move as much of the contextual information sur-
rounding a subtraction into the subtracted expression. This relies on several regular expression language
equivalences. Appendix G provides an extensive set of axioms for these equivalences, but not all of these
are important for this transformation. This transformation relies specifically on the following equivalences,
where x, y, and z are arbitrary regular expressions:

• L(/(x>y)−z/) = L(/(x>y)−(z>y)/), with symmetric versions for all other lookaround types

• L(/(x−z)>y/) = L(/(x>y)−(z>y)/), with symmetric versions for all other lookaround types

• L(/(x−z)y/) = L(/(xy)−(zy)/), with a symmetric version for prefix concatenation

• L(/(x−y)−z/) = L(/x−(y+z)/)

The algorithm implicitly uses these equivalences to extract information while ensuring language equiv-
alence, and uses the subtraction to negative lookaround transformation whenever necessary to deal with
sub-expressions. We define an inductive function S : R(Σ, T)→ R(Σ, T)×R(Σ, T)×R(Σ, T)×R(Σ, T)×
B that splits a regular expression in 4 parts, and a boolean specifying whether equivalence is maintained.
More specifically, given a regular expression x, it outputs a lookbehind regular expression b, a match ex-
pression m, a lookahead expression a, and a subtraction expression s, together with a boolean equal. It
ensures that the following properties hold on this output:

• equal ⇒ L(/m−s/) = L(x)

• L(m) = L(/bma/)

• If x does not contain any regular expression, equal is true

• None of the output expressions contain subtractions

The definition of this function will rely on a helper function Sl : R(Σ, T)×R(Σ, T)×R(Σ, T)×R(Σ, T)→
R(Σ, T) × B which attempts to combine the four expressions b, m, a and s into an expression y either as
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y = /( 6>bsa)m/ or y = /m(bsa 6<)/. This function attempts to ensure that L(y) = L(m−s), and returns a
boolean indicating whether this was achieved. Using this function, and the results (b1, m1, a1, s1, e1) = S(r1)
and (b2, m2, a2, s2, e2) = S(r2) obtained for sub-expressions, we can inductively define the function S. See
Appendix C for the full definition, only some representative cases are provided here:

S(a) = (ε, a, ε, 0, true)

S(r1>r2) = (b1, m1>a′, a1>a′, s1, e1 ∧ e2 ∧ e) where (a′, e) = Sl(b2, m2, a2, s2)

S(r2 6<r1) = (b′ 6<b1, b′ 6<m1, a1, s1, e1 ∧ e2 ∧ e) where (b′, e) = Sl(b2, m2, a2, s2)

S(r1−r2) = (b1, m1, a1, s1+s′, e1 ∧ e2 ∧ e) where (s′, e) = Sl(b2, m2, a2, s2)

S(r1+r2) = (ε, m′1+m′2, ε, 0, e1 ∧ e2 ∧ e′1 ∧ e′2) where (m′1, e′1) = Sl(b1, m1, a1, s1), (m′2, e′2) = Sl(b2, m2, a2, s2)

The helper function Sl can then be applied on the result of this inductive function to obtain the final expres-
sion, free of subtraction operators.

Only this subtraction removal step may cause problems regarding tokenization preservation. All other
transformations ensure equivalence tokenizations, which could be shown straightforwardly using the de-
fined semantics. As such, we specify the following lemma:

Lemma 5. If all regular expressions in the mapping of a choice-free LCG to a scope grammar have their subtractions
removed safely, all tokenizations are preserved

4.5.1.1 Textmate grammars From such a scoped grammar, it is now quite trivial to map their constructs
to corresponding TextMate constructs. When pretty printing a regular expression abstract syntax tree, some
care has be taken regarding the precedences of operators however. One could simply surround every sub-
expression with a non-capturing group, but this results in quite ugly expressions. For instance the regular
expression /i f+else+ f or/ would be stringified as (?:(?:(?:if)+(?:(?:(?:el)s)e))+(?:(?:fo)r)). Alternatively one
could decide whether to put sub-expressions in non-capture groups, based on the precedence of their op-
erator and the precedence of the parent operator, which results in cleaner expressions. This is a common
problem when dealing with unparsing, and is therefore not unique to our research [18]. For our pretty
printing, Oniguruma regular expression syntax is used [4]. The resulting grammar will perform syntax
highlighting in a editor that supports TextMate grammars in accordance to the semantics defined for our
scope grammars.

4.5.2 PDA Grammars

PDA grammars consists of a start symbol, and a list of patterns per grammar symbol. Patterns come in four
forms: inclusion of other symbol patterns, simple patterns, push patterns, and pop patterns. The inclusion
and simple patterns are the same as for scope grammars. The hierarchical pattern of scope grammars has
been split into two rules, both of which extend the simple pattern behavior: a push pattern that adds a new
symbol to the stack when its pattern matches, and a pop pattern that pops the current symbol from the
stack when its pattern matches. The top symbol on the stack defines the patterns that are currently active.
More formally, a PDA grammar is defined by a tuple (V, Σ, T, R, s), where:

• V is a finite set of non-terminal symbols

• Σ is a finite set of terminal symbols

• T is a finite set of tags

• R : V → Pp(V, Σ, T)∗ is a mapping from symbols to pattern lists

• s ∈ V is the start symbol
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We then define the pattern universe Pp(V, Σ, T) as the minimal set satisfying:

include(v) ∈ Pp(V, Σ, T) for v ∈ V

simple((r, t)) ∈ Pp(V, Σ, T) for r ∈ R(Σ, N), t ∈ T∗

pop((r, t)) ∈ Pp(V, Σ, T) for r ∈ R(Σ, N), t ∈ T∗

push((r, t), v) ∈ Pp(V, Σ, T) for r ∈ R(Σ, N), t ∈ T∗,∈ V

The requirements on regular expressions and include usage apply here as specified for scope grammars.
Additionally, we require every regular expression to define a language where each character has exactly
one associated tag. This can be achieved by making sure each character construction has exactly one tag
construction as an ancestor, except for lookarounds. Finally, no pop patterns may be present in the rules of
the start symbol.

The semantics of this format is provided in a form very similar to the semantics of a scope grammar
in order to highlight the similarities and differences. The most notable difference is that PDA grammars
always provide exactly one category per input character, rather than an arbitrary length scope. This is
reflected in the regex application function Ap. The extra requirement we added on regular expressions
is crucial for this. Helper function Ep has become a partial function now, but always provides an output
when being called through Ap with a regular expression that satisfies the constraints. Below are the exact
definitions:

Ap : ((Σ∗ × T∗)× Σ∗)× (R(Σ, N)× T∗)→ ((Σ∗ × T∗)× Σ∗)

Ap(((p, t), i), (r, c)) = ((pw, t Mp(t′, c)), i′) where ((p, ∅), (w, t′), (i′, ∅)) ∈ L(r) ∧ wi′ = i

= ((p, t), i) otherwise

Mp : P(N)∗ × T∗ → T∗

Mp(tα, c) = Ep(t, c, 0) ·M(α, c)

Mp(ε, c) = ε

Ep : P(N)× T∗ ×N→ T

Ep(T, cα, i) = c where i ∈ T

= Ep(T, α, i + 1) otherwise

The tokenization function Tp now requires an extra argument, namely a token to be usd for skipped
inputs. Once again, this function is defined in terms of a generalized function T ′p . This generalized function
operates on the tokenization state, requires the default token, a symbol to tokenize for, and a queue of
patterns to try to apply. Tokenization finishes either when the end of the input stream is reached, or a pop
pattern has been executed. Because the start symbol is not allowed to have any pop patterns, the input is
guaranteed to always fully tokenize. Tp and T ′p are defined as follows, using the grammar’s tokenization
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rules R and start symbol s:

Tp : Σ∗ × T → T∗

Tp(i, d) = t where ((i, t), ε) = T ′p (((ε, ε), i), d, s, R(s))

T ′p : ((Σ∗ × T∗)× Σ∗)× T ×V ×Pp(V, Σ, T)∗ → (Σ∗ × T∗)× Σ∗

T ′p ((p, ε), d, v, q) = (p, ε)

T ′p (((p, t), aα), d, v, ε) = T ′p ((pa, td), d, v, R(v))

T ′p (i, d, v, pop(p)β) = o where o = Ap(i, p) ∧ o 6= i

= T ′p (o, d, v, β) otherwise

T ′p (i, d, v, include(v′)β) = T ′p (i, d, v, R(v′)β)

T ′p (i, d, v, simple(p)β) = T ′p (o, d, v, R(v)) where o = Ap(i, p) ∧ o 6= i

= T ′p (o, d, v, β) otherwise

T ′p (i, d, v, push(p, v′)β) = T ′p (T ′p (o, d, v′, R(v′)), d, v, R(v)) where o = Ap(i, p) ∧ o 6= i

= T ′p (o, d, v, β) otherwise

This definition is very similar to that of scope grammars. The main difference is that no end pattern is
provided as a dedicated argument, but is instead present in the patterns queue in the form of a pop pattern.
This makes the semantics simpler, but makes the grammar less declarative.

Converting a scope grammar to PDA grammar is mostly straight forward with the exception of dealing
with scopes, as was mentioned in Section 2.5. Our mapping should operate on a scope grammar where
every hierarchical pattern does not provide a scope for the internal symbol, and every regular expression
has exactly one category applicable to every character match. Such a scope grammar is called a single cat-
egory scope grammar. A single category scope grammar can be obtained by performing a transformation
on the choice-free LCG that the scope grammar is derived from, prior to obtaining the scope grammar.
Similarly, choice-free LCG resulting from these transformations is called a single category LCG. This trans-
formation does not guarantee that the language is maintained, but does provide an error if any scope
data had to be dropped. Assuming we have a scope grammar adhering to these constraints, the inclusion
and simple patterns can remain the same for the corresponding PDA grammar. Every hierarchical pattern
hierarchical(b, (B, ε), e) can be mapped to a push pattern push(b, Be). Here Be represents a new symbol in the
grammar. This symbol is then defined to have exactly two patterns in R: R(Be) = pop(e) include(B). This
mapping will ensure that the resulting PDA grammar provides the same tokenization for all inputs as the
simplified scope grammar does.

Obtaining a single category scope grammar is harder than this mapping process. First off, there are
multiple choices for converting a category sequence α to a single category. The most obvious choice would
be to use the last category in the sequence, and drop the first categories. We could however also merge
all categories into a single category, such that less data is lost. Within our formal model no assumptions
are made on the structure of categories, and thus we can not manipulate them. But we do know that in
practice, they are dot separated sequences of category components. This means categories as essentially
sequences of category components, and scope are sequences of these sequences. Hence a scope sequence
of sequences, could be flattened to a single sequence of category components, which in term forms a single
category. One problem with this merging technique is that the semantics of a conversion grammar are such
that an infinite number of scopes can appear at runtime. When trying to convert such a grammar to one
using only single category scopes, the grammar would have to encode an infinite number of possible scopes
all as dedicated categories, leading to an infinite grammar. therefore, rather than treating a category as a
sequence of components, it can be considered to be a set of components. In this case merging could consist
of taking the union of all categories. Only a finite number of such sets exists when expressed in terms
of category components in the original grammar, and thus the resulting grammar will also be finite. To
make sure the category components are properly treated as sets when performing equivalence checks, the
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components should be sorted to be in some consistent order in the sequence. We assume scopes to always
be non-empty, which can be achieved by prefixing a default category to the scope, provided as an argument
to the transformation. Regardless of the category merging process chosen, the transformation process of
the grammar remains the same. We assume some category merging function merge to exist, that operates on
two categories at a time and obtains a single category. We will first consider how a regular expression makes
sure every character receives a single category. This can be done with a recursive function M, that operates
on a regular expression and a category. Appendix E contains a full definition of the function. Below is a
condensed overview of the function for an input expression x built up from at most the sub-expressions r1
and r2:

M(0, c) = 0
...

M(a, c) = (〈c〉a)
...

M(r1+r2, c) = r′1+r′2 where r′1 = M(r1, c) ∧ r′2 = M(r2, c)
...

M(r1>r2, c) = r′1>r2 where r′1 = M(r1, c)
...

M((〈t〉r1), c) = M(r1, c′) where c′ = merge(t, c)

This function essentially carries the category to the character leaves of the regular expression, applying
the merge function on any intermediately encountered categories. There is some slight nuance with the
lookaround expressions, where the category should only be carried towards the actual match and not the
lookaround itself. This recursive function could be optimized to obtain simpler expressions with an equiva-
lent language, by always first determining whether the regular expression x that it operates on contains any
tag constructs. If x does not contain any tags, one can simply return /(〈c〉x)/ regardless of the structure of
x. Using this function, an input LCG can be converted to our desired grammar using a search function. We
initialize a queue with custom symbols of the form Ac where A is a symbol in the original grammar, and
c is a category. We initialize this queue to contain one symbol Sd where S is the start symbol of the input
grammar, and d is a default category provided to the transformation. We then iterate over the queue, until
it becomes empty. For every Ac in the queue, we copy every A → ε production, adding Ac → ε to our
grammar. Every A → x A is copied as Ac → y Ac with y = M(x, c). Finally A → x (〈t〉B) y A is copied
as Ac → z (〈ε〉Bc′) w A where c′ = merge(c, t), z = M(x, c), and w = M(y, c). If Bc′ is not part of the
generated grammar yet, Bc′ is added to the queue. After this process terminates, every regular expression
in the resulting grammar will have a single category per character. When performing these merges, we
can track whether any two categories neither of which are the default-category. If this is the case, it means
that some tokenization data was lost. Otherwise the grammar preserves all tokenizations, when using the
interpretation that the default category is equivalent to an empty scope.

Finally, if no errors are generated, the PDA preserves all tokenizations as more constructively expressed
by the following lemma:

Lemma 6. If LCG Gs can be converted to a single category LCG G′s without merging two non-default categories, the
derived PDA grammar preserves all tokenizations.

4.5.2.1 Pygments Creating a Pygments grammar from a given PDA grammar is a trivial process. Each
of the patterns in a PDA grammar has a straight forward counter part in a Pygments lexing grammar. Pyg-
ments grammars are however proper Python classes, and as such Python code would have to be generated.
Our implementation instead generates a JSON grammar, and a helper Python class is provided to read these
grammars and generate the Python lexing constructs at runtime. There is only one small problem we have
to take care of in our initial mapping process: Pygments relies on an implicitly defined start symbol rather
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than a explicitly defined start symbol. Instead of stating what the start symbol of a Pygments grammar
is, the grammar is assumed to have a symbol called root representing the start symbol. Therefore we must
rename what ever was specified to be the start symbol to root. Note that Pygments does not actually operate
line by line, but this does not pose any problems. Line by line operation was never used as an assumption
by our pipeline, but only used as a restriction, and thus these grammars operate as expected.

4.5.2.2 Ace Creating an Ace grammar from a given PDA grammar is almost identical to creating a Pyg-
ments grammar. Similar to Pygments grammars, Ace grammars are defined using a proper programming
language, in this case JavaScript. The actual language specific concerns are all encoded using pure JSON.
Therefore we can provide the actual grammar in JSON, and provide a template that merely loads this JSON
definition and calls this.normalizeRules(); to resolve any include(A) rules. Similar to Pygments gram-
mars, the start symbol is defined implicitly. In this case the name of the start symbol should be start. Finally,
Ace brings up one additional minor issue. The lines the tokenizer operates on omit the linefeed character.
To correct for this, every regular expression has to be modified such that any character class x that includes
the linebreak character become /x+$/ where $ is a special end-of-line matching construct that regex en-
gines support.

4.5.2.3 Monarch Creating a Monarch grammar from a given PDA grammar is least trivial of all. Monarch
grammars are encoded in JavaScript, just like Ace grammars. The actual language concerns are not en-
coded in pure JSON however, since javascript regex syntax is used for regular expressions. Therefore a
small transformation function will have to be provided in javascript, that constructs regex instances from
strings encoding these regular expressions. Additionally the flag includeLF should be provided to make
sure line endings are included. The actual difficult part however is that regular expressions in Monarch
are not allowed to have capture groups not match for some word. For instance the regular expression
/(〈t1〉a)+(〈t2〉b)/ is not allowed, since either the capture group belonging to t1 or the capture group be-
longing to t2 will not be matched. Note that this is different from a capture group matching an empty
string, therefore /(〈t1〉a)(〈t2〉ε)/ is accepted by Monarch. Alternations are not fundamentally problematic
though, as long as they occur within capture groups, such as: /(〈t〉a+b)/. In order to deal with this, every
regular expression is split up in a set of expressions that only contain alternations within tag statements,
such that their union represents the original language. More formally, we define an inductive function
S : R(Σ, T) → P(R(Σ, T)), such that for any regular expression x, we have L(x) = L(/+y∈S(x) y/). Ap-
pendix F contains a full definition of this function. Below is a condensed overview of the function for an
input expression x built up from the sub-expressions r1 and r2, where R1 = S(r1) and R2 = S(r2):

S(0) = {0}
...

S(r1+r2) = R1 ∪ R2

S(r1r2) = {r′1r′2 | r′1 ∈ R1, r′2 ∈ R2}
S(r+1 ) = {r1}

S(r1>r2) = {r′1>r2 | r′1 ∈ R1}
...

S((〈t〉r1)) = {(〈t〉r1)}

In this function, we make use of some of the constraints that hold for our regular expressions. We know
that no tag constructs can appear within iteration constructs obtained by the regular expression conversion,
and as such our definition for S(r+1 ) is irrelevant. Similarly recursion stops at S((〈t〉r1)) since we know tag
statements are not being nested for PDA grammars. Now using this function, every pattern can be mapped
to a collection of patterns, which together define the same semantics as the original pattern.
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4.6 Lookahead Improving

A full grammar conversion process has now been described. This process still contains several issues that
will be discussed later. Most of these are left as future research, but a solution for one of these problems
has already been explored. The problem in question, relates crucial follow data being lost by the con-
version process. Consider a Rascal definition for identifiers, being translated to the regular expression
/([a−z] 6<[a−z]+ 6>[a−z])−y/ where y is some alternation regular expression containing words such as for
or i f . As previously discussed, subtraction will have been replaced by negative lookbehinds, but this is
harder to read and is not relevant for this problem given that their languages are equivalent. A pattern
for this regular expression may be active together with the pattern / f or/. Now when we encounter the
text for(, the identifier expression will not match any prefix of this text, while / f or/ does. However when
encountering the text fora, both expressions match a prefix of this text. The identifier expression can match
fora as a whole, while the / f or/ expression simply matches for. Such non-determinism would frequently
show up in our language, even though the original grammar likely won’t have any ambiguity issues in
these situations. A CFG in which / f or/ occurs is likely to have a loop production that specifies for is al-
ways followed by an opening bracket. If the regular expression would have included this bracket, there
is no overlap between this expression and the identifier expression. This expression would however not
accurately encode the original language in most cases, because optional whitespace may be included be-
tween for and the bracket. If this is not allowed, our regular expression conversion step would indeed add
the bracket in the same expression, and this problem does not show up. Unfortunately the same is not
done when optional whitespace is allowed, since this optional whitespace can usually include linebreak
characters, and tokenizers can not apply a single regular expression over multiple lines. However, instead
of trying to make the regular expression match the entire entire construct including the bracket, we could
hint at the characters that are allowed to follow the for keyword, using a lookahead. Let [(] represent a
regular expression matching the opening bracket. Then our / f or/ regular expression could be changed
to / f or>(\n+[(])/ without affecting the language described by the grammar. This transformation pre-
vents the described non-determinism. This transformation can be applied automatically, after the regular
expression conversion step. For every regular expression, the regular expressions that may follow it can
be calculated, and an alternation of these expression can be used as a follow expression. We could even
remove some of these lookaheads after finishing the CG ro LCG conversion, wheen these lookaheads do
not contribute to preventing non-determinism.

First-set and follow-set extraction for CFGs is well known and has been described in the book Compilers:
principles, techniques, & tools amongst other places [19]. The process remains largely the same for CGs,
where regular expressions take the place of terminals, but there are some slight differences. Note that we
assume the grammar to contain no more inductively defined production components, and instead only
consists of reference and regular expression production components. This will be the case after regular
expression conversion has finished. When trying to get the first expression of a sequence of production
components, we have to consider that a regular expression may both be able to match the empty string, and
a non-empty string. This makes null-checking more complex than with the standard first-set calculation
approach. TCNFAs can be used to check whether a regular expression accepts an empty string, and our
previously defined function can be used to extract the part of the expression that matches only non-empty
strings. The part of the regular expression describing empty matches could be discarded. It may however
describe a restriction on what may follow or precede it, in which case discarding it would not accurately
reflect the original language. This is not a problem however, since discarding restrictions will only broaden
the language. This might make our follow-set less capable of preventing non-determinism, but it wont
change the described language. Lastly, the standard first and follow-sets use special symbol $ to represent
the end of the input. We do not have to resort to a special symbol, but can instead make use of the regular
expression /( 6>.)/, which describes no input may follow.

This approach of automatically calculating the allowed lookaheads is effective, but often leads to very
complex expressions. This can slow down the conversion procedure significantly. When considering our
initial example again, we see that making the choice deterministic, only requires us to prevent for being
followed by an alphabetic character. The regular expression / f or 6>[a−z]/ also achieves this and includes
all phrases of the original language. Because this expression defines a broader language than the automat-
ically generated one, it has less power to prevent non-determinism. Therefore this should be considered
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a choice of the grammar developer. If the grammar developer knows this is the only or most common
issue, an automatic transformation can add these negative lookaheads to all keywords. This can be done
automatically, by detecting regular expressions accepting alphabetic characters, and adding negative looka-
heads for alphabetic characters to them. The calculated follow-set needs to be used when employing this
automated approach too. The negative lookbehind might exclude phrases that were originally allowed,
thus these entries from the follow-set have to be combined with the negative lookahead. For instance if
the specific keyword each is allowed directly after for, we might end up with the following expression:
/ f or(( 6>[a−z])+(>each))/. Besides generating lookaheads, the developer could also manually add posi-
tive or negative lookaheads to the grammar by hand. These options are more involved and less accurate,
so if LG derivation time is of no concern, the fully automatic approach can be employed instead.
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5 Implementation

The concepts described in previous chapters are the product of experimentation in Rascal. As such, there
is a full implementation of all discussed concepts. This implementation can be referenced for additional
details that might be lacking from the report. It also allows us to test the described conversion pipeline,
in order to validate the approach and answer our main research question, see Chapter 6. A repository
containing this implementation can be found on Github at www.github.com/TarVK/syntax-highlighter.

Figure 7 visualizes how various Rascal files relate to the conversion pipeline architecture. These files
consist of one primary function, reflected by the file name, possibly combined with some smaller helper
functions. The main entry Main.rsc contains a single example conversion that makes use of the convert-
Grammar function.

To support this main conversion pipeline, the regex directory includes a standalone regular expression
implementation with lookaround, subtraction, and tag support. This implementation does however not
include any proper way of using regular expressions for text matching or searches. It instead includes only
analytical tools. These tools include a conversion function to obtain TCNFAs from regular expressions, TC-
NFA minimization and normalization functions, TCNFA combinator functions such as a product function,
TCNFA ambiguity detection, and a TCNFA language emptiness check.

In order to get a general impression of the scale and nature of the code, Table 1 specifies the number of
lines of code in each of the primary source code directories and Fragment 4 shows part of the implemen-
tation for the shape conversion step. This code fragment is contained within the larger shape conversion
loop, and illustrated how the closing symbols are generated.

directory number of LOC includes
conversion 2653 all mandatory steps to convert a Rascal grammar to

a LCG
mapping 1263 all code to map a LCG to a TextMate, Ace, Monarch,

or Pygments grammar
determinism 765 all code for determining whether a LCG is deter-

ministic, and lookahead generation functions to im-
prove determinism

specTransformations 202 functions to transform specification grammars, for
instance to automatically assign keyword scopes to
literals

regex 2026 all code related to regular expression analysis
testing 2353 all Rascal code for manual and automated testing

util 18 small utility functions

Table 1: Code Distribution by Directory
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convertGrammar.rsc

toConversionGrammar.rsc

convertToRegularExpressions.rsc

liftScopes.rsc

··
·

unionRegexes.rsc

addGrammarLookaheads.rsc

addDynamicGrammarLookaheads.rsc

convertToPrefixed.rsc

convertToShape.rsc

defineUnion.rsc

··
·

splitSequences.rsc

checkDeterminism.rsc

checkAmbiguity.rsc

checkClosingExpressionsOverlap.rsc

checkExtensionOverlap.rsc

toScopeGrammar.rsc

extractRegexScopes.rsc

··
·

removeRegexSubtraction.rsc

createTextmateGrammar.rsc

toPDAGrammar.rsc

mergeScopes.rsc

createAceGrammar.rsc

createPygmentsGrammar.rsc

createMonarchGrammar.rsc

splitMarkedUnions.rsc

The overall conversion function
A Rascal file representing a conversion step and
supporting function files

A Rascal file representing a supporting function

A next step (option) in the pipeline

Figure 7: Conversion Pipeline Implementation
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// Check if there are any new closings left to be defined

definedSymbols = grammar.productions<0>;

set[Symbol] toBeDefinedClosings = {s | s: closed(_, _) <- getReachableSymbols(grammar, false) -

definedSymbols};↪→

if(toBeDefinedClosings == {}) {

testConfig.log(Progress(), "no new symbols to define");

break;

}

// Define all undefined but referenced closings

testConfig.log(Progress(), "defining <size(toBeDefinedClosings)> closings");

for(closing <- toBeDefinedClosings) {

<newProds, isAlias> = defineClosing(closing, grammar);

testConfig.log(ProgressDetailed(), "defining <size(newProds)> closing productions");

if(!isAlias) {

<mWarnings, newProds, grammar> = combineConsecutiveSymbols(newProds, grammar, testConfig);

newProds = removeLeftSelfRecursion(newProds, testConfig.log);

newProds = removeRedundantLookaheads(newProds, true, testConfig.log);

<oWarnings, newProds, grammar> = combineOverlap(newProds, grammar, testConfig);

newProds = removeRedundantLookaheads(newProds, false, testConfig.log);

<sWarnings, newProds, grammar> = splitSequences(newProds, grammar, testConfig);

<cWarnings, newProds, grammar> = carryClosingRegexes(newProds, grammar, testConfig);

<nWarnings, newProds> = checkLeftRecursion(newProds, grammar, testConfig.log);

testConfig.log(ProgressDetailed(), "finished defining closing productions");

warnings += mWarnings + oWarnings + sWarnings + cWarnings + nWarnings;

}

grammar.productions += {<closing, production> | production <- newProds};

}

testConfig.log(Progress(), "defined <size(toBeDefinedClosings)> closings");

Fragment 4: Closing Symbol Generation

5.1 Testing and Debugging

All the code of our conversion pipeline has been written for experimentation purposes. Therefore it is
important to have proper testing and debugging tools available. In order to test whether the grammars
obtained from the conversion pipeline work well, we have to analyze tokenizations obtained from these
grammars. We could use the respective tools that each of the grammar formats is intended for, but this
would require us to manually inspect the syntax highlightings for given inputs. This is exactly what we
did for Ace, Monarch, and Pygments grammars. We however invested additional development time for
TextMate grammars, and created an automated approach.

The TypeScript package vscode-textmate allows us to run VSCode’s implementation of the TextMate to-
kenizer from within TypeScript. We wrote a simple TypeScript program that allows us to use Node.js to
create tokenizations. This program runs from the terminal and produces a tokenization from a TextMate
grammar and an input fragment. The code for this is provided in the highlighterTesting directory of the
repository. Rascal’s ShellExec module was used to obtain tokenizations from within Rascal code, allow-
ing us to perform further analysis. Using Rascal’s test syntax, several test cases were created to verify the
conversion pipeline functions as intended. These tests use a Rascal grammar to tokenize a fragment, then
obtain a corresponding TextMate grammar to tokenize the same fragment with, and finally compare the
specification and output tokenizations. We also used this automated tokenization approach for several ex-
periments, for which we were not sure how well the conversion pipeline would operate. These tests and
experiments are discussed in the following chapter.

The previous chapter shows that the conversion pipeline is rather involved. This meant that it took
quite some experimentation and development before we managed to obtain any TextMate grammar to test
with. During this phase of development, we analyzed the intermediate CG themselves by hand.

To aid us in this task, we created a standalone Rascal data visualization tool called Rascal-vis. This tool
allows us to interactively explore Rascal values. It also allows values representing grammars or diagrams
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Figure 8: Rascal-vis Grammar Visualization

to be graphically represented, rather than textually. These diagrams are used for visualization of TCNFAs.
The tool was developed to be separate from the rest of our project, and as such does not support graph-
ical visualization of CGs. Instead, we convert our CGs to Rascal grammars which are then graphically
visualized by our tool. This means that regular expression constructs are represented by Rascal grammar
constructs, lookaheads are for instance represented by follow operators. Rascal-vis is designed to run in the
web-browser, and can communicate with Rascal code by using Rascal as a server. A value x can be viewed
by applying visualize(x), after which x will appear in Rascal-vis to be explored. Rascal-vis includes many
features that were valuable during debugging. One of these features is the ability to show multiple panels
side by side, and highlight occurrences of a term in all these panels at once. Figure 8 shows an example of
how we visualized an input grammar and a CG side by side to look for issues. Rascal-vis also comes with
settings and setting profiles, which allows different panel arrangements to be saved per profile. Figure 9
shows how a regular expression and its corresponding TCNFA could be quickly analyzed using the Rascal
code shown in Fragment 5. This tool can be found on Github at www.github.com/TarVK/rascal-vis, and
may continue to be developed in the future.

void main(){

regexText = "([a-z]*\>[A-Z]*!\>.)((\<tag\>test)|(\<tag\>TEST)|REGEX)";

r = getCachedRegex(parseRegexReduced(regexText));

visualizeGrammars(<regexText,r>);

}

Fragment 5: Regex Visualization Code
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Figure 9: Rascal-vis Regular Expression
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6 Testing and Emperical Evaluation

The previous chapter described an approach to obtain a LG for a specification CFG. This approach is be-
lieved to obtain a valid LG for any specification grammar, but is not guaranteed to fully retain the specified
tokenizations for all input sentences. The next step is to determine how well this approach actually works.

In order to evaluate the quality of the approach, we first have to decide what exactly we are interested
in. Several related but distinct attributes of the conversion approach can be identified. The conversion
process itself is an algorithm and therefore the standard algorithmic measures of runtime and memory
usage apply. The latter is not a major concern for our problem, and will be skipped. Runtime is also not
massively important, given that this algorithm only has to be run when a new syntactic language feature
for a developed language is released. Given the nature of the algorithm, especially in its current state,
changes to the specification might have to be made in order to obtain a specification whose tokenizations
are correctly maintained. A slow conversion time will hurt the ability of language developers to iterate on
their specifications. Nevertheless, we consider conversion speed of secondary importance, which has not
been considered too much in our initial implementation. The quality of the LGs derived by the algorithm
has been our primary concern.

The quality of a LGs can be measured in multiple ways once again. We identify 3 main aspects that are
of importance:

• Accuracy: do tokenizations correspond to the specification?

• Robustness: how well is tokenization preserved if parts of the document are syntactically incorrect?

• Generalizability: how well are syntactically incorrect parts of the document tokenized?

Accuracy describes how well tokenizations of a LG correspond to those of a specification CFG. If the LG
is fully accurate, all possible input phrases have an identical tokenization according to the LG and the
specification CFG. Robustness describes how well tokenization is preserved for phrases that are not part of
the language of the specification CFG. In this case phrases are considered for which the specification CFG
does not specify any tokenization. In order to assess the quality of tokenizations, every considered phrase w
has to be matched with a phrase w′ within the specification language. This can be done by taking a w′ with
a minimal distance to w under some distance-measure, such as the Levenshtein distance. The specification
tokenization of w′ could then be compared to the tokenization of w using the LG. For robustness, only
the matching characters between w and w′ are considered. Generalizability is then the logical counterpart
of robustness, where the non-matching characters of w are considered. In this case, there is no obvious
character in w′ to compare the scopes to. What the expected tokenization is, is therefore especially unclear
and hard to define. one could decide to choose to use a special error category for all these characters.

Defining exact measures for these different grammar aspects is not trivial. Especially robustness and
generalization get rather complex quite quickly. Our analysis will be limited to the accuracy measure, which
also has been the primary focus during the development of the transformation pipeline. More specifically,
we define a precision metric for this. We will first define this precision for a given input phrase w and a
given LG G with respect to a specification CFG G∗. We would like the precision P(w, G, G∗) to describe the
fraction of correctly tokenized characters in the input, such that 1 describes full precision, and 0 describes
the worst possible precision. In this process, we consider scopes as atomic entities being used as tokens, and
do not consider individual categories and partial correctness of scopes. Moreover, if a word in the input
phrase should have been tokenized as an identifier but is not, we would like the length of the identifier to
be irrelevant for the precision. Longer identifiers in the input would otherwise result in a worse precision,
which does not properly reflect the grammar itself being worse. Otherwise our measure might implicitly
describe a bias for accurately tokenizing inputs with long identifiers, compared to short identifiers, since
incorrectly tokenizing long identifiers harms the precision more. In order to deal with this, we will group
consecutive characters, based on whether they received both identical LG and specification CFG tokens. Let
T (w, G) ⊆ (T∗)∗ and T (w, G∗) ⊆ (T∗)∗ define the tokenizations of w for grammar G and G∗ respectively.
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Then the grouping function C can be defined as:

C(w, G, G∗) = {(i, T (w, G)[i], T (w, G∗)[i])
| i ∈ [1..|w|]
∧ (i == 1∨ T (w, G)[i− 1] 6= T (w, G)[i] ∨ T (w, G∗)[i− 1] 6= T (w, G∗)[i])}

These groups then describe all indices at which a new tokenization pair starts. These can then be used to
describe the precision as follows:

P(w, G, G∗) =
|{i | (i, t, t∗) ∈ C(w, G, G∗) ∧ t 6= t∗}|

|C(w, G, G∗)|

The precision measures the fraction of groups that got an identical scope assigned from the LG and the
specification CFG. The precision of the whole grammar could then be described as the average precision of
all phrases in the language.

Determining accuracy, robustness, and generalizability for existing CFGs is outside the scope of this
research. Instead we will look at several simple test cases, to support the arguments presented in the
previous chapter. These tests will not be able to prove that everything indeed behaves as argued, but at
least provides some evidence towards this. Additionally we will perform some more complex experiments
to determine the extend of the capabilities and limitations of the described approach. Most of these test
cases and experiments focus on the precision of a given input or set of inputs. Some will also focus on the
conversion process itself. For all these conversions, except if specified otherwise, negative regex lookaheads
are generated as described in Chapter 4.6.

6.1 Regex Subtraction Removal Test

In Section 4.5.1 we described a process for removing the subtraction operator from regular expressions, and
claimed that despite this approach not always working, it would work for the most common situations.
We will provide tests confirming that it indeed works in the described common cases. Additionally we
show that it will indeed fail when there are no anchor expressions to provide context for the subtraction
expression.

6.1.1 Setup

We define four Rascal grammars, one corresponding to each non-terminal specified in Grammar 5. These
grammars are converted to TextMate grammars, which are then used to tokenize the inputs shown in Table
2. This table lists a name for the test case, the start symbol used of the grammar, the input text for the test
case, and whether we expect the textmate grammar to highlight according to the specification. This table
provides syntax highlighting per input according to the specification tokenization, where each token type
receives a unique color. Table 3 describes the errors we expect in the grammar conversion process itself.

Rascal’s grammar syntax largely matches the syntax of our formalisms, but is not identical. The Rascal
A\B operator represents keyword reservation, and corresponds to the except(A, B) production symbol of
our conversion grammars. Similarly A >> B, A! >> B, A << B, and A! << B represent follow(A, B),
not-follow(A, B), precede(A, B), and not-precede(A, B) respectively. Moreover, alternative productions are
indicated by the vertical bar — in this format, and @category annotations label all elements in the production
to belong to the specified category. Square brackets groups are used to specify character classes using
character ranges, while quoted character sequence represent literal sequence matches. Finally, Rascal uses
vertical bars, asterisk characters, and plus characters to represent regular operations similar to in our regular
expression formalism.
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syntax IdentifierA = @category ="identifier" [a-z] !<< [a-z]+ !>> [a-z] \ "word"

| @category ="keyword" "word";

syntax IdentifierB = @category ="identifier" [a-z] !<< [a-z]+ \ "word" !>> [a-z]

| @category ="keyword" "word";

syntax IdentifierC = @category ="identifier" [a-z] !<< [a-z]+ \ "word"

| @category ="keyword" "word";

syntax IdentifierD = @category ="identifier" ([a-z]+ \ "word")

| @category ="keyword" "word";

Grammar 5: Identifiers

test-name grammar text expected tokenization passed
id1A IdentifierA something match "

id2A IdentifierA aword match "

id3A IdentifierA words match "

keywordA IdentifierA word match "

id1B IdentifierB something match "

id2B IdentifierB aword match "

id3B IdentifierB words match "

keywordB IdentifierB word match "

id1C IdentifierC something match "

id2C IdentifierC aword match "

id3C IdentifierC words match "

keywordC IdentifierC word match "

id1D IdentifierD something match "

id2D IdentifierD aword match "

id3D IdentifierD words mismatch "

keywordD IdentifierD word match "

Table 2: Identifier Tests

grammar expected conversion errors passed
IdentifierA None "

IdentifierB None "

IdentifierC None "

IdentifierD UnresolvableSubtraction "

Table 3: Identifier Conversion Tests
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6.1.2 Results

Tables 2 and 3 include the results of the tests, showing that all tests passed. As discussed IdentifierD can not
be converted while ensuring correctness, as illustrated by the generated error. Accordingly, test id3D illus-
trates that the tokenization is not preserved, because the negative lookahead excluded more phrases than
it should have. Table 4 shows the specified tokenization and the tokenization received from the TextMate
grammar.

To get a better understanding for the exact output of our algorithm, the TextMate grammar generated for
IdentifierA is illustrated in Grammar 6. Note that this grammar includes some redundant artifacts like the
empty pattern that does not match any inputs. These patterns are generated by the conversion algorithm,
but could easily be removed yielding a grammar that tokenizes equivalently. Table 5 shows the JSON
representation of tokenizations for several test-cases. Each tokenization is a list of scopes – one scope per
character – where each scope is a list of categories.

test-name specified tokenization output tokenization
id3D words words

Table 4: Identifier Mismatching Tokenizations

{

"name": "test",

"scopeName": "source.test",

"patterns": [{"include": "#C1"}],

"repository": {

"C1": {

"patterns": [

{"include": "#empty"},

{"include": "#S"}

]

},

"S": {

"begin": "(?:(word)|(?!(?<![a-z])(?<![a-z])word(?![a-z]))((?<![a-z]) c
[a-z]+(?![a-z])))(?=(?!.))",↪→

"end": "(?:x(?<!x))",

"beginCaptures": {

"1": {"name": "keyword"},

"2": {"name": "identifier"}

},

"endCaptures": [],

"patterns": [{"include": "#C0"}]

},

"C0": {"include": "#empty"},

"empty": {

"match": "(?:x(?<!x))",

"captures": []

}

}

}

Grammar 6: IdentifierA TextMate
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test-name type raw tokens
id2A specification [["identifier"],["identifier"],["identifier"] c

,["identifier"],["identifier"]]

keywordC specification [["keyword"],["keyword"],["keyword"],["keyword"]]

id3D specification [["identifier"],["identifier"],["identifier"] c
,["identifier"],["identifier"]]

id3D output [[],["identifier"],["identifier"],["identifier"] c
,["identifier"]]

Table 5: Identifier Raw Tokens

6.2 Overlap Combining Test

We argued that overlapping production combining is a critical step for dealing with non-determinism. We
will compare how a grammar with or without such a step will behave.

6.2.1 Setup

We define a Rascal grammar Merge in Grammar 7. This grammar is converted to two TextMate grammars
– one skipping the production combining step – which are then used to tokenize the inputs shown in Table
6. This table is similar to Table 2, but also indicates whether the overlap combining has been skipped.

Note that the expected behavior for several tests, such as alt1Disabled, is unknown. Either alt1Disabled or
alt2Disabled should tokenize according to specification, but it is unknown which of these inputs tokenizes
correctly. This is the case because an arbitrary production order is generated when converting the LCG to
a scoped grammar. These unknown test cases will pass regardless of their result, they are merely listed to
explicitly state the behavior to be fundamentally unknown.

syntax Merges = Merge*;

syntax Merge = A SB D

| A SC D;

syntax SB = "(" SB ")" | B;

syntax SC = "(" SC ")" | C;

lexical A = @category ="1" "a";

lexical B = @category ="2" "b";

lexical C = @category ="3" "c";

lexical D = @category ="4" "d";

layout Layout = [\ \t\n\r]* !>> [\ \t\n\r];

Grammar 7: Overlap Combining

6.2.2 Results

All tests passed, as illustrated in Table 6. Table 7 shows the specified tokenization and the tokenization
received from the TextMate grammar for test cases where no match is expected. Grammars 8 and 9 show the
TextMate grammars generated from Grammar 7 with overlap combining enabled and disabled respectively.
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test-name grammar overlap
combining text expected

tokenization passed

alt1 Merges enabled abd match "

alt2 Merges enabled acd match "

altBoth Merges enabled abdacd match "

alt1grouped Merges enabled a(b)d match "

alt2grouped Merges enabled a(c)d match "

altBothGrouped Merges enabled a(b)da(c)d match "

alt1Disabled Merges disabled abd unknown "

alt2Disabled Merges disabled acd unknown "

altBothDisabled Merges disabled abdacd mismatch "

alt1groupedDisabled Merges disabled a(b)d unknown "

alt2groupedDisabled Merges disabled a(c)d unknown "

altBothGroupedDisabled Merges disabled a(b)da(c)d mismatch "

Table 6: Overlap Combining Tests

test-name specified tokenization output tokenization
alt1Disabled abd abd

alt2Disabled acd acd

altBothDisabled abdacd abdacd

alt1GroupedDisabled a(b)d a(b)d

alt2GroupedDisabled a(c)d a(c)d

altBothGroupedDisabled a(b)da(c)d a(b)da(c)d

Table 7: Overlap Combining Mismatching Tokenizations
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{

"name": "test",

"scopeName": "source.test",

"patterns": [{"include": "#C0"}],

"repository": {

"C0": {

"patterns": [

{"include": "#empty"},

{"include": "#single,multiple"},

{"include": "#S"}

]

},

"C1": {

"patterns": [

{"include": "#T"},

{"include": "#single,multiple"},

{"include": "#T1"},

{"include": "#S1"}

]

},

"S": {

"begin": "(a)",

"end": "(d)",

"beginCaptures": {"1": {"name": "1"}},

"endCaptures": {"1": {"name": "4"}},

"patterns": [{"include": "#C1"}]

},

"T1": {

"match": "(c)",

"captures": {"1": {"name": "3"}}

},

"S1": {

"begin": "\\(",

"end": "\\)",

"patterns": [{"include": "#C1"}]

},

"empty": {"match": "(?:x(?<!x))"},

"T": {

"match": "(b)",

"captures": {"1": {"name": "2"}}

},

"single,multiple": {"match": "[\\t-\\n\\r ]"}

}

}

Grammar 8: Merge TextMate
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{

"name": "test",

"scopeName": "source.test",

"patterns": [{"include": "#C2"}],

"repository": {

"C2": {

"patterns": [

{"include": "#empty"},

{"include": "#single,multiple"},

{"include": "#S1"},

{"include": "#S2"}

]

},

"C0": {

"patterns": [

{"include": "#T"},

{"include": "#single,multiple"},

{"include": "#S"}

]

},

"C1": {

"patterns": [

{"include": "#single,multiple"},

{"include": "#T1"},

{"include": "#S3"}

]

},

"S1": {

"begin": "(a)",

"end": "(d)",

"beginCaptures": {"1": {"name": "1"}},

"endCaptures": {"1": {"name": "4"}},

"patterns": [{"include": "#C0"}]

},

"S": {"begin": "\\(", "end": "\\)", "patterns": [{"include": "#C0"}]},

"T": {"match": "(c)", "captures": {"1": {"name": "3"}}},

"S2": {

"begin": "(a)",

"end": "(d)",

"beginCaptures": {"1": {"name": "1"}},

"endCaptures": {"1": {"name": "4"}},

"patterns": [{"include": "#C1"}]

},

"S3": {"begin": "\\(", "end": "\\)", "patterns": [{"include": "#C1"}]},

"T1": {"match": "(b)", "captures": {"1": {"name": "2"}}},

"empty": {"match": "(?:x(?<!x))"},

"single,multiple": {"match": "[\\t-\\n\\r ]"}

}

}

Grammar 9: Merge Without Overlap Combining TextMate
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6.3 Strict Overlap Combining Test

When we introduced the overlap combining transformation, we mentioned how we can relax the structure
when combining productions. We made the lookahead of the inner sequences optional, increasing the risk
of non-determinism in the final grammar. Here we will provide several tests to illustrate that in simple
cases the relaxed grammar works equally well, while being simpler to compute.

6.3.1 Setup

We define a Rascal grammar Merge2 in Grammar 10. This grammar is converted to two TextMate grammars
– one with strict overlap combining and one without– which are then used to tokenize the inputs shown in
Table 8. This table is similar to Table 2, but also indicates whether strict or relaxed overlap combining has
been used. Note that the default mode used in other tests is the relaxed mode.

Besides checking the tokenizations according to specification, we also perform tests on input phrases
that are syntactically incorrect. For these phrases, we manually specified the expected tokenizations, pro-
vided in Table 9 in the form of syntax highlighting. These test cases illustrate that the behavior of the
resulting grammars is not identical, despite both fully retaining the specified tokenizations. Finally, we
check whether strict overlap merging requires more iterations of the shape conversion loop.

syntax Merge2 = A Merge2

| A Merge2 B Merge2

| C;

lexical A = @category ="1" "a";

lexical B = @category ="2" "b";

lexical C = @category ="3" "c";

layout Layout = [\ \t\n\r]* !>> [\ \t\n\r];

Grammar 10: Overlap Combining Of Optional Suffix

test-name grammar combining
mode text expected

tokenization passed

noSuffix Merge2 relaxed a c match "

1suffix Merge2 relaxed a c b c match "

2suffix Merge2 relaxed a a c b c b c match "

2suffixSeq Merge2 relaxed a c b a c b c match "

noSuffixStrict Merge2 strict a c match "

1suffixStrict Merge2 strict a c b c match "

2suffixStrict Merge2 strict a a c b c b c match "

2suffixSeqStrict Merge2 strict a c b a c b c match "

Table 8: Overlap Combining Of Optional Suffix Tests

6.3.2 Results

All tests passed, as illustrated in Tables 8 and 9. Additionally, converting the grammar using the strict
overlap combining mode required 3-iterations, while the relaxed version required 2-iterations and was
thus indeed slightly simpler. The difference in tokenization behavior is illustrated in tests tripleSuffix and
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test-name grammar combining
mode text expected

tokenization passed

onlySuffix Merge2 relaxed b c match "

doubleSuffix Merge2 relaxed a c b c b c match "

tripleSuffix Merge2 relaxed a c a c b c b c b c match "

onlySuffixStrict Merge2 strict b c match "

doubleSuffixStrict Merge2 strict a c b c b c match "

tripleSuffixStrict Merge2 strict a c a c b c b c b c match "

Table 9: Overlap Combining of Optional Suffix Generalization Tests

tripleSuffixStrict. We see that the strict version can correctly identify that only a single b may follow here,
and that the second one is syntactically incorrect. The relaxed version does not exhibit such behavior.
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6.4 Infinite Recursion Test

When we discussed the conversion pipeline, we noted that optional suffixes in productions could lead to
the conversion process never terminating and instead generating increasingly complex symbols. We then
provided a simple patch by detecting this type of recursion, and resolving it by relaxing such symbols. The
previous test dealt with a grammar with an optional suffix. here we verify that our patch is indeed required.

6.4.1 Setup

We try to convert Grammar 10 to a TextMate grammar, while disabling the recursion detection mechanism.
Additionally, we enable strict overlap combining mode to force the grammar to be strict enough for this to
occur. We assume that this will lead to indefinite recursion, but this is not directly detectable. Instead we
assume this process will indeed iterate indefinitely, if it does not terminate after 16 iterations. Note that the
original conversion only required 3 iterations before the recursive structure detection kicked in.

6.4.2 Results

The process does indeed not terminate before 16 iterations are reached. However, if strict mode is not
enabled the process terminates after only 2 iterations. We were not able to create a test case that iterates
indefinitely for the relaxed overlap combining mode.

6.4.3 Conclusion

We are not able to automatically verify that disabling the recursion check results in non-termination, but
have shown potential of an unreasonably large number of iterations occurring under the right circum-
stances. Therefore it is safer to keep this check enabled by default.

6.5 Exponential Merging Test

When productions exist with optional suffixes, these suffixes only become accessible when the mandatory
prefix has been encountered. This is shown in the onlySuffix test case provided in the strict overlap combin-
ing test. To achieve this, the grammar will encode what prefixes have already been encountered in the form
of a non-terminal. This means that if there are n recursive sequences with optional suffixes, there are 2n

possible combinations of what suffixes have already been encountered, and thus at least 2n corresponding
non-terminals. We will verify whether this is indeed the case based on a test.

6.5.1 Setup

We provide Grammar 11 with three different right-recursive productions with optional suffixes. The op-
tionality of suffixes is created by providing alternative productions that include the suffix as a mandatory
component. Overlap combining will merge these productions together, leading to a non-terminal sym-
bol which encodes optionality of the the suffix. We will analyze the output LCG and verify that for each
possible combination of allowed and disallowed suffixes, a corresponding non-terminal symbol is present.
This is done by checking for productions starting with a regular expression that accept the given character.
Hence for every S ⊂ b, d, f , we expect a single non-terminal symbol to exist with a production starting with
a regular expression accepting s for s ∈ S, and that does not have a single production starting with a regular
expression accepting e for e ∈ b, d, f − S.
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syntax Merge3 = A A Merge3

| A A Merge3 B Merge3

| C C Merge3

| C C Merge3 D Merge3

| E E Merge3

| E E Merge3 F Merge3

| G;

lexical A = @category ="1" "a";

lexical B = @category ="2" "b";

lexical C = @category ="3" "c";

lexical D = @category ="4" "d";

lexical E = @category ="5" "e";

lexical F = @category ="6" "f";

lexical G = @category ="7" "g";

layout Layout = [\ \t\n\r]* !>> [\ \t\n\r];

Grammar 11: Multiple Optional Suffixes

6.5.2 Results

The test passes as expected. The double non-terminals provided as prefixes in the grammar are necessary
to get conversion to behave exactly like this however. If only single non-terminals were used here, the regex
conversion would merge all productions without a prefix together into a single production. As a result, all
suffixes would also be enabled whenever one of these prefixes match. We had to add some extra complexity
to the productions to prevent this from happening. This also accurately reflects the more complex nature
of productions you would encounter in grammars of real languages. This demonstrates how the size of the
output grammar could easily become exponential depending on the exact structure of the input grammar.

6.6 Determinism Checks Test

Our conversion pipeline has a dedicated step to check whether the resulting grammar is deterministic. This
step does not affect the output grammar itself, but can warn about potential issues. We will provide some
test cases that illustrate how problematic cases are caught by this step.

6.6.1 Setup

We define a Rascal grammar for each of the possible non-deterministic behaviors: grammar ambiguity,
regex extensibility, optional closing. These three grammars are provided together in Grammar 12. We
also provide slightly modified versions of each of these grammars which fully retain their tokenizations in
Grammar 13. Once again, these grammars are converted to TextMate grammars, which are then used to
tokenize the inputs shown in Table 10. This table again lists the test case name, the grammar start symbol,
input text and specification tokenization, and whether the TextMate tokenization should be identical. Note
that for the extension test, whether the tokenization would match or not is unknown. This is the case,
because it depends on the ordering of productions, which happens arbitrarily. As such, this test will pass
regardless of outcome. It is merely listed to explicitly state the behavior to be fundamentally unknown.
Finally, Table 11 describes the errors we expect in the grammar conversion process itself.
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syntax Ambiguity = AmbiguityAlt*;

syntax AmbiguityAlt = KW1 "!" | KW2 "?";

lexical KW1 = @category ="1" "s";

lexical KW2 = @category ="2" "s";

syntax Extensions = Extension*;

syntax Extension = @category ="1" "a"

| @category ="2" "s"

| @category ="3" "as";

syntax Closings = Closing*;

syntax Closing = "(" Closing ")"

| @category ="1" ")";

layout Layout = [\ \t\n\r]* !>> [\ \t\n\r];

Grammar 12: Non-determinism

syntax NoAmbiguity = NoAmbiguityAlt*;

lexical NoAmbiguityAlt = KW1 "!" | KW2 "?";

lexical KW1 = @category ="1" "s";

lexical KW2 = @category ="2" "s";

syntax NoExtensions = NoExtension*;

syntax NoExtension = @category ="1" "a" !>> "s"

| @category ="2" "s"

| @category ="3" "as";

syntax NoClosings = NoClosing*;

syntax NoClosing = "(" NoClosing ")"

| @category ="1" "s" ")";

layout Layout = [\ \t\n\r]* !>> [\ \t\n\r];

Grammar 13: Determinism

test-name grammar text expected tokenization passed
ambiguity Ambiguity s ! s ? mismatch "

noAmbiguity NoAmbiguity s! s? match "

extension Extension as unknown "

noExtension NoExtension as match "

closing Closing ()) mismatch "

noClosing NoClosing (s) match "

Table 10: Determinism Tests
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grammar expected conversion errors passed
Ambiguity Ambiguity "

NoAmbiguity None "

Extension ExtensionOverlap "

NoExtension None "

Closing ClosingOverlap "

NoClosing None "

Table 11: identifier Conversion Tests

6.6.2 Results

All tests passed, as illustrated in Tables 10 and 11. Table 12 shows the specified tokenization and the tok-
enization received from the TextMate grammar for test cases where no match is expected.

test-name specified tokenization output tokenization
ambiguity s ! s ? s ! s ?

extension as as

closing ()) ())

Table 12: Non-Determinism Mismatching Tokenizations

6.6.3 Analysis

The reason that Ambiguity causes ambiguity NoAmbiguity does not, lies in one of the limitations of syntax
highlighters. As previously discussed, syntax highlighters perform regex searches only on a single line. Be-
cause of this the exclamation mark and question mark can not be combined into a single regular expression
if layout is allowed between them. Rascal automatically interweaves the Layout symbol into any produc-
tions of non-terminals declared as syntax. For NoAmbiguity, we instead declared the non-terminal as lexical
which prevents Rascal from interweaving the layout.

Our Extension grammar happens to be ambiguous, but similar choices can come up in more complex
grammars that are not ambiguous. Here we solved the problem by removing the ambiguity using a neg-
ative follow declaration. Finally, because any non-terminal can occur zero or more times in the output
grammar, the nested occurrence of Closing can also occur zero or more times.

Because of this, when a closing bracket is encountered, the tokenizer can not deterministically decide
whether it comes from the first or second production, and hence causes closing non-determinism.

6.7 Overlap Non-Determinism Experiment

The overlap combining technique we described is fairly simple. We know this technique has its limitations,
and we expect these limitations cause issues for constructs encountered in grammars of existing languages.
In this experiment we attempt to create a situation where this indeed causes an issue, and see whether a
manual fix to the grammar resolves this issue.

6.7.1 Setup

We define Rascal Grammar 14 with two productions with a common prefix but without a common suffix.
Additionally we define alternative Grammar 15 that specifies the same language and tokenizations. We
convert both grammars to TextMate grammars and provide some input cases to test the grammars on,
shown in Table 13. Note that the text followed by colons in these grammars, merely represent labels for
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the corresponding productions and do not affect tokenization. The first production of Exp1 is for instance
labeled group.

syntax Program1 = Exp1*

syntax Exp1 = group: "(" Exp1 ")"

| lambda: "(" {Variable ","}* ")" Lambda Exp1

| val: Variable;

lexical Lambda = @category ="keyword" "=\>";

lexical Variable = @category ="variable" Id;

lexical Id = ([a-z0-9] !<< [a-z][a-z0-9]* !>> [a-z0-9]);

layout Layout = [\ \t\n\r]* !>> [\ \t\n\r%];

Grammar 14: Overlap Non-Determinism

syntax Program2 = Exp2*

syntax Exp2 = group: "(" Exp2 ")"

| lambda: ("(" {Variable ","}* ")") Lambda Exp2

| val: Variable;

lexical Lambda = @category ="keyword" "=\>";

lexical Variable = @category ="variable" Id;

lexical Id = ([a-z0-9] !<< [a-z][a-z0-9]* !>> [a-z0-9]);

layout Layout = [\ \t\n\r]* !>> [\ \t\n\r];

Grammar 15: Overlap Non-Determinism Fixed

input-name tokenization grammar text
function Program1 (arg)=>arg

functionReturnGroup Program1 (arg)=>(arg)

functionInGroup Program1 ((arg)=>arg)

Table 13: Overlap Non-Determinism Inputs

6.7.2 Hypothesis

We expect that the conversion of Grammar 14 will generate some errors, due to not being able to balance
brackets. During the conversion, only common suffixes can be used as closing expressions to define new
scopes, therefore the lack of a common suffix means that the TextMate grammar can not keep count of how
many closing brackets can be encountered. This should be reflected in the functionInGroup test case.

On the other hand, we expect conversion of Grammar 15 to be perfect. This should be the case because
adding brackets around "(" {Variable ","}* ")" should lead to a dedicated non-terminal symbol being
created by Rascal for this sequence. During the prefix conversion step, this production will be split into two
parts: the initial sequence ending in the closing bracket, and the remainder starting at the lambda-arrow.
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This initial sequence shares the closing suffix with the group production, and hence conversion should
work perfectly.

6.7.3 Results

Both grammars were converted perfectly without any errors being generated. Accordingly, all test inputs
obtained a full precision, as described in Table 14.

input-name tokenization grammar precision
function Program1 100%

functionReturnGroup Program1 100%
functionInGroup Program1 100%

function Program2 100%
functionReturnGroup Program2 100%

functionInGroup Program2 100%

Table 14: Overlap Non-Determinism Precisions

6.7.4 Discussion

The results were better than expected. After careful consideration, there was a mistake in the our initial
Hypothesis. The conversion process does not work better than expected, but instead our assumption of
bracket counting being relevant was wrong. The resulting TextMate grammar of Grammar 14 can indeed
not keep track of how many more closing brackets are allowed, but this also is not required in order to
highlight accurately. This would only be required when the same characters are tokenized differently inside
or outside of these bracketed constructs.

Despite making a mistake in our reasoning, the insight provided by this experiment is still valuable. It
demonstrates that the conversion pipeline can often get away with creating non-ideal TextMate grammars,
as long as the described tokenizations are not massively complex. This also hints at the idea that reducing
the level of detail of tokenization in the original specification, can help with successfully converting the
grammar.

6.8 Overlap Non-Determinism With Context Experiment

In Experiment 6.7 we learned that overlap merging with distinct suffixes is not always problematic. Here
we will attempt to produce a situation where it is problematic, and see whether a simple manual fix to our
grammar solves the issue.

6.8.1 Setup

We define Rascal Grammar 16 with two productions with a common prefix but without a common suffix.
In this grammar we also add productions for defining a string with expression interpolation. This struc-
ture will force some type of bracket counting to be necessary for correct tokenizations. Additionally we
define alternative Grammar 17 that specifies the same language and tokenizations. We again convert both
grammars to TextMate grammars and provide some input cases to test the grammars on, shown in Table
15.
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syntax Program1 = Exp1B*

syntax Exp1B = group: "(" Exp1B ")"

| lambda: "(" {Variable ","}* ")" Lambda Exp1B

| @category ="string" str: "\"" Char* "\""

| var: Variable;

lexical Char = char: ![\\\"$]

| dollarChar: "$" !>> "("

| @category ="constant" escape: "\\"![]

| @category ="embedded" embedded: "$(" Layout Exp1B Layout

")";↪→

lexical Lambda = @category ="keyword" "=\>";

lexical Variable = @category ="variable" Id;

lexical Id = ([a-z0-9] !<< [a-z][a-z0-9]* !>> [a-z0-9]);

layout Layout = [\ \t\n\r]* !>> [\ \t\n\r];

Grammar 16: Overlap Non-Determinism With String

syntax Program2 = Exp2B*

syntax Exp2B = group: "(" Exp2B ")"

| lambda: "(" {Variable ","}* ")" Lambda Exp2B

| @category ="string" str: "\"" Char* "\""

| var: Variable;

lexical Char = char: ![\\\"$]

| dollarChar: "$" !>> "("

| @category ="constant" escape: "\\"![]

| @category ="embedded" embedded: "$(" Layout Exp2B Layout

")";↪→

lexical Lambda = @category ="keyword" "=\>";

lexical Variable = @category ="variable" Id;

lexical Id = ([a-z0-9] !<< [a-z][a-z0-9]* !>> [a-z0-9]);

layout Layout = [\ \t\n\r]* !>> [\ \t\n\r];

Grammar 17: Overlap Non-Determinism With String Fixed

input-name tokenization grammar text
function Program1B (arg)=>arg

functionReturnGroup Program1B (arg)=>(arg)

functionInGroup Program1B ((arg)=>arg)

variableInString Program1B "text $(var) okay"

groupedVariableInString Program1B "text $((var)) okay"

functionInString Program1B "text $((arg)=>arg) okay"

Table 15: Overlap Non-Determinism With String Inputs
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6.8.2 Hypothesis

We expect that conversion of Grammar 16 results in an error, due to the created grammar not being able
to determine when a string continues after an interpolated expression. As a result, we expect tokenization
errors for inputs groupedVariableInString and functionInString. On the other hand, we expect Grammar 17 to
be converted without generating any errors. The same reasoning here applies as for Experiment 6.7, where
adding brackets around a part of the production causes the production to be split into 2 parts during the
conversion process. This allows the arguments sequence and the group production to be combined without
any issues.

6.8.3 Results

Conversion of Grammar 16 yields a closing overlap error, while conversion of Grammar 17 yields no er-
rors. Table 16 shows the precisions of the provided input phrases. Table 17 shows the exact non-perfect
tokenizations. Additionally, we find that the entire conversion of Grammar 16 requires 28 seconds, while
conversion of Grammar 17 requires only 9 seconds.

input-name tokenization grammar precision
function Program1B 100%

functionReturnGroup Program1B 100%
functionInGroup Program1B 100%
variableInString Program1B 100%

groupedVariableInString Program1B 83.33% (5 out of 6 groups)
functionInString Program1B 62.50% (5 out of 8 groups)

function Program2B 100%
functionReturnGroup Program2B 100%

functionInGroup Program2B 100%
variableInString Program2B 100%

groupedVariableInString Program2B 100%
functionInString Program2B 100%

Table 16: Overlap Non-Determinism With String Precisions

input-name specified tokenization output tokenization
groupedVariableInString "text $((var)) okay" "text $((var)) okay"

functionInString "text $((arg)=>arg) okay" "text $((arg)=>arg) okay"

Table 17: Overlap Non-Determinism With String Mismatching Tokenizations

6.8.4 Discussion

The lack of bracket counting abilities indeed affects the grammars ability to tokenize properly in this sit-
uation. This was correctly identified by the conversion process and warned about. The modification to
the grammar that we expected to resolve this issue, indeed resolved the issue. Additionally, we find that
grammar complexity decreases by applying this fix. This makes the fix desireable, regardless of whether it
affects correctness.

6.9 Type Recognition Experiment

Several languages such as Java and Rascal specify type information before function or variable names. It
would be nice to have syntax highlighting that differentiates between types and variables based on this
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positional information. This is trivial for primitive types, but becomes more complex when nested type
parameters are allowed. We will test whether our conversion pipeline can handle these cases.

6.9.1 Setup

We define two Rascal grammars, Grammar 18 defining assignment syntax with simple types, and Grammar
19 defining assignment syntax with recursive types. We convert both grammars to TextMate grammars and
provide some input cases to test the grammars on, shown in Table 18. For the conversion of Grammar 19
positive lookaheads are generated foreach regular expression. In other tests and experiments we generated
negative lookaheads of alphabetic characters since these are usually adequate, but here we may need to
provide more information in order to prevent non-determinism in the final grammar. For this grammar
we generate lookaheads that look two regular expressions ahead, to increase chances of the final grammar
being deterministic even further.

Note that in Grammar 19 the layout expression is split into two parts. Together these parts define an
equivalent language as the layout present in Grammar 18. We separated these, because lookaheads can not
look past newline expressions, but in order to tell variables and types apart we have to look past optional
whitespace. We know an identifier must be a variable if it is followed by an equality character. Similarly we
know an identifier must be a type if it is followed by another identifier, or an array bracket or type parameter
bracket. We know conversion can not be perfect, since it is possible that these lookahead symbols occur on
the next line. However by separating the whitespace that allows for newlines and the one that does not, it
might be possible to create lookaheads that do work as intended as long as all characters are on the same
line.

syntax Program3 = Stmt*;

syntax Stmt = Type Variable "=" Exp ";";

syntax Exp = \brackets: "(" Exp ")"

| var: Variable;

syntax Type = \type: TypeVariable

| @category ="primitive" number: "number"

| @category ="primitive" string: "string"

| @category ="primitive" boolean: "bool";

lexical Variable = @category ="variable" Id;

lexical TypeVariable = @category ="type" Id;

keyword KW = "bool"|"number"|"string";

lexical Id = ([a-z0-9] !<< [a-z][a-z0-9]* !>> [a-z0-9]) \ KW;

layout Layout = [\ \t\n\r]* !>> [\ \t\n\r];

Grammar 18: Typed Assignment
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syntax Program4 = Stmt*;

syntax Stmt = Type Variable "=" Exp ";";

syntax Exp = \brackets: "(" Exp ")"

| var: Variable;

syntax Type = \type: TypeVariable

| ar: Type "[]"

| apply: Type "\<" {Type ","}+ "\>"

| @category ="primitive" number: "number"

| @category ="primitive" string: "string"

| @category ="primitive" boolean: "bool";

lexical Variable = @category ="variable" Id;

lexical TypeVariable = @category ="type" Id;

keyword KW = "bool"|"number"|"string";

lexical Id = ([a-z0-9] !<< [a-z][a-z0-9]* !>> [a-z0-9]) \ KW;

layout Layout = withoutNewline: [\ \t]* !>> [\ \t\n\r]

| newline: [\ \t]*[\n\r][\ \t\n\r]* !>> [\ \t\n\r];

Grammar 19: Complex Typed Assignment

input-name tokenization grammar text
primitive Program4 bool variable = value;

type Program4 mytype variable = value;

complexType Program4 mytype<number[]> variable = value;

multiline Program4 mytype

variable

= value;

Table 18: Typed Assignment Inputs

6.9.2 Hypothesis

We expect Grammar 18 to convert perfectly, and thus also tokenize perfectly for supported inputs. Since
Type non-terminal symbol of Grammar 19 can not be converted to a single regular expression, we expect
Grammar 19 to generate errors in the conversion process. When Type is not converted to a regular ex-
pression, the assignment production will be split into two parts during the prefix conversion step of the
conversion pipeline. This removes a lot of our structural data from the grammar. But by providing a suffi-
ciently large lookahead in the regular expression before this structure was lost, variables and type should
still be differentiable as long as the entire assignment appears on the same line. For this reason we expect
Grammar 19 to tokenize all inputs perfectly, except for the multiline input that provides no differentiable
lookahead context.

6.9.3 Results

Grammar 18 is converted without any errors, while conversion of Grammar 19 results in several errors. Ta-
ble 19 shows the precisions of the provided input phrases. Additionally, we find that the entire conversion
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of Grammar 18 requires 14 seconds, while conversion of Grammar 19 requires around 29 minutes.

input-name tokenization grammar precision
primitive Program3 100%

type Program3 100%
primitive Program4 100%

type Program4 100%
complexType Program4 100%

multiline Program4 100%

Table 19: Typed Assignment Precisions

6.9.4 Discussion

Grammar 18 could easily be converted to an accurate TextMate grammar as expected. Meanwhile con-
verting Grammar 19 to a TextMate grammar results in errors, as was expected. Despite these errors, all
inputs were tokenized correctly. This contradicts our hypothesis, which expected the multiline input to be
tokenized incorrectly. After manual analysis of the resulting TextMate grammar, we found that the arbi-
trary production ordering of the grammar happened to work out perfectly by coincidence. In the initial
state, type matching takes precedence over variable matching. When this match is performed, the system
switches state (in order to now also allow type suffixes), where variable matching happens to take prece-
dence over type matching. After performing more tests, we do find that this coincidental preservation of
the structure does not go past a single assignment. Table 20 shows an additional input case with non-perfect
tokenization.

grammar specified tokenization output tokenization
Program4 mytype

variable

= value;

mytype

variable

= value;

mytype

variable

= value;

mytype

variable

= value;

Table 20: Typed Assignment Mismatching Tokenizations

6.10 Type Recognition Restructuring Experiment

In Experiment 6.9 we saw that with a sufficiently large lookahead, our typed assignment grammar could
tokenize fairly well despite not being perfect. Several sacrifices had to be made to achieve this however.
The added regular expression lookahead complexity as well as the non-deterministic nature of the grammar
lead to the conversion pipeline requiring 29 minutes to finish, and no correctness guarantees could be given
for the resulting TextMate grammar. Instead of relying on lookaheads, restructuring the grammar itself may
yield a better tokenizer.

6.10.1 Setup

We define Rascal Grammar 20 defining assignment syntax with simple types. This grammar is a manual
rewrite of Grammar 19, specifying the same language using a different structure. We convert this grammar
to a TextMate grammar and use this on the inputs shown in Table 18. For this conversion, we use the default
generated negative lookaheads that are also used elsewhere.
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syntax Program4B = Stmt*;

syntax Stmt = TypeWord TypeSuffix Variable "=" Exp ";";

syntax Exp = bracketss: "(" Exp ")"

| var: Variable;

syntax Type = TypeWord TypeSuffix;

syntax TypeSuffix = ar: "[]" TypeSuffix

| apply: "\<" {Type ","}+ "\>" TypeSuffix

| ;

syntax TypeWord = \type: TypeVariable

| @category ="primitive" number: "number"

| @category ="primitive" string: "string"

| @category ="primitive" boolean: "bool";

lexical Variable = @category ="variable" Id;

lexical TypeVariable = @category ="type" Id;

keyword KW = "bool"|"number"|"string";

lexical Id = ([a-z0-9] !<< [a-z][a-z0-9]* !>> [a-z0-9]) \ KW;

layout Layout = [\ \t\n\r]* !>> [\ \t\n\r];

Grammar 20: Complex Typed Assignment Restructured

6.10.2 Hypothesis

We expect Grammar 20 to be converted to a TextMate grammar without issues. Accordingly, we expect all
inputs to tokenize perfectly according to specification. The reason we expect conversion of Grammar 20
to be better than for Grammar 19 is that the grammar restructure ensures that Stmt starts with a regular
expression. The non-terminal symbol TypeWord can be converted to a single regular expression, while Type
can not be.

6.10.3 Results

Conversion of Grammar 20 does not generate any errors. Table 21 shows that all input phrases are accu-
rately tokenized. The conversion of this grammar took 22 seconds.

input-name tokenization grammar precision
primitive Program4B 100%

type Program4B 100%
complexType Program4B 100%

multiline Program4B 100%

Table 21: Typed Assignment Restructured Precisions

6.10.4 Discussion

The restructure of the grammar made the conversion process work properly as was expected. This does
however show that the conversion pipeline has a lot of room for improvement, since we would like trans-
formations like these to be automated. This experiment shows that the desired tokenization described by
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Grammar 19 can be achieved perfectly by a TextMate grammar, but our conversion pipeline is not able to
obtain such a grammar on its own.

6.11 Scripting Grammar Experiment

We have seen that conversion can work quite well for rudimentary grammars, and also learned what type
structures to look out for. We can not try to construct a simple scripting language grammar and see how
well the conversion pipeline deals with this grammar.

6.11.1 Setup

We define a Rascal grammar – here split up into Grammars 21 and 22 – which specifies syntax for a simple
scripting language. This grammar is created specifically to be handled well by the conversion pipeline
and hence demonstrates a best-case scenario. We convert this grammar to a TextMate grammar and use
this on the inputs shown in Table 22. Additionally we will generate a Pygments grammar, such that we
can perform syntax highlighting directly from within the LATEX source code from which this document is
generated. Fragment 6 contains the code used for using the Pygments grammar from within LATEX .
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syntax Program5 = Stmt*;

syntax Stmt = forIn: For "(" Variable In Exp ")" Stmt

| forIter: For "(" Exp ";" Exp ";" Exp ")" Stmt

| iff: If "(" Exp ")" Stmt

| iffElse: If "(" Exp ")" Stmt Else Stmt

| "{" Stmt* "}"

| exp: Exp ";"

| throww: Throw Exp ";"

| tryCatch: Try Stmt Catch "(" Variable ")" Stmt

| tryFinally: Try Stmt Finally Stmt

| tryCatchFinally: Try Stmt Catch "(" Variable ")" Stmt Finally Stmt

| ret: Return ";"

| ret: Return Exp ";";

syntax Exp = var: Variable

| string: Str

| booll: Bool

| nat: Natural

| call: Exp "(" {Exp ","}* ")"

| func: Function "(" {Parameter ","}* ")" "{" Stmt* "}"

| @categoryTerm ="keyword.operator" lambda: ("(" {Variable ","}* ")") "=\>" (("{" Stmt*

"}") | Exp)↪→

| @categoryTerm ="variable.parameter" index: Exp "[" Exp "]"

| @categoryTerm ="variable.parameter" slice: Exp "[" Exp RangeSep Exp"]"

| @categoryTerm ="variable.parameter" listt: "[" {Exp ","}* "]"

| brac: "(" Exp ")"

> @categoryTerm ="keyword.operator" not: "!" Exp

> left (

@categoryTerm ="keyword.operator" divide: Exp "/" Exp

| @categoryTerm ="keyword.operator" mult: Exp "*" Exp

)

> left (

@categoryTerm ="keyword.operator" subt: Exp "-" Exp

| @categoryTerm ="keyword.operator" add: Exp "+" Exp

)

> left (

@categoryTerm ="keyword.operator" equals: Exp "==" Exp

| @categoryTerm ="keyword.operator" smaller: Exp "\<" Exp

| @categoryTerm ="keyword.operator" greater: Exp "\>" Exp

| @categoryTerm ="keyword.operator" smallerEq: Exp "\<=" Exp

| @categoryTerm ="keyword.operator" greaterEq: Exp "\>=" Exp

)

> left (

@categoryTerm ="keyword.operator" or: Exp "||" Exp

| @categoryTerm ="keyword.operator" and: Exp "&&" Exp

| @categoryTerm ="keyword.operator" inn: Exp "in" Exp

)

> left (

@categoryTerm ="keyword.operator" assign: Exp "=" Exp

| @categoryTerm ="keyword.operator" assignPlus: Exp "+=" Exp

| @categoryTerm ="keyword.operator" assignSubt: Exp "-=" Exp

);

Grammar 21: Scripting Syntax
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lexical RangeSep = @categoryTerm ="keyword.operator" "..";

lexical If = @categoryTerm ="keyword" [a-zA-Z0-9] !<< "if";

lexical For = @categoryTerm ="keyword" [a-zA-Z0-9] !<< "for";

lexical In = @categoryTerm ="keyword.operator" "in";

lexical Else = @categoryTerm ="keyword" "else" !>> [a-zA-Z0-9];

lexical Return = @categoryTerm ="keyword" [a-zA-Z0-9] !<< "return";

lexical Function = @categoryTerm ="entity.name.function" [a-zA-Z0-9] !<< "function";

lexical Throw = @categoryTerm ="keyword" [a-zA-Z0-9] !<< "throw";

lexical Try = @categoryTerm ="keyword" [a-zA-Z0-9] !<< "try";

lexical Catch = @categoryTerm ="keyword" "catch";

lexical Finally = @categoryTerm ="keyword" "finally";

lexical Def = @category ="variable.parameter" Id;

lexical Variable = @category ="variable" Id;

lexical Parameter = @category ="variable.parameter" Id;

keyword KW = "for"|"in"|"if"|"true"|"false"|"else"|"return"|"function"|"throw"|"catch"|"finally"|"try";

lexical Id = ([a-zA-Z0-9] !<< [a-zA-Z][a-zA-Z0-9]* !>> [a-zA-Z0-9]) \ KW;

lexical Natural = @category ="constant.numeric" [a-zA-Z0-9] !<< [0-9]+ !>> [a-zA-Z0-9];

lexical Bool = @category ="constant.other" [a-zA-Z0-9] !<< ("true"|"false") !>> [a-zA-Z0-9];

lexical Str = @category ="string.template" "\"" Char* "\"";

lexical Char = char: ![\\\"$]

| dollarChar: "$" !>> "{"

| @categoryTerm ="constant.character.escape" escape: "\\"![]

| @category ="meta.embedded.line" @categoryTerm ="punctuation.definition.template"

embedded: "${" Layout Exp Layout "}";↪→

layout Layout = WhitespaceAndComment* !>> [\ \t\n\r%];

lexical WhitespaceAndComment = [\ \t\n\r]

| @category ="comment.block" "%" ![%]+ "%"

| @category ="comment.line" "%%" ![\n]* $;

Grammar 22: Scripting Lexical

\begin{fragment}

\caption{Scripting Language Fragment}

\label{fragment:scripting}

\begin{minted}{Highlighting/Highlighters/GrammarLexers.py:SimpleRealisticLexer

-x}↪→

fib = (i) => {

if(i<=1) return i;

else return fib(i-1) + fib(i-2);

};

%% Output the first 10 fibonacci numbers

for(i=0; i<10; i+=1)

println("fib of ${i} is ${fib(i)}");
\end{minted}

\end{fragment}

Fragment 6: Scripting Language Fragment Source

6.11.2 Hypothesis

We expect Grammar 21 to be converted to a TextMate grammar without issues. Accordingly, we expect all
inputs to tokenize perfectly according to specification. The conversion to a Pygments grammar is expected
to generate errors, since our grammar does not ensure every scope consists of at most one category. We will
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input-name tokenization
grammar text

assignment Program5 something =

"hello${true==false}" * 5;

conditionals Program5 if(something==true)

%% Some comment

something = 45*3;

else

stuff = (45 + 5) * true;

loops Program5 for(i=0; i<10; i+=2)

for(smth in somethingelse)

stuff = % inline comment % "${smth} with

${i}";↪→

arrays Program5 something = [true, "false", 12*4];

somethingElse = something[okay()];

thirdItem = something[1..5];

functions Program5 myFunction = function(val1, val2, val3) {

return val1;

};

something = myFunction(45, myOtherFunction(false &&

true), "a string ${and(functio)}");↪→

myFunction2 = (something) => 3 * something;

myFunction3 = (val1, val2) => {

val1 = val1 * 3;

return val1 + val2;

};

tryCatch Program5 try { something(45); } catch(error) { println(error);

}↪→

try { something(45); } finally { println("done"); }

try {

something(45);

} catch(error) {

println(error);

} finally {

println("done");

}

Table 22: Scripting Inputs

simply keep only the outermost categories, which should still provide high-quality syntax highlighting.

6.11.3 Results

Table 23 shows all precisions for the generated TextMate grammar. All inputs were tokenized with full pre-
cision. Fragment 7 shows syntax highlighting according to the Pygments syntax highlighter. The conver-
sion to TextMate did not generate any errors, but conversion to the Pygments did result in disallowedNested-
Scopes errors as predicted. The conversion process to both output grammars took 7 minutes and 50 seconds.
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input-name tokenization grammar precision
assignment Program5 100%
conditionals Program5 100%

loops Program5 100%
arrays Program5 100%

functions Program5 100%
tryCatch Program5 100%

Table 23: Scripting Language Precisions

fib = (i) => {

if(i<=1) return i;

else return fib(i-1) + fib(i-2);

};

%% Output the first 10 fibonacci numbers

for(i=0; i<10; i+=1)

println("fib of ${i} is ${fib(i)}");

Fragment 7: Scripting Language Fragment

6.11.4 Discussion

This experiment demonstrates that the conversion pipeline works well for sufficiently simple grammars.
Targetting multiple formats also behaves as expected. No proper precision tests have been performed for
Pygments, Monarch, or Ace grammars, but based on visuals it appears to work as intended.
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7 Discussion and Conclusion

In this thesis we tried to solve the practical problem of having to maintain multiple grammars for the same
formal language. More specifically, we considered the case of having to maintain one leading context-
free grammar, and multiple lexing grammars that are used to provide syntax highlighting in IDEs. The
proposed solution to this problem is to augment CFGs with tokenization data, and derive lexing grammars
in industry formats from this.

Towards this goal, we defined several instrumental research questions, each of which was discussed in
this paper. We started by answering our first question:

RQ 1.1: What are the capabilities and limititions of syntax highlighters?

The lexers TextMate, Monarch, Ace, and Pygments were chosen as targets in order to cover a range of
application domains. Together, these lexers cover uses in IDEs, embedded web-editors, and static syntax
highlighting for documentation. We found that TextMate grammars are fundamentally different from the
other three, having a more declarative nature and allowing scopes – sequences of categories – to be assigned
to each character. In contrast, the grammars of the other lexers reveal more information about how the lexer
internally works, by means of their push and pop terminology. These grammars can only assign a single
category to each character, but give more freedom in how the internal stack is manipulated. Because of
this, the expressivity of these two lexer types is incomparable. We chose to use TextMate as our primary
target, which provides the largest restrictions on the structures can be matched. When deriving any of
the other three grammar formats, scopes have to be collapsed to a single category, which could eliminate
some information if the specification grammar does not ensure every scope already consists of exactly one
category. Apart from this, mapping a TextMate grammar to any of the other three grammar formats is
straight-forward. After this, we moved to the second question:

RQ 1.2: What augmentations can be made to CFGs to allow for specification of syntax highlighting
concerns?

We defined a custom CFG format inspired by Rascal’s grammar format. This format is overall simpler than
Rascal’s format, but provides support for more nuanced scope assignments in productions. We call gram-
mars in this format CGs. In order to support this format, we defined a model for regular expressions that
supports positive and negative lookarounds, subtraction, and tag assignments. A corresponding automa-
ton format and conversion scheme was introduced, that allows for reasoning about the language described
by a given regular expression. This chapter also covered our next question:

RQ 1.3: What form of grammar could easily be mapped to various LG formats?

This was done by introducing a restricted form of CGs – called a LCG – which allows to intuitively be
mapped to TextMate grammars. Finally we answered our last instrumental research question:

RQ 1.4: What tokenization preserving transformations can be applied to obtain a LG?

A conversion pipeline was introduced that operates on CG to obtain a LCG. This pipeline attempts to
obtain a LCG that describes a language that is a superset of the original CG. Additionally, it attempts to
make the resulting LCG is deterministic. In case this is successful, all tokenizations obtained from the LCG
are guaranteed to be identical to those of the specification CG. The pipeline keeps track of errors, and if
no errors are generated, it ensures all tokenizations are preserved. If errors are generated, tokenizations
may or may not be preserved. This conversion process consists of 4 major parts. The first step attempts to
convert grammar constructs into regular expressions, yielding a grammar with an identical language but
fewer production components. The second step adds some lookaheads to all regular expressions, increasing
the chances of the final grammar to be deterministic. The third step relaxes the grammar in a way that
ensures that every production starts with a regular expression. The final and most important step derives a
new grammar from the original grammar with the desired LCG shape. This is done by defining new non-
terminal symbols based on non-terminals from the original grammar, to which rewrite rules are applied that
ensure the correct structure is reached. After a LCG is obtained, a mapping step is performed to any of the
four target grammar formats. For this mapping, two intermediate grammar formats are used to represent
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the different lexing grammar architectures. This process also has to correct for some small discrepancies
between the final LCG and the exact LG formats. Finally, we attempted to answer our primary research
question:

RQ 1: Can a static grammar transformation pipeline effectively be used to derive a CFG and a LG from
an augmented CFG?

This was done based on some experiments on our conversion pipeline. It however came in the form of
hand-crafted test-cases, used to illustrate the capabilities and limitations of this approach. This revealed
one major limitation of the overlap combining technique, which prevents this pipeline in its current state to
be used for many existing grammars.

7.1 Contributions

This thesis explored a practical topic for which little formal research exists so far. Because of this, we
touched on various topics that all play a role in reaching the goal of deriving lexing grammars. We provided
the following contributions:

• Syntax, semantics, and tools surrounding regular languages with tags and contexts in Section 3.1:

– The notion of expressing languages with an alphabet Σ, with tag universe T, and contexts as a
subset of the triple (Σ×P(T))∗ × (Σ×P(T))∗ × (Σ×P(T))∗.

– Syntax, semantics, and transformations (in Section 4) for TLREs.

– Definitions, semantics, and operations for TCNFAs.

– A mapping from TLREs to TCNFAs expressing identical languages.

– Rascal implementations of all these concepts.

• Syntax and semantics of various grammar models in Sections 3.2 and 4.5:

– Syntax and semantics of CGs, the subset of LCGs and choice-free LCGs.

– Syntax and semantics of Scope grammars, modeling TextMate grammars.

– Syntax and semantics of PDA grammars, modeling Monarch, Ace, and Pygments grammars.

• A conversion pipeline from CFGs to TextMate, Monarch, Ace, and Pygments grammars in Chapters
3.2, 5, and 6:

– Various rewrite rules on CGs to obtain LCGs.

– A check on LCG to determine whether it is free of choices.

– Mapping from LCG to Scope grammars and PDA grammars, and in turn TextMate, Monarch,
Ace, and Pygments grammars.

– Conjectures relating to the completeness and soundness of the conversion pipeline.

– A Rascal implementation of this complete pipeline.

– A testing and experimentation procedure to verify this pipeline.

• A Rascal value exploration tool described in Section 5.1.

7.2 Limitations

We have shown that the conversion approach has potential, but were not able to adequately answer our
primary research question: can a static grammar transformation pipeline effectively be used to derive a CFG
and a LG from an augmented CFG? To answer this question negatively, a strong argument would have to
be found as to why this would not be possible. We instead provided some evidence towards this being
possible, but were not able to refine the approach enough to make it adequately handle CFG of existing
languages. We identified three major limitations with the current approach:
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• Prefix conversion removes structural data

• Consecutive non-terminal combining removes structural data

• Overlap combining can lead to exponential blow-up

The first two of these limitations are both forms of grammar relaxation, which might lead to non-determinism
in the final grammar. There are cases where this leads to non-determinism even though an adequate deter-
ministic LCG does exist. These problems are relatively minor however, since they do not prevent creation
of LGs, only reduce their quality. The last limitation is however a major one. Such exponential blow-up can
cause the entire conversion to not finish within a reasonable amount of time, making the algorithm useless
in these cases.

Besides limitations with the conversion pipeline itself, there are also limitations regarding the applica-
bility of our regular expression formalism in other domains. As we described before, our notion of tags
does not fully reflect the behavior of capture groups within existing regular expression engines. Use of this
formalism to analyze regular expressions within existing software is limited to a subset of all possible reg-
ular expressions. Only for regular expressions without optional captures or repeated captures, our model
properly reflects the semantics of regular expression engines. We do however believe that many real-world
expressions do belong to this class.

Even though the results from this research were not perfect, the limitations we discovered are not nec-
essarily fundamental shortcomings. With more research, these problems might get solved. We have several
ideas for how to achieve this, which we will discuss in the next section.

7.3 Future Directions

There are many directions that this research can be expanded on. Most trivially, the open proof obligations
could be addressed, and the discussed limitations could be resolved.

One possible way of improving prefix conversion, is to perform merging of productions instead. When
encountering a production A → B α, every productions of B could be merged with the suffix α when
copying it. This keeps more structural information in the grammar, and might prevent non-determinism
created by our current more relaxed transformation. Similar schemes could also be explored for making
consecutive non-terminal combining retain more structural information. One danger of retaining more
information however, is that it could result in larger grammars, including possibility of exponential blow-
up. It is worth researching this in more depth.

Overlap combining causes several distinct problems. The problem related to exponential blow-up due
to optional suffixes could be solved by relaxing these sequences at an earlier stage assuming this relaxation
does not cause non-determinism. The difficulty lies in predicting whether any such relaxation would cause
determinism later in the conversion process or not. Heuristics based on existing languages could be used for
this, or more clever analytical techniques could be explored. Additionally, more clever overlap combining
techniques could be explored all-together, since this step is amongst the most important steps for deriving
an accurate tokenizer.

Apart from solving the limitations of the described approach, there is also a lot of room for expanding on
it. After the limitations have been decreased, real world performance of the approach should be analyzed.
This involves augmenting existing CFGs with tokenization data, and trying to use the conversion pipeline
to obtain corresponding LGs. Assuming this conversion is not fully accurate, one could investigate the real-
world accuracy of a grammar using a large sample set of real source-code files. Besides measuring accuracy,
it would also be worth developing the other measures we vaguely touched upon. Especially robustness is
relevant for syntax-highlighters used in IDEs, since code is often in an invalid state while typing.

One could also explore a different lexing grammar target. We decided to accept the limitations imposed
by TextMate, but in cases where TextMate grammars are of no importance, better LCG could be derived.

As mentioned before, we believe that our regular expression model could promise useful outside this
research. The mismatch between our tag system and capture groups of regular expression engines does
however limit applicability. Therefore it might be worth investigating an alternative way of encoding cap-
ture groups in languages and NFAs. In earlier stages of this research, we already briefly explored the idea
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of using boundary tokens in the language to specify capture groups. This is similar to how boundary to-
kens are used to separate the prefix, main match, and suffix. We dropped this idea in favor of tags, due to
tags being a better fit for our specific purpose, and seemingly easier to work with. The main difficulty we
encountered with using boundary tokens, is that their ordering is difficult to deal with in the NFA theory.
For instance if two capture groups are directly nested, always capturing the same matches, the ordering of
their boundary tokens in the described language becomes irrelevant. A regular expression model should
adequately capture this. This is something that we had trouble with, but a simple theory around the idea
of boundary tokens might exist nevertheless, and is worth exploring further.

Besides improving our regular expression model, we believe the current version can already be useful
for several applications. As discussed earlier, it might be of use for automated analysis and transformations,
but it might also prove useful for creating linear time regex engine matchers that support lookarounds. The
Rust language uses a regular expression engine that gives linear time searching guarantees, but sacrifices
the lookaround feature to achieve this. Our regular expression model and its corresponding automata,
might prove useful for facilitating efficient searches that do support lookarounds. This is something that
has not been explored in our research at all, and thus might not be feasible, but the existence of TCDFAs
hints at possible linear time use-cases.

Overall, many of the explored topics could be expanded upon and even possibly find uses in other
applications.

7.4 Conclusion

In conclusion, this thesis explored the idea of deriving lexing grammars from context-free grammars aug-
mented with tokenization data. This was done by introducing a formal conversion grammar model to
operate on, together with a formal regular expression model that supports lookarounds and tags. We in-
troduced a grammar transformation pipeline that operates on conversion grammars, resulting in a final
conversion grammar form that closely resembles the structure of TextMate grammars. This grammar is
then mapped to the target lexing grammars. This conversion pipeline is not able to always guarantee that
the tokenization described by the specification conversion grammar is identical to the one described by
the output grammar for all inputs. However, based on Conjectures 2 and 3 it does guarantee that if all
conditions are met (and thus no errors are generated), all tokenizations are fully retained.

We described the concepts used to achieve this, and implemented them in Rascal. This implementation
allowed us to perform several experiments, from which various limitations were found. We have also
shown that despite these limitations, the transformation pipeline can convert some simple – yet realistic –
grammars with full precision. Finally we discussed these shortcomings, and provided several suggestions
that might remedy these. We believe that additional research will yield a pipeline that achieves our goal
and fully automatically generates lexing grammars for any new language one may develop.
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Acronyms Glossary

Glossary

Ace is a embeddable code editor written in JavaScript. It serves as the primary editor for the Cloud9 IDE.
4, 5, 10, 11, 48, 57, 60, 62, 91, 92, 93

alphanumeric is a term used to describe a combination of alphabetic and numeric characters. 2

Github is a cloud-based version control service. 60, 63

IntelliJ IDEA is a cross-platform IDE, focused on java development. 1

Java is a general-purpose programming language with an object oriented paradigm focusing on cross-
platform usage. 82

JavaScript is the default programming language used in the front-end of websites. 6, 8, 10, 11, 57, 97, 98

Minted is a LaTeX package that uses Pygments for syntax highlighting of code fragments in LaTeX. 5

Monaco is a texteditor used by vscode. 5

Monarch is a lexer used by monaco for syntax highlighting. 4, 5, 8, 10, 11, 48, 57, 60, 62, 91, 92, 93

Node.js is a JavaScript runtime that allows JavaScript to be used outside an web browser. 62

Pygments is a syntax highlighter written in python, that supports various output formats including LaTeX.
4, 5, 11, 48, 56, 57, 60, 62, 87, 89, 90, 91, 92, 93, 97

Python is a programming language used by many engineers, with a focus on data processing. 11, 56

Rascal is a meta-programming language. 2, 3, 4, 13, 28, 29, 52, 58, 60, 62, 63, 66, 69, 73, 76, 78, 79, 80, 82, 83,
85, 87, 92, 93, 95, 105, 111

Rust is a general-purpose programming language that emphasizes performance and type safety. 95

Sublime Text is a cross-platform code editor. 1, 5

TextMate is a text editor for macOS with various language features. 1, 4, 5, 6, 8, 9, 11, 12, 28, 48, 53, 60, 62,
66, 68, 69, 73, 75, 76, 78, 79, 80, 83, 85, 86, 87, 89, 90, 92, 93, 94, 95

tree-sitter is a parser generator tool, which has first-party syntax highlighting support. 1, 3

TypeScript is a superset of JavaScript that adds a static type checking system and compiles down to
JavaScript. 62

Acronyms

API Application Programming Interface. 3

CFG Context-free Grammar. 1, 2, 3, 4, 6, 8, 13, 25, 26, 27, 33, 46, 58, 65, 66, 92, 93, 94

CG Conversion Grammar. 3, 4, 13, 25, 26, 27, 28, 29, 31, 39, 48, 58, 62, 63, 92, 93

CSS Cascading Style Sheets. 8, 10

DFA Deterministic Finite Automaton. 17, 18, 19, 111, 112, 113
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DPDA Deterministic Pushdown Automaton. 9, 10, 11, 12

IDE Integrated Development Environment. 1, 3, 5, 92, 94, 97

JSON JavaScript Object Notation. 6, 7, 9, 56, 57, 68

LCG Lexing Conversion Grammar. 4, 29, 31, 32, 38, 39, 46, 47, 48, 50, 51, 53, 55, 56, 58, 60, 69, 75, 92, 93, 94

LG Lexing Grammar. 1, 2, 3, 4, 7, 13, 29, 31, 32, 36, 48, 49, 59, 65, 66, 92, 93, 94

NFA Non-deterministic Finite Automaton. 3, 17, 18, 19, 47, 48, 94, 95

PDA Pushdown Automaton. 4, 31, 48, 53, 54, 55, 56, 57, 93

TCDFA Tagged Contextualized Deterministic Finite Automaton. 18, 19, 24, 48, 95, 107, 110, 111, 112, 113

TCNFA Tagged Contextualized Non-deterministic Finite Automaton. 3, 18, 19, 20, 21, 24, 35, 36, 40, 41, 42,
43, 48, 52, 58, 60, 63, 93, 99, 100, 105, 106, 107, 110, 111, 112, 113

TLRE Tagged Lookaround Regular Expressions. 3, 93

VSCode Visual Studio Code. 1, 3, 5, 62
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Appendix

A Complete TCNFA conversion

This appendix contains all required definitions for inductively obtaining a TCNFA from a given regular
expression. First we will briefly discuss the concept behind iteration TCNFAs representing the Kleene
closure of a TCNFA, as well as negative lookarounds, and finally we will list all definitions.

For the remainder of this chapter, let r1 and r2 be two regular expressions, with their corresponding
TCNFAs:

• (Qp
1 , Qw

1 , Qs
1, Σ, T, R1, i1, F1) = TCNFA(r1)

• (Qp
2 , Qw

2 , Qs
2, Σ, T, R2, i2, F2) = TCNFA(r2)

Concatenation and lookaround TCNFAs are constructed by creating a product automaton of both ar-
guments, and using the match-start and match-end transitions to synchronize them. We could consider
TCNFA(r+1 ) to be the infinite alternation of all possible length concatenations: TCNFA(r+1 ) =
TCNFA(r1+r1r1+r1r1r1+ · · · ). When considering a single option from these alternations, the correspond-
ing TCNFA is constructed as the concatenation of n copies of r1 for some constant n. We can call the
corresponding TCNFA a n-concatenation automaton. This means that every state in a n-concatenation
automaton is essentially a n-tuple consisting of n states of TCNFA(r1). In these states, the exact order-
ing of elements is irrelevant, only what sub-states are contained in them matters. Therefore the state of a
n-concatenation automaton could be represented by multi-set containing exactly n sub-states. The initial
state for each of these automata would be a multi-set of n copies of i1 .Now we would like TCNFA(r+1 ) to
simulate an infinite number of these n-concatenation automaton, one for every possible n ∈ N+. This can
be done by creating states that abstract over the exact number of sub-states contained in them. For this we
use a set of sub-states. Such a set state represents all multi-set states of n-concatenation automata that are
constructed from only sub-states in this set. Consider the state {i1}, this would represent all multi-set states
{i1}, {i1, i1}, {i1, i1, i1}, · · · . When simulating transitions, we have to take special care to consider that any
sub-state present in the set represents this state being contained one or more times. The only exception to
this is any sub-state m ∈ Qw

1 , since any concatenation can only capture one character of every sub-automata
at a time. When taking a character transition from such a set-state, every sub-state in this state has to to
make such a character-transition. If a sub-state can make multiple transitions for the same character, it can
make multiple of these at the same time, since it is unknown how many copies of this sub-state we are in.
We will now formalize this idea with a proper definition.

Let ∀∃ c1; c2 . q be shorthand for (∀ c1 . ∃ c2 . q) ∧ (∀ c2 . ∃ c1 . q). Then we can define TCNFA(r+1 ) =
(Qp, Qw, Qs, Σ, T, R, i, F) where:

Qp = P(Qp
1 )

Qw = {P ∪ {m} ∪ S | m ∈ Qw
1 ∧ P ⊆ Qp

1 ∧ S ⊆ Qs
1}

Qs = P(Qs
1)

R = {S ε−→ S′ | S, S′ ∈ Qp ∪Qw ∪Qs ∧ S 6= S′ ∧ ∀∃ s ∈ S; s′ ∈ S′ . s = s′ ∨ s ε−→ s′ ∈ R1}

∪ {S (a,T′)−−−→ S′ | S, S′ ∈ Qp ∪Qw ∪Qs ∧ (∀∃ s ∈ S; s′ ∈ S′ . s
(a,Ts)−−−→ s′ ∈ R1 ∧ Ts ⊆ T′)

∧ ∀ t ∈ T′ . ∃ s ∈ S, s′ ∈ S′, s
(a,Ts)−−−→ s′ ∈ R1 . t ∈ Ts}

∪ {S 〈−→ S′ | S ∈ Qp ∧ S′ ∈ Qw ∧ ∀∃ s ∈ S; s′ ∈ S′ . s = s′ ∨ s
〈−→ s′ ∈ R1}

∪ {S 〉−→ S′ | S ∈ Qw ∧ S′ ∈ Qs ∧ ∀∃ s ∈ S; s′ ∈ S′ . s = s′ ∨ s
〉−→ s′ ∈ R1}

∪ {S ε−→ S′ | ∃ p ∈ Qp
1 , P ⊆ Qp

1 , s ∈ Qs
1, S ⊆ Qs

1, m, m′ ∈ Qw
1

. S = ({p, m} ∪ P ∪ S) ∧ S′ = ({m′, s} ∪ P ∪ S) ∧ p
〈−→ m′ ∈ R1 ∧m

〉−→ s ∈ R1}
i = {i1}

F = P(F1)
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Defining a negative lookahead TCNFA requires us to obtain the complement of TCNFA(r2). Before
obttaining the complement of TCNFA(r2) we replace all transition tag set by ∅, and we use ∅ as the tags-
universe. Moreover, the match-end transition has to be replaced by an ε transition before obtaining this
complement. After this is done, a negative lookahead is constructed almost identically to a positive looka-
head, simply using the negated lookahead automaton. If the match-end transition were not remove before
computing the complement of TCNFA(r2) but instead was removed when computing the product automa-
ton, the resulting automaton would describe words for which there exists is a suffix that is not in L(r2),
rather than words for which there does not exists any suffix that is in L(r2). Let (Qp

2 , Qw
2 , Qs

2, Σ, ∅, R2, i2, F2)
be the complement TCNFA of TCNFA(r2) for which the match-end transition was replaced by an epsilon
transition before computing the complement. Now we can define the negative lookahead as TCNFA(r1 6>r2) =
(Qp, Qw, Qs, Σ, T, R, i, F) where:

Qp = Qp
1 ×Qp

2

Qw = Qw
1 ×Qp

2

Qs = Qs
1 × (Qw

2 ∪Qs
2)

R = {(s1, s2)
ε−→ (s′1, s2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s1

ε−→ s′1 ∈ R1}

∪ {(s1, s2)
ε−→ (s1, s′2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s2

ε−→ s′2 ∈ R2}

∪ {(s1, s2)
(a,T1∪T2)−−−−−→ (s′1, s′2)

| s1 ∈ (Qp
1 ∪Qw

1 ∪Qs
1) ∧ s2 ∈ (Qp

2 ∪Qw
2 ∪Qs

2) ∧ s1
(a,T1)−−−→ s′1 ∈ R1 ∧ s2

(a,T2)−−−→ s′2 ∈ R2}

∪ {(s1, s2)
〈−→ (s′1, s2) | s1 ∈ Qp

1 ∧ s2 ∈ Qp
2 ∧ s1

〈−→ s′1 ∈ R1}

∪ {(s1, s2)
〉−→ (s′1, s2) | s1 ∈ Qw

1 ∧ s2 ∈ Qp
2 ∧ s1

〉−→ s′1 ∈ R1 ∧ s2
〈−→ s′2 ∈ R2}

i = (i1, i2)
F = F1 × F2

For later usage, we will define (Qp
1 , Qw

1 , Qs
1, Σ, ∅, R1, i1, F1) be the complement TCNFA of TCNFA(r1) for

which the match-start transition was replaced by an epsilon transition before computing the complement.
Below is an overview of all TCNFA constructors:

TCNFA(0) = ({p}, ∅, ∅, Σ, T, ∅, p, ∅)

TCNFA(1) = ({p}, {m}, {s}, Σ, T, {p
〈−→ m, m

〉−→ s} ∪ {p
(a,∅)−−−→ p, m

(a,∅)−−−→ m, s
(a,∅)−−−→ s | a ∈ Σ}, p, {s})

TCNFA(ε) = ({p}, {m}, {s}, Σ, T, {p
〈−→ m, m

〉−→ s} ∪ {p
(a,∅)−−−→ p, s

(a,∅)−−−→ s | a ∈ Σ}, p, {s})

TCNFA(a) = ({p}, {m1, m2}, {s}, Σ, T, {p
〈−→ m1, m1

a−→ m2, m2
〉−→ s} ∪ {p

(a,∅)−−−→ p, s
(a,∅)−−−→ s | a ∈ Σ}, p, {s})
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TCNFA(r1+r2) = (Qp, Qw, Qs, Σ, T, R, i, F) where:

Qp = {p} ∪ {(p1, ε) | p1 ∈ Qp
1} ∪ {(ε, p2) | p2 ∈ Qp

2}
Qw = {(m1, ε) | m1 ∈ Qw

1 } ∪ {(ε, m2) | m2 ∈ Qw
2 }

Qs = {s} ∪ {(s1, ε) | s1 ∈ Qs
1} ∪ {(ε, s2) | s2 ∈ Qs

2}

R = {p ε−→ (p1, ε) | p1 ∈ Qp
1}

∪ {p ε−→ (ε, p2) | p2 ∈ Qp
2}

∪ {(q1, ε)
c−→ (q′1, ε) | q1

c−→ q′1 ∈ R1}

∪ {(ε, q2)
c−→ (ε, q′2) | q2

c−→ q′2 ∈ R2}

∪ {(s1, ε)
ε−→ s | s1 ∈ Qs

1}

∪ {(ε, s2)
ε−→ s | s2 ∈ Qs

2}
i = p

F = {s}

TCNFA(r1r2) = (Qp, Qw, Qs, Σ, T, R, i, F) where:

Qp = Qp
1 ×Qp

2

Qw = (Qw
1 ×Qp

2 ) ∪ (Qs
1 ×Qw

2 )

Qs = Qs
1 ×Qs

2

R = {(s1, s2)
ε−→ (s′1, s2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s1

ε−→ s′1 ∈ R1}

∪ {(s1, s2)
ε−→ (s1, s′2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s2

ε−→ s′2 ∈ R2}

∪ {(s1, s2)
(a,T1∪T2)−−−−−→ (s′1, s′2)

| s1 ∈ (Qp
1 ∪Qw

1 ∪Qs
1) ∧ s2 ∈ (Qp

2 ∪Qw
2 ∪Qs

2) ∧ s1
(a,T1)−−−→ s′1 ∈ R1 ∧ s2

(a,T2)−−−→ s′2 ∈ R2}

∪ {(s1, s2)
〈−→ (s′1, s2) | s1 ∈ Qp

1 ∧ s2 ∈ Qp
2 ∧ s1

〈−→ s′1 ∈ R1}

∪ {(s1, s2)
ε−→ (s′1, s2) | s1 ∈ Qw

1 ∧ s2 ∈ Qp
2 ∧ s1

〉−→ s′1 ∈ R1 ∧ s2
〈−→ s′2 ∈ R2}

∪ {(s1, s2)
〉−→ (s1, s′2) | s1 ∈ Qs

1 ∧ s2 ∈ Qw
2 ∧ s2

〉−→ s′2 ∈ R2}
i = (i1, i2)

F = F1 × F2
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TCNFA(r1>r2) = (Qp, Qw, Qs, Σ, T, R, i, F) where:

Qp = Qp
1 ×Qp

2

Qw = Qw
1 ×Qp

2

Qs = Qs
1 × (Qw

2 ∪Qs
2)

R = {(s1, s2)
ε−→ (s′1, s2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s1

ε−→ s′1 ∈ R1}

∪ {(s1, s2)
ε−→ (s1, s′2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s2

ε−→ s′2 ∈ R2}

∪ {(s1, s2)
(a,T1∪T2)−−−−−→ (s′1, s′2)

| s1 ∈ (Qp
1 ∪Qw

1 ∪Qs
1) ∧ s2 ∈ (Qp

2 ∪Qw
2 ∪Qs

2) ∧ s1
(a,T1)−−−→ s′1 ∈ R1 ∧ s2

(a,T2)−−−→ s′2 ∈ R2}

∪ {(s1, s2)
〈−→ (s′1, s2) | s1 ∈ Qp

1 ∧ s2 ∈ Qp
2 ∧ s1

〈−→ s′1 ∈ R1}

∪ {(s1, s2)
〉−→ (s′1, s2) | s1 ∈ Qw

1 ∧ s2 ∈ Qp
2 ∧ s1

〉−→ s′1 ∈ R1 ∧ s2
〈−→ s′2 ∈ R2}

∪ {(s1, s2)
ε−→ (s1, s′2) | s1 ∈ Qs

1 ∧ s2 ∈ Qw
2 ∧ s2

〉−→ s′2 ∈ R2}
i = (i1, i2)

F = F1 × F2

TCNFA(r1<r2) = (Qp, Qw, Qs, Σ, T, R, i, F) where:

Qp = (Qp
1 ∪Qw

1 )×Qp
2

Qw = Qs
1 ×Qw

2

Qs = Qs
1 ×Qs

2

R = {(s1, s2)
ε−→ (s′1, s2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s1

ε−→ s′1 ∈ R1}

∪ {(s1, s2)
ε−→ (s1, s′2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s2

ε−→ s′2 ∈ R2}

∪ {(s1, s2)
(a,T1∪T2)−−−−−→ (s′1, s′2)

| s1 ∈ (Qp
1 ∪Qw

1 ∪Qs
1) ∧ s2 ∈ (Qp

2 ∪Qw
2 ∪Qs

2) ∧ s1
(a,T1)−−−→ s′1 ∈ R1 ∧ s2

(a,T2)−−−→ s′2 ∈ R2}

∪ {(s1, s2)
ε−→ (s′1, s2) | s1 ∈ Qp

1 ∧ s2 ∈ Qp
2 ∧ s1

〈−→ s′1 ∈ R1}

∪ {(s1, s2)
〈−→ (s′1, s2) | s1 ∈ Qw

1 ∧ s2 ∈ Qp
2 ∧ s1

〉−→ s′1 ∈ R1 ∧ s2
〈−→ s′2 ∈ R2}

∪ {(s1, s2)
〉−→ (s1, s′2) | s1 ∈ Qs

1 ∧ s2 ∈ Qw
2 ∧ s2

〉−→ s′2 ∈ R2}
i = (i1, i2)

F = F1 × F2
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TCNFA(r1 6>r2) = (Qp, Qw, Qs, Σ, T, R, i, F) where:

Qp = Qp
1 ×Qp

2

Qw = Qw
1 ×Qp

2

Qs = Qs
1 × (Qw

2 ∪Qs
2)

R = {(s1, s2)
ε−→ (s′1, s2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s1

ε−→ s′1 ∈ R1}

∪ {(s1, s2)
ε−→ (s1, s′2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s2

ε−→ s′2 ∈ R2}

∪ {(s1, s2)
(a,T1∪T2)−−−−−→ (s′1, s′2)

| s1 ∈ (Qp
1 ∪Qw

1 ∪Qs
1) ∧ s2 ∈ (Qp

2 ∪Qw
2 ∪Qs

2) ∧ s1
(a,T1)−−−→ s′1 ∈ R1 ∧ s2

(a,T2)−−−→ s′2 ∈ R2}

∪ {(s1, s2)
〈−→ (s′1, s2) | s1 ∈ Qp

1 ∧ s2 ∈ Qp
2 ∧ s1

〈−→ s′1 ∈ R1}

∪ {(s1, s2)
〉−→ (s′1, s2) | s1 ∈ Qw

1 ∧ s2 ∈ Qp
2 ∧ s1

〉−→ s′1 ∈ R1 ∧ s2
〈−→ s′2 ∈ R2}

i = (i1, i2)

F = F1 × F2

TCNFA(r1 6<r2) = (Qp, Qw, Qs, Σ, T, R, i, F) where:

Qp = (Qp
1 ∪Qw

1 )×Qp
2

Qw = Qs
1 ×Qw

2

Qs = Qs
1 ×Qs

2

R = {(s1, s2)
ε−→ (s′1, s2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s1

ε−→ s′1 ∈ R1}

∪ {(s1, s2)
ε−→ (s1, s′2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1) ∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2) ∧ s2

ε−→ s′2 ∈ R2}

∪ {(s1, s2)
(a,T1∪T2)−−−−−→ (s′1, s′2)

| s1 ∈ (Qp
1 ∪Qw

1 ∪Qs
1) ∧ s2 ∈ (Qp

2 ∪Qw
2 ∪Qs

2) ∧ s1
(a,T1)−−−→ s′1 ∈ R1 ∧ s2

(a,T2)−−−→ s′2 ∈ R2}

∪ {(s1, s2)
〈−→ (s′1, s2) | s1 ∈ Qw

1 ∧ s2 ∈ Qp
2 ∧ s1

〉−→ s′1 ∈ R1 ∧ s2
〈−→ s′2 ∈ R2}

∪ {(s1, s2)
〉−→ (s1, s′2) | s1 ∈ Qs

1 ∧ s2 ∈ Qw
2 ∧ s2

〉−→ s′2 ∈ R2}
i = (i1, i2)

F = F1 × F2
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TCNFA(r+1 ) = (Qp, Qw, Qs, Σ, T, R, i, F) where:

Qp = P(Qp
1 )

Qw = {P ∪ {m} ∪ S | m ∈ Qw
1 ∧ P ⊆ Qp

1 ∧ S ⊆ Qs
1}

Qs = P(Qs
1)

R = {S ε−→ S′ | S, S′ ∈ Qp ∪Qw ∪Qs ∧ S 6= S′ ∧ ∀∃ s ∈ S; s′ ∈ S′ . s = s′ ∨ s ε−→ s′ ∈ R1}

∪ {S a−→ S′ | S, S′ ∈ Qp ∪Qw ∪Qs ∧ ∀∃ s ∈ S; s′ ∈ S′ . s a−→ s′ ∈ R1}

∪ {S 〈−→ S′ | S ∈ Qp ∧ S′ ∈ Qw ∧ ∀∃ s ∈ S; s′ ∈ S′ . s = s′ ∨ s
〈−→ s′ ∈ R1}

∪ {S 〉−→ S′ | S ∈ Qw ∧ S′ ∈ Qs ∧ ∀∃ s ∈ S; s′ ∈ S′ . s = s′ ∨ s
〉−→ s′ ∈ R1}

∪ {S ε−→ S′ | ∃ p ∈ Qp
1 , P ⊆ Qp

1 , s ∈ Qs
1, S ⊆ Qs

1, m, m′ ∈ Qw
1

. S = ({p, m} ∪ P ∪ S) ∧ S′ = ({m′, s} ∪ P ∪ S) ∧ p
〈−→ m′ ∈ R1 ∧m

〉−→ s ∈ R1}
i = {i1}

F = P(F1)

TCNFA(r+1 ) = (Qp, Qw, Qs, Σ, T, R, i, F) where:

Qp = P(Qp
1 )

Qw = {P ∪ {m} ∪ S | m ∈ Qw
1 ∧ P ⊆ Qp

1 ∧ S ⊆ Qs
1}

Qs = P(Qs
1)

R = {S ε−→ S′ | S, S′ ∈ Qp ∪Qw ∪Qs ∧ S 6= S′ ∧ ∀∃ s ∈ S; s′ ∈ S′ . s = s′ ∨ s ε−→ s′ ∈ R1}

∪ {S (a,T′)−−−→ S′ | S, S′ ∈ Qp ∪Qw ∪Qs ∧ (∀∃ s ∈ S; s′ ∈ S′ . s
(a,Ts)−−−→ s′ ∈ R1 ∧ Ts ⊆ T′)

∧ ∀ t ∈ T′ . ∃ s ∈ S, s′ ∈ S′, s
(a,Ts)−−−→ s′ ∈ R1 . t ∈ Ts}

∪ {S 〈−→ S′ | S ∈ Qp ∧ S′ ∈ Qw ∧ ∀∃ s ∈ S; s′ ∈ S′ . s = s′ ∨ s
〈−→ s′ ∈ R1}

∪ {S 〉−→ S′ | S ∈ Qw ∧ S′ ∈ Qs ∧ ∀∃ s ∈ S; s′ ∈ S′ . s = s′ ∨ s
〉−→ s′ ∈ R1}

∪ {S ε−→ S′ | ∃ p ∈ Qp
1 , P ⊆ Qp

1 , s ∈ Qs
1, S ⊆ Qs

1, m, m′ ∈ Qw
1

. S = ({p, m} ∪ P ∪ S) ∧ S′ = ({m′, s} ∪ P ∪ S) ∧ p
〈−→ m′ ∈ R1 ∧m

〉−→ s ∈ R1}
i = {i1}

F = P(F1)
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TCNFA((〈t〉r1)) = (Qp, Qw, Qs, Σ, T, R, i, F) where:

Qp = Qp
1

Qw = Qw
1

Qs = Qs
1

R = {s ε−→ s′ | s ∈ (Qp
1 ∪Qw

1 ∪Qs
1) ∧ s ε−→ s′ ∈ R1}

∪ {s 〈−→ s′ | s ∈ Qp
1 ∧ s

〈−→ s′ ∈ R1}

∪ {s 〉−→ s′ | s ∈ Qw
1 ∧ s

〉−→ s′ ∈ R1}

∪ {s (a,T1)−−−→ s′ | s ∈ (Qp
1 ∪Qs

1) ∧ s
(a,T1)−−−→ s′ ∈ R1}

∪ {s (a,{t}∪T1)−−−−−−→ s′ | s ∈ Qw
1 ∧ s

(a,T1)−−−→ s′ ∈ R1}
i = i1

F = F1

B Regular Expressions Implementation

In our grammars, characters are represented using unicode. Character classes are a core part of Rascal and
therefore are also supported by our TCNFAs representation. Certain TCNFA may have character transitions
that accepts hundreds of thousands of characters, each of which would require an independent transition if
no character classes were used. Therefore we use the same character classes as both the regular expressions
and Rascal’s grammar already use. These character classes are ordered sets of character ranges, such that
any character that falls in one of these ranges cis accepted by the transition. Similarly we make use of tags
classes to combine multiple options of tag sets. These classes are a bit simpler, and are merely sets of tags
sets. Then a transitions in a TCNFA is applicable for any pair of character and tag set if the character is
within one of the given character ranges and the tag set is included in the tags class. This, together with the
epsilon and matchStart/matchEnd transitions, can be represented using the Rascal code in Fragment 8.

Deriving syntax highlighters 105



Acronyms B. REGULAR EXPRESSIONS IMPLEMENTATION

alias Char = int;

alias CharClass = list[CharRange];

data CharRange = range(Char begin, Char end); // where both begin and end are

inclusive↪→

alias TagSet = set[value];

alias TagClass = set[TagSet];

data TransitionCondition = characterCon(CharClass, TagClass)

| matchStartCon()

| matchEndCon()

| epsilon();

data PhraseSymbol = character(Char, TagSet)

| matchStart()

| matchEnd();

bool applies(TransitionCondition condition, PhraseSymbol symbol) {

switch(symbol) {

case matchStart(): return matchStartCon() := condition;

case matchEnd(): return matchEndCon() := condition;

case character(cc, tc): return characterCon(c, t) := condition

&& includes(cc, c)

&& includes(tc, t);

default: return false;

}

}

bool includes(CharClass cc, Char c) = any(range(begin, end) <- cc, begin <= c && c

<= end);↪→

bool includes(TagClass tc, TagSet t) = t in tc;

Fragment 8: TCNFA Transition Implementation

This approach significantly decreases the sizes of TCNFAs that accept many characters, but it also intro-
duces quite some extra complexity that should be dealt with in all of the algorithms dealing with TCNFAs.
Lets first consider the product automaton approach that is at the the heart of converting concatenation,
lookaround, and reservation regular expressions to TCNFAs. The character transitions of these automata
only had to consider 1 character at a time before, and were defined as follows:

{(s1, s2)
(a,T1∪T2)−−−−−→ (s′1, s′2) | s1 ∈ (Qp

1 ∪Qw
1 ∪Qs

1)∧ s2 ∈ (Qp
2 ∪Qw

2 ∪Qs
2)∧ s1

(a,T1)−−−→ s′1 ∈ R1∧ s2
(a,T2)−−−→ s′2 ∈ R2}

When using classes, we have to consider that R1 and R2 do not contain simple tuples in Σ×P(T), but in-
stead contain tuples of classes. Within our implementation the intersection of character classes is calculated,
similar to code Fragment 9.
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characterTransitions = {

<statePair(s1, s2), character(charClass, merge(tags1, tags2)), statePair(s1New,

s2New)>↪→

| <s1, character(charClass1, tags1), s1New> <- R1, <s2, character(charClass2,

tags2), s2New> <- R2,↪→

charClass := intersection(charClass1, charClass2) && size(charClass)>0

}

TagsClass merge(TagsClass tc1, TagsClass tc2) = {tagSet1 + tagSet2 | tagSet1 <-

tc1, tagSet2 <- tc2};↪→

Fragment 9: Character Transition Classes

The actual implementation still operates slightly differently however, since it only calculates reachable
states and their transitions in order to prevent performing unnecessary work. This is done by starting at
the initial state, and performing a search from there. For every state in the queue, we iteratively remove it
from the queue, calculate its transitions to add to the output, and add any newly encountered states to the
queue.

This also introduces some complexity when calculating the TCDFA version of a given TCNFA, since we
now can have overlap between transition conditions, without them being fully equivalent. Consider for
instance the following simplified transitions (without tag classes):

s1
[a−z]−−−→ s2

s1
[a−k]−−−→ s3

When calculating the TCDFA, when encountering state {s1}we can not simply create the transition {s1}
[a−z]−−−→

{s2, s3}, since the characters l to z can not transition to state s3. In order to deal with this, we first want to cal-
culate the disjoint character classes that make up all character classes in the input. Given a set of character
classes C we calculate the set of disjoint character classes D, such that:

(∪c∈Cc) = (∪d∈Dd) (1)
∧∀ d1, d2 ∈ D . d1 6= d2 =⇒ d1 ∩ d2 = ∅ (2)

Statement 1 specifies that the union of character classes of C and D are equivalent, allowing for all the same
transitions. Statement 2 specifies that the character classes of D are indeed disjoint. We can then create
a transition for each of these disjoint character classes for our TCDFA, and in the output set include any
states that has a transition whose class overlaps this disjoint class (i.e. has a non-empty intersection). For
our previous example, our input set would be C = {[a−z], [a−k]}, and the disjoint output set would be D =

{[a−k], [l−z]}. The resulting output transitions for {s1} would be {s1}
[a−k]−−−→ {s2, s3} and {s1}

[l−z]−−→ {s2}.
While calculating the disjoint character classes we can immediately calculate the overlapping character
classes from the input, to prevent additional intersection calculations later.

The algorithm that calculates these disjoint character classes is based on a sweep-line approach as com-
monly seen in geometric algorithms. The character ranges of characters classes are interpreted as 1 dimen-
sional geometric ranges. For each range in a character class, we generate an event at the start of the range
which indicates that the class became active, and an event at the end of the range which indicates that the
class became inactive. This ending index is one greater than the index specified in each of the character
ranges, because the character range treats this last index as inclusive. Next, all events for a given index
are merged together, storing which classes become active and which become inactive per index, and then
sorted to be in increasing ordering. Now we can define a set of active classes A := ∅, a previous range
index ip := −1, and a list of pairs of character-ranges and sets of character classes o := []. The events are
then iterated over in increasing order. For each event at index i, we first create a copy of the previous active
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classes. We then calculate the new active classes by subtracting the classes that the event indicated to have
become inactive, and adding the events that the event indicated to have become active. If the newly active
classes are identical to the old ones, we skip to the next event. Otherwise, if the old set of active character
classes is non-empty, we add the pair ([ip−i], A) to our list o. Finally we set ip := i, before moving onto the
next event. After processing all events, we are left with a list of character ranges, together with all classes
that are active per character range. By ensuring the old active classes to be different from the new active
classes, we prevent getting classes such as [a−de−z] in our output, which are now automatically simplified
to [a−z]. Finally we use our list of active class set per range, to calculate the set of active ranges per active
class set, by combining active ranges with equivalent active class sets. This set of active ranges then forms
one of the disjoint character classes of the output, and is paired with all active character classes of the input
that intersect it. Fragment 10 contains the complete code for this function.
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data CharClassRegion = ccr(CharClass cc, set[CharClass] includes);

alias Event = tuple[int char, set[CharClass] endClasses, set[CharClass]

beginClasses];↪→

set[CharClassRegion] getDisjointCharClasses(set[CharClass] inClasses) {

set[CharClassRegion] outClasses = {};

// Setup the events: starting and stopping character classes

map[int, tuple[set[CharClass] endClasses, set[CharClass] beginClasses]]

eventsMap = ();↪→

void addEvent(int char, set[CharClass] endClasses, set[CharClass]

beginClasses) {↪→

if(char notin eventsMap) eventsMap[char] = <{}, {}>;

eventsMap[char].endClasses += endClasses;

eventsMap[char].beginClasses += beginClasses;

}

for(class <- inClasses, range <- class) {

addEvent(range.begin, {}, {class});

addEvent(range.end + 1, {class}, {}); // The class ends in the next

iteration after end, it's still active during end↪→

}

list[Event] events = [

<char, eventsMap[char].endClasses, eventsMap[char].beginClasses>

| char <- eventsMap];

events = sort(events, bool (Event a, Event b) { return a.char < b.char; });

// Go through the events, and keep track of the active classes at any point

list[tuple[CharRange, set[CharClass]]] setsPerRange = [];

set[CharClass] activeClasses = {};

int previousChar = 0;

for(<char, endClasses, beginClasses> <- events) {

previousActiveClasses = activeClasses;

activeClasses -= endClasses;

activeClasses += beginClasses;

if(previousActiveClasses == activeClasses) continue; // May happen if

ranges weren't fully merged↪→

if(previousActiveClasses != {})

setsPerRange += <range(previousChar, char-1), previousActiveClasses>;

previousChar = char;

}

// Combine character classes for all ranges with the same active class set

map[set[CharClass], list[CharRange]] rangesPerClassSet = ();

for(<charRange, classSet> <- setsPerRange) {

if(classSet notin rangesPerClassSet) rangesPerClassSet[classSet] = [];

rangesPerClassSet[classSet] += charRange;

}

return {

ccr(rangesPerClassSet[charClassSet], charClassSet)

| charClassSet <- rangesPerClassSet

};

}

Fragment 10: Disjoint Character Classes Calculation
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When calculating the transitions for the TCDFA, we also have to consider the disjoint tag classes. For
each individual disjoint character class, we also generate the disjoint tags classes. Because there is only a
small variety of tags in our application, but no assumptions are made on what tags are exactly, the algorithm
for generating these is not as clever or efficient. Fragment 11. This approach also works for character classes,
since it assumes nothing on the data domain other than being able to take intersections and differences
between two classes. It is however less efficient than the geometric approach for character classes.

data TagsClassRegion = tcr(TagsClass tc, set[TagsClass] includes);

set[TagsClassRegion] getDisjointTagsClasses(set[TagsClass] inClasses) {

set[TagsClassRegion] outClasses = {};

for(inClass <- inClasses) {

inClassRemainder = inClass;

set[TagsClassRegion] newOutClasses = {};

for(tcr(outClass, parts) <- outClasses) {

classIntersection = intersection(inClassRemainder, outClass);

if(isEmpty(classIntersection)) {

newOutClasses += tcr(outClass, parts);

} else {

outClass = subtract(outClass, classIntersection);

if(!isEmpty(outClass)) newOutClasses += tcr(outClass, parts);

newOutClasses += tcr(classIntersection, parts + {inClass});

inClassRemainder = subtract(inClassRemainder, classIntersection);

}

}

if(!isEmpty(inClassRemainder)) newOutClasses += tcr(inClassRemainder,

{inClass});↪→

outClasses = newOutClasses;

}

return outClasses;

}

Fragment 11: Disjoint Tags Classes Calculation

For TCDFA creation, we need to ensure totality of the transition function as well. To achieve this,
we need to calculate transitions that when combined with the existing transitions account for all possible
inputs. This can be done quite easily by consider the entire character class that represents the universe
of all characters, and subtracting the character classes of transitions we already have. This remainder of
the universe can then be paired with the universe of all tag sets. This universe of tag sets is provided as
a parameter when creating the TCDFA. For other transitions, we also calculate the complement of their
tags class, by subtracting it from the tags set universe. If this complement is non-empty, we also define a
transition for the character-class paired with this tags complement.

Finally we would like to be able to fully normalize our TCNFAs. The normalization function N should
have the following properties:

1. ∀ n1, n2 ∈ TCNFA(Σ, T) . L(n1) = L(n2) =⇒ N(n1) = N(n2)

2. ∀ n ∈ TCNFA(Σ, T) . L(n) = L(N(n))
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Then using the second property we can also conclude that for any two TCNFAs n1 and n2:

N(n1) = N(n2)

=⇒ L(N(n1)) = L(N(n2))

=⇒ L(n1) = L(n2)

Hence ∀ n1, n2 ∈ TCNFA(Σ, T) . L(n1) = L(n2) ⇐⇒ N(n1) = N(n2). Therefore we can check for
language equivalence, by checking for TCNFA equivalence. This is useful because languages are likely
infinite, while our TCNFAs are merely finite. This allows us to use all of Rascal’s features that make use of
equivalence checks too, like using TCNFAs as keys in maps, or entries in sets. This way we do not have
to care about syntactic differences in regular expressions, and can directly reason about the languages they
define.

Minimization of DFAs is a well-researched topic, for which multiple algorithms have already been de-
fined. For every DFA, a unique minimum DFA – modulo state naming – exists with an equivalent language.
This makes the DFA minimization procedure ideal for our normalization purposes, since we already know
how to generate a TCDFA counterpart from a TCNFA. Just like in the process of converting a TCNFA
to a TCDFA, we can ignore the state separation when performing the normalization, and extract it again
afterwards. Moreover, in reality we do not actually explicitly store the state partition or set in our imple-
mentation. We instead calculate it on the fly based on the initial state and existing transitions when we
need the information about this partition. After we minimize the given TCDFA we remove impotent tran-
sitions. These are transitions that do not contribute to phrases in the language. This will get rid of any
states that would not fit a single set of the partition. And for our purposes, the automaton need not be
complete anyhow. We then also need to relabel all states, in a predictable way. We label the states using
numeric integer identifiers that increase for every state. We know two minimized TCDFAs with the same
language to be isomorphic, so if we label the initial state as 0, and then perform a search from the initial
state, all other states should be reached in the same order, if we can iterate over out-going transitions in
a predictable way. Rascal already allows any collection of values to be ordered based on the < operator
defined on the value type. This < is automatically defined for any custom data type, using an ordering on
the constructors and a lexicographical ordering on constructor arguments. The only problem is that < does
not provide a complete ordering on list and set values. We used lists for defining scopes, which we use as
tags in regular expressions. This would prevent proper predictable sorting. Therefore we do not use lists
here, but instead use a custom data type:

data Scopes = noScopes()

| someScopes(Scope top, Scopes bottom);

This allows us to define sortable linked lists using this custom data type. Sets are used on the top level
in order to define our tags classes. Therefore we assume individual tags to be sortable using rascals <
operation, and manually take care of sorting the sets on the top-level. In general, we do not actually care
how values are sorted, as long as the sorting is table. We want to rely on the values of data for sorting, not
arbitrary hashes or other unstable things in the programming language. Therefore we just have to define
any scheme that given two sets of values that are not equivalent, specifies which of them is smaller. We
can for instance do this by retrieving all values that are not shared between the two sets, and obtaining the
smallest value among these based on a recursive sorting criterion (using either this set comparison scheme
and Rascal’s < operator), and deem the set to which this value belongs to be the smallest set. Using these
mechanisms we can consistently sort any list of transitions, and therefore consistently iterate through all
states of a minimized TCDFA, such that labeling according to this ordering results in equivalent automata
given TCDFAs with an equivalent language.

We are however left with one more problem caused by our use of character and tags classes. The same
automaton can be represented in multiple different ways by either splitting a transition into multiple tran-
sitions by splitting one of its classes. Because of this, we have to take care of two additional things:

• Make all transitions of the TCDFA fully disjoint, to ensure maximal minimization

• Normalize the transitions of the resulting minimal TCDFA

Deriving syntax highlighters 111



Acronyms B. REGULAR EXPRESSIONS IMPLEMENTATION

To see that non-disjointness could pose problems, we have to consider how the minimization algorithm
operates. This algorithm is based on the code assuming all states to belong to the same equivalence class,
until we can show some state not to belong to this class. The first step in this process is separating the class
of accepting and non-accepting states, since these are trivially different. After this, states are separated
based on the transitions they have to different equivalence classes. Transitions with character classes that
overlap but are not identical can form problems here, because two states in the same equivalence class
that specify the same behavior, may suddenly no longer have the same edges to another equivalence class.
The minimization algorithm could be modified to consider this potential overlap, but this might prove
complex. A simpler approach is to ensure edges never overlap unless they are equal. This can be achieved
by taking all transition conditions together, and calculating the disjoint set of transition conditions, just like
we did for the DFA conversion process. Then any edge can be replaced by a combination of edges using
the disjoint transition conditions that together combine to the condition of the original edge. This same
approach could also have been taken for our regex to TCNFA conversion algorithm, such that we do not
have to deal with partial overlap there, but this was not done because the complexity of the conversion
code was not significantly increased by the presence of character and tags classes.

The edge normalization step afterwards is still required to ensure that resulting minimal TCDFAs are
not only minimal in number of states, but also in number of edges to ensure equivalence. For DFAs that do
not use character classes, these conditions of minimal in number of states and in number of edges happen
to be equivalent, because the automata are complete. Our edge normalization consists of achieving the
following conditions:

1. ∀ u
(CC,TC)−−−−→ v . |CC| > 0∧ |TC| > 0, i.e. every transition must accept some some input

2. ∀ u
(CC,TC)−−−−→ v, u

(CC′ ,TC′)−−−−−→ v . TC ∩ TC′ = ∅, i.e. for every pair of transitions between the same states,
no tags are shared

3. ∀ u
(CC,TC)−−−−→ v, u

(CC′ ,TC′)−−−−−→ v . CC 6= CC′, i.e. for every pair of transitions between the same states,
their character classes are not equivalent

For each of these constraints, if they are not met, we can get rid of redundancy in the automaton:

1. If there is an edge that cannot be taken, we might as well remove the edge

2. If two transitions share some tags, the character classes of the shared tags could have been merged.
Note that We arbitrary decided to prioritize character class merging over tags class merging

3. If two transitions have the same character classes, we could replace them by a single transition with
this character class and the union of tags classes

Our goal with these constraints is to find a set of normalized transitions between two states, given the
current set of transitions between states. Let CCU be the universe of character classes and TCU be the
universe of tag classes. Then a transition condition c is a pair in CCU × TCU. We define the language
L(S) for a set S ⊂ CCU × TCU of transition conditions, to be the set of all character and tagset pairs that
are accepted by a transition condition in S. Now our transition normalization function N should have the
following properties to ensure our desired normalization purpose:

1. ∀ s1, s2 ⊆ CCU × TCU . L(s1) = L(s2) =⇒ N(s1) = N(s2)

2. ∀ s ⊆ CCU × TCU . L(s) = L(N(s))

It can be proven that this first condition follows from our 3 constraints. Achieving the constraints is trivial:

1. Remove transitions with empty character classes or tags classes

2. Make all tags classes disjoint by calculating the disjoint tags classes and splitting transition conditions
accordingly

3. Per disjoint tags class, union all corresponding character classes into one condition
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4. For transition conditions with the same character classes, union their tags classes together

Step 1 trivially achieves meeting constraint 1, and no later unioning can invalidate this constraint. Con-
straint 2 is met by step 2, and is maintained by step 3 and 4. It is maintained because unioning charac-
ter classes will not introduce intersection between tags classes. And after all character classes have been
unioned, there will only be a single transition constraint per tags class. Therefore step 4 won’t be able to
union two transitions sets together with overlapping tags classes. Finally this 4th step trivially achieves our
third constraint.

In summary, our normalization ensures that a normalized TCNFA uniquely represents its language, and
this is achieved using the following steps:

1. Transform our TCNFA to a TCDFA

2. Remove partial overlap between transitions by splitting overlapping transitions

3. Apply a DFA minimization algorithm

4. Normalize the edges between every pair of states

5. Relabel TCDFA states according to ordering on transitions

C Regular Expression Subtraction Replacement Function

We inductively define function S : R(Σ, T) → R(Σ, T) ×R(Σ, T) ×R(Σ, T) ×R(Σ, T) × B that splits a
regular expression in 4 parts, and a boolean specifying whether equivalence is maintained. This function
relies on a simple helper function Sl : R(Σ, T) × R(Σ, T) × R(Σ, T) × R(Σ, T) → R(Σ, T) × B which
attempts to combine the four expressions b, m, a and s into an expression y either as y = /( 6>bsa)m/ or
y = /m(bsa 6<)/. This function attempts to ensure that L(y) = L(m−s), and returns a boolean indicating
whether this was achieved.

Using this, we can inductively define S, where we use (b1, m1, a1, s1, e1) = S(r1) and (b2, m2, a2, s2, e2) =
S(r2) as the values obtained from sub-expressions:

S(0) = (ε, 0, ε, 0, true)
S(1) = (ε, 1, ε, 0, true)
S(ε) = (ε, ε, ε, 0, true)
S(a) = (ε, a, ε, 0, true)

S(r1+r2) = (ε, m′1+m′2, ε, 0, e1 ∧ e2 ∧ e′1 ∧ e′2) where (m′1, e′1) = Sl(b1, m1, a1, s1), (m′2, e′2) = Sl(b2, m2, a2, s2)

S(r1r2) = (b1, m1m2, a2, s1m2+m1s2, e1 ∧ e2)

S(r+1 ) = (ε, m+, ε, 0, e1 ∧ e) where (m, e) = Sl(b1, m1, a1, s)
S(r1>r2) = (b1, m1>a′, a1>a′, s1, e1 ∧ e2 ∧ e) where (a′, e) = Sl(b2, m2, a2, s2)

S(r2<r1) = (b′<b1, a′<m1, a1, s1, e1 ∧ e2 ∧ e) where (b′, e) = Sl(b2, m2, a2, s2)

S(r1 6>r2) = (b1, m1 6>a′, a1 6>a′, s1, e1 ∧ e2 ∧ e) where (a′, e) = Sl(b2, m2, a2, s2)

S(r2 6<r1) = (b′ 6<b1, b′ 6<m1, a1, s1, e1 ∧ e2 ∧ e) where (b′, e) = Sl(b2, m2, a2, s2)

S(r1−r2) = (b1, m1, a1, s1+s′, e1 ∧ e2 ∧ e) where (s′, e) = Sl(b2, m2, a2, s2)

S((〈t〉r1)) = (b1, (〈t〉m1), a1, s1, e1)

D Regular Expression Scope Extraction

We define a recursive function E that operates on a regular expression and a category list and outputs a
new regular expression only containing numbered capture groups together with a list of categories corre-
sponding to every capture group.
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E(0, s) = (0, s)
E(1, s) = (1, s)
E(ε, s) = (ε, s)
E(a, s) = (a, s)

E(r1+r2, s) = (r′1+r′2, s′′) where (r′1, s′) = E(r1, s) ∧ (r′2, s′′) = E(r2, s′)

E(r1r2, s) = (r′1r′2, s′′) where (r′1, s′) = E(r1, s) ∧ (r′2, s′) = E(r2, s′)

E(r+1 , s) = (r′+1 , s′′) where (r′1, s′) = E(r1, s)

E(r1>r2, s) = (r′1>r′2, s′′) where (r′1, s′) = E(r1, s) ∧ (r′2, s′′) = E(r2, s′)

E(r1 6>r2, s) = (r′1 6>r′2, s′′) where (r′1, s′) = E(r1, s) ∧ (r′2, s′′) = E(r2, s′)

E(r2<r1, s) = (r′2<r′1, s′′) where (r′1, s′) = E(r1, s) ∧ (r′2, s′′) = E(r2, s′)

E(r2 6<r1, s) = (r′2 6<r′1, s′′) where (r′1, s′) = E(r1, s) ∧ (r′2, s′′) = E(r2, s′)

E(r1−r2, s) = (r′1−r′2, s′′) where (r′1, s′) = E(r1, s) ∧ (r′2, s′′) = E(r2, s′)

E((〈t〉r1), s) = ((〈|st|〉r′1), s′) where (r′1, s′) = E(r1, st)

E Regular Expression Tags To Leaves

We define recursive function M that uses a chosen merge function to move all tag to the leaves, such that
every regular expression contains exactly one tag. Below is a condensed overview of the function for an
input expression x built up from at most the sub-expressions r1 and r2:

M(0, c) = 0
M(1, c) = (〈c〉1)
M(ε, c) = ε

M(a, c) = (〈c〉a)
M(r1+r2, c) = r′1+r′2 where r′1 = M(r1, c) ∧ r′2 = M(r2, c)

M(r1r2, c) = r′1r′2 where r′1 = M(r1, c) ∧ r′2 = M(r2, c)

M(r+1 , c) = r′+1 where r′1 = M(r1, c)

M(r1>r2, c) = r′1>r2 where r′1 = M(r1, c)

M(r1 6>r2, c) = r′1 6>r2 where r′1 = M(r1, c)

M(r2<r1, c) = r2<r′1 where r′1 = M(r1, c)

M(r2 6<r1, c) = r2 6<r′1 where r′1 = M(r1, c)

M(r1−r2, c) = r′1−r2 where r′1 = M(r1, c)

M((〈t〉r1), c) = M(r1, c′) where c′ = merge(t, c)

F Regular Expression Tagged Alternation Removal

We define an inductive function S : R(Σ, T) → P(R(Σ, T)), such that for any regular expression x, we
have L(x) = L(/+y∈S(x) y/). Let R1 = S(r1) and R2 = S(r2) be the recursively defined results from
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sub-expressions, allowing us to define S:

S(0) = {0}
S(1) = {1}
S(ε) = {ε}
S(a) = {a}

S(r1+r2) = R1 ∪ R2

S(r1r2) = {r′1r′2 | r′1 ∈ R1, r′2 ∈ R2}
S(r+1 ) = {r1}

S(r1>r2) = {r′1>r2 | r′1 ∈ R1}
S(r1 6>r2) = {r2 6<r′1 | r′1 ∈ R1}
S(r2<r1) = {r′1>r2 | r′1 ∈ R1}
S(r2 6<r1) = {r2 6<r′1 | r′1 ∈ R1}
S(r1−r2) = {r′1−r2 | r′1 ∈ R1}

S((〈t〉r1)) = {(〈t〉r1)}

G Regular Expression Equivalence Axioms

We will provide several axioms for regular expression language equivalences that involve lookarounds and
or language subtraction. We use the symbol ≡ to denote language equivalence of the provide expressions.
Most of the axioms apply regardless of presence of tags, but some axioms only apply for regular expressions
without tags. These axioms have been provided later. Proofs for most cases are provided, but these are
provided using the language definitions for readability, and the symmetric proves that are nearly identical
have been omitted.

• x<(y>z) ≡ (x<y)>z (Lookaround Associativity)

– x<(y 6>z) ≡ (x<y) 6>z

– x 6<(y>z) ≡ (x 6<y)>z

– x 6<(y 6>z) ≡ (x 6<y) 6>z

– (y>z)>x ≡ (y>x)>z

– (y>z) 6>x ≡ (y 6>x)>z

– (y 6>z)>x ≡ (y>x) 6>z

– (y 6>z) 6>x ≡ (y 6>x) 6>z

– x<(z<y) ≡ z<(x<y)

– x 6<(z<y) ≡ z<(x 6<y)

– x<(z 6<y) ≡ z 6<(x<y)

– x 6<(z 6<y) ≡ z 6<(x 6<y)

• x>(y>z) ≡ x>(yz) (Double Lookaround Elimination)

– (x<y)<z ≡ (xy)<z

• (x>y)−z ≡ (x−z)>y (Lookaround Subtraction Associativity)

– (x 6>y)−z ≡ (x−z) 6>y

– (x<y)−z ≡ x<(y−z)

– (x 6<y)−z ≡ x 6<(y−z)
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• x>(y+z) ≡ (x>y)+(x>z) (Lookaround Distributivity)

– (y+z)<x ≡ (y<x)+(z<x)

• (x+y)>z ≡ (x>z)+(y>z) (Lookaround Match Distributivity)

– (x+y) 6>z ≡ (x 6>z)+(y 6>z)
– z<(x+y) ≡ (z<x)+(z<y)
– z 6<(x+y) ≡ (z 6<x)+(z 6<y)
– (x−y)>z ≡ (x>z)−(y>z)
– (x−y) 6>z ≡ (x 6>z)−(y 6>z)
– z<(x−y) ≡ (z<x)−(z<y)
– z 6<(x−y) ≡ (z 6<x)−(z 6<y)

• (x−y)−z ≡ x−(y+z) (Double Subtraction Elimination)

• (x+y)−z ≡ (x−z)+(y−z) (Subtraction Distributivity)

• x>ε ≡ x (Infallible Lookaround)

– ε<x ≡ x
– x>1 ≡ x
– 1<x ≡ x

• x>0 ≡ 0 (Unfulfillable Lookaround)

– 0<x ≡ 0

• x 6>0 ≡ x (Infallible Negative Lookaround)

– 0 6<x ≡ x

• x 6>ε ≡ 0 (Unfulfillable Negative Lookaround)

– ε 6<x ≡ 0
– x 6>1 ≡ 0
– 1 6<x ≡ 0

Axioms for regular expression not allowing tags:

• (x>y)+x ≡ x (Constraint Weakening)

– (y<x)+x ≡ x
– (x 6>y)+x ≡ x
– (y 6<x)+x ≡ x
– (x−y)+x ≡ x

Axioms for regular expressions requiring tags:

• (〈s〉(〈t〉x)) ≡ (〈t〉(〈s〉x)) (Double Tag Associativity)

• (〈t〉x>y) ≡ (〈t〉x)>y (Tag Constraint Associativity)

– (〈t〉x 6>y) ≡ (〈t〉x) 6>y
– (〈t〉y<x) ≡ y<(〈t〉x)
– (〈t〉y 6<x) ≡ y 6<(〈t〉x)
– (〈t〉x−y) ≡ (〈t〉x)−y
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G.1 Lookaround Associativity Proof

L(x<(y>z)) = {(p, w, s) ∈ L(y>z) | ∃ α, β ∈ Σ∗ . p = αβ ∧ (α, β, ws) ∈ L(x)}
= {(p, w, s) ∈ {(p′, w′, s′) ∈ L(y) | ∃ α′, β′ ∈ Σ∗ . s′ = α′β′ ∧ (p′w′, α′, β′) ∈ L(z)}
| ∃ α, β ∈ Σ∗ . p = αβ ∧ (α, β, ws) ∈ L(x)}

= {(p, w, s) ∈ L(y) | ∃ α′, β′ ∈ Σ∗ . s = α′β′ ∧ (pw, α′, β′) ∈ L(z)
∧ ∃ α, β ∈ Σ∗ . p = αβ ∧ (α, β, ws) ∈ L(x)}

= {(p, w, s) ∈ L(y) | ∃ α, β ∈ Σ∗ . p = αβ ∧ (α, β, ws) ∈ L(x)

∧ ∃ α′, β′ ∈ Σ∗ . s = α′β′ ∧ (pw, α′, β′) ∈ L(z)}
= {(p, w, s) ∈ {(p′, w′, s′) ∈ L(y) | ∃ α, β ∈ Σ∗ . s′ = αβ ∧ (p′w′, α′, β′) ∈ L(x)}
| ∃ α′, β′ ∈ Σ∗ . p = αβ ∧ (α′, β′, ws) ∈ L(z)}

= {(p, w, s) ∈ L(x<y) | ∃ α′, β′ ∈ Σ∗ . p = αβ ∧ (α′, β′, ws) ∈ L(z)}
= L((x<y)>z)

G.2 Double Lookaround Elimination Proof

L(x>(y>z)) = {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(y>z)}
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ {

(p′, w′, s′) ∈ L(y) | ∃ α′, β′ ∈ Σ∗ . s′ = α′β′ ∧ (p′w′, α′, β′) ∈ L(z)}}
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ

∧ (pw, α, β) ∈ L(y) ∧ (∃ α′, β′ ∈ Σ∗ . β = α′β′ ∧ (pwα, α′, β′) ∈ L(z))}
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . ∃ α′, β′ ∈ Σ∗ .

s = αβ ∧ β = α′β′ ∧ (pw, α, β) ∈ L(y) ∧ (pwα, α′, β′) ∈ L(z)}
= {(p, w, s) ∈ L(x) | ∃ α, α′, β′ ∈ Σ∗ . s = αα′β′

∧ (pw, α, α′β′) ∈ L(y) ∧ (pwα, α′, β′) ∈ L(z)}
= {(p, w, s) ∈ L(x) | ∃ γ, β′ ∈ Σ∗ . ∃ α, α′ ∈ Σ∗ .

γ = αα′ ∧ s = γβ′ ∧ (pw, α, α′β′) ∈ L(y) ∧ (pwα, α′, β′) ∈ L(z)}
= {(p, w, s) ∈ L(x) | ∃ γ, β′ ∈ Σ∗ . s = γβ′ ∧ ∃ α, α′ ∈ Σ∗ .

γ = αα′ ∧ (pw, α, α′β′) ∈ L(y) ∧ (pwα, α′, β′) ∈ L(z)}
= {(p, w, s) ∈ L(x) | ∃ γ, β′ ∈ Σ∗ . s = γβ′ ∧ (pw, γ, β′) ∈ {

(p′, w′, s′) | ∃ α, α′ ∈ Σ∗ . w′ = αα′

∧ (p′, α, α′s′) ∈ L(y) ∧ (p′α, α′, s′) ∈ L(z)}}
= {(p, w, s) ∈ L(x) | ∃ γ, β′ ∈ Σ∗ . s = γβ′ ∧ (pw, γ, β′) ∈ {

(p′, αα′, s′) | (p′, α, α′s′) ∈ L(y) ∧ (p′α, α′, s′) ∈ L(z)}}
= {(p, w, s) ∈ L(x) | ∃ γ, β′ ∈ Σ∗ . s = γβ′ ∧ (pw, γ, β′) ∈ L(yz)}
= L(x>(yz))
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G.3 Lookaround Subtraction Associativity Proof

L((x>y)−z) = L(x>y)\L(z)
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(y)}\L(z)
= {(p, w, s) ∈ L(x)\L(z) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(y)}
= {(p, w, s) ∈ L(x−z) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(y)}
= L((x−z)>y)

G.4 Lookaround Distributivity Proof

L(x>(y+z)) = {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(y+z)}
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(y) ∪ L(z)}
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ ((pw, α, β) ∈ L(y) ∨ (pw, α, β) ∈ L(z))}
= {(p, w, s) ∈ L(x) | (∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(y))
∨ (∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(z))}

= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(y)}
∪ {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(z)}

= L(x>y) ∪ L(x>z)
= L((x>y)+(x>z))

G.5 Lookaround Match Distributivity Proof

L((x+y)>z) = {(p, w, s) ∈ L(x + y) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(z)}
= {(p, w, s) ∈ L(x) ∪ L(y) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(z)}
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(z)}
∪ {(p, w, s) ∈ L(y) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(z)}

= L(x>z) ∪ L(y>z)
= L((x>z)+(y>z))

G.6 Double Subtraction Elimination Proof

L((x−y)−z) = L(x−y)\L(z)
= (L(x)\L(y))\L(z)
= L(x)\(L(y) ∪ L(z))
= L(x)\L(y+z)
= L(x−(y+z))
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G.7 Subtraction Distributivity Proof

L((x+y)−z) = L(x+y)\L(z)
= (L(x) ∪ L(y))\L(z)
= (L(x)\L(z)) ∪ (L(y)\L(z))
= L(x−z) ∪ L(y−z)
= L((x−z)+(y−z))

G.8 Infallible Lookaround Proof

L(x>ε) = {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(ε)}
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ {(p′, ε, s′) | p′, s′ ∈ Σ∗}}
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ pw, s ∈ Σ∗ ∧ α = ε}
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ true∧ α = ε}
= {(p, w, s) ∈ L(x) | ∃ β ∈ Σ∗ . s = εβ}
= {(p, w, s) ∈ L(x) | true}
= L(x)

G.9 Unfulfillable Lookaround Proof

L(x>0) = {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(0)}
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ ∅}
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ false}
= {(p, w, s) ∈ L(x) | false}
= ∅
= L(0)

G.10 Unfulfillable Negative Lookaround Proof

L(x 6>ε) = {(p, w, s) ∈ L(x) | ¬∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(ε)}
= {(p, w, s) ∈ L(x) | ¬∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ {(p′, ε, s′) | p′, s′ ∈ Σ∗}}
= {(p, w, s) ∈ L(x) | ¬∃ α, β ∈ Σ∗ . s = αβ ∧ pw, s ∈ Σ∗ ∧ α = ε}
= {(p, w, s) ∈ L(x) | ¬∃ α, β ∈ Σ∗ . s = αβ ∧ true∧ α = ε}
= {(p, w, s) ∈ L(x) | ¬∃ β ∈ Σ∗ . s = εβ}
= {(p, w, s) ∈ L(x) | ¬true}
= {(p, w, s) ∈ L(x) | false}
= ∅
= L(0)
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G.11 Infallible Negative Lookaround Proof

L(x 6>0) = {(p, w, s) ∈ L(x) | ¬∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(0)}
= {(p, w, s) ∈ L(x) | ¬∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ ∅}
= {(p, w, s) ∈ L(x) | ¬∃ α, β ∈ Σ∗ . s = αβ ∧ false}
= {(p, w, s) ∈ L(x) | ¬false}
= {(p, w, s) ∈ L(x) | true}
= L(x)

G.12 Constraint Weakening Proof

L((x>y)+x) = L(x>y) ∪ L(x)
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(y)} ∪ L(x)
= {(p, w, s) ∈ L(x) | ∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(y)}
∪ {(p, w, s) ∈ L(x) | true}

= {(p, w, s) ∈ L(x) | (∃ α, β ∈ Σ∗ . s = αβ ∧ (pw, α, β) ∈ L(y)) ∨ true}
= {(p, w, s) ∈ L(x) | true}
= L(x)

G.13 Double Tag Associativity Proof

L((〈t〉((〈t′〉x)))) = {(p, (w, {t} ∪ Tw), s) | (p, (w, Tw), s) ∈ L((〈t′〉x))}
= {(p, (w, {t} ∪ Tw), s) | (p, (w, Tw), s) ∈ {

(p′, (w′, {t′} ∪ Tw′), s′) | (p′, (w′, Tw′), s′) ∈ L(x)}}

= {(p, (w, {t} ∪ {t′} ∪ Tw), s) | (p, (w, Tw′), s) ∈ L(x)}

= {(p, (w, {t′} ∪ {t} ∪ Tw), s) | (p, (w, Tw′), s) ∈ L(x)}
= {(p, (w, {t′} ∪ Tw), s) | (p, (w, Tw), s) ∈ {

(p′, (w′, {t} ∪ Tw′), s′) | (p′, (w′, Tw′), s′) ∈ L(x)}}
= {(p, (w, {t′} ∪ Tw), s) | (p, (w, Tw), s) ∈ L((〈t〉x))}
= L((〈t′〉((〈t〉x))))
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G.14 Tag Constraint Associativity Proof

L((〈t〉x>y)) = {(p, (w, {t} ∪ Tw), s) | (p, (w, Tw), s) ∈ L(x>y)}
= {(p, (w, {t} ∪ Tw), s) | (p, (w, Tw), s) ∈ {

(((p′, Tp
1 ∪ Tp

2 ), (w
′, Tw

1 ∪ Tw
2 ), (αβ, Ts ∪ (TαTβ)))

| ((p′, Tp
1 ), (w

′, Tw
1 ), (αβ, Ts)) ∈ L(x) ∧ ((p′, Tp

2 )(w
′, Tw

2 ), (α, Tα), (β, Tβ)) ∈ L(y)}}
= {(((p, Tp

1 ∪ Tp
2 ), (w, {t} ∪ Tw

1 ∪ Tw
2 ), (αβ, Ts ∪ (TαTβ)))

| ((p, Tp
1 ), (w, Tw

1 ), (αβ, Ts)) ∈ L(x) ∧ ((p, Tp
2 )(w, Tw

2 ), (α, Tα), (β, Tβ)) ∈ L(y)}
= {(((p, Tp

1 ∪ Tp
2 ), (w, Tw

1 ∪ Tw
2 ), (αβ, Ts ∪ (TαTβ)))

| ((p, Tp
1 ), (w, Tw

1 ), (αβ, Ts)) ∈ {(p′, (w′, {t} ∪ Tw′), s′) | (p′, (w′, Tw′), s′) ∈ L(x)}
∧ ((p, Tp

2 )(w, Tw
2 ), (α, Tα), (β, Tβ)) ∈ L(y)}

= {(((p, Tp
1 ∪ Tp

2 ), (w, Tw
1 ∪ Tw

2 ), (αβ, Ts ∪ (TαTβ)))

| ((p, Tp
1 ), (w, Tw

1 ), (αβ, Ts)) ∈ L((〈t〉x)) ∧ ((p, Tp
2 )(w, Tw

2 ), (α, Tα), (β, Tβ)) ∈ L(y)}
= L((〈t〉x)>y)
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