Addendum to Chapter 9: Direct Computation of Polynomial Representations for Sequences

Jan van Eijck (February, 2011)

In this addendum we describe a direct way to compute a polynomial representation from a sequence of numbers. Gaussian elimination is one possibility, but the so-called calculus of finite differences from combinatorics suggests another method.

```
import POL
import Ratio
```

First we introduce a new infix symbol for the operation of taking a falling power (or: falling factorial, or: lower factorial).

Common notation for falling powers: $x^{\underline{n}}$ (an alternative notation is $\left.(x)_{n}\right)$. $x^{\underline{n}}$ is defined as

$$
x(x-1) \cdots(x-n+1) .
$$

For example, $x^{\underline{3}}$ equals $x(x-1)(x-2)=x^{3}-3 x^{2}+2 x$, and $2 x^{\underline{2}}$ equals $2 x(x-1)=2 x^{2}-2 x$. By stipulation $x^{0}=1$.

```
infixr 8 -
(^-) :: Integral a => a -> a -> a
x - 0 = 1
x ^- n = (x ^- (n-1)) * (x - n + 1)
```

In a similar way, we can define rising powers (or: rising factorials, ascending factorials, upper factorials). Common notation for rising powers: $x^{\bar{n}}$. We are not going to use them below, but we throw them in for good measure.

```
infixr 8 `+
(`+) :: Integral a => a -> a -> a
x ^+ 0 = 1
x `+ n = (x ^+ (n-1)) * (x + n - 1)
```

We will call a polynomial representation where the exponents express falling factorials a Newton polynomial (Isaac Newton used these in the form of the so-called Newton interpolation formula, in his Principia Mathematica).
The so-called Newton series gives a way to express a polynomial f of degree n as a Newton polynomial, given that we know its list of differences for $f(0)$. Notation: $\Delta^{n} f$ gives the function which is the n-th difference of f. The Newton series is defined by:

$$
f(x)=\sum_{k=0}^{n} \frac{\Delta^{k} f(0)}{k!} \cdot x^{\underline{k}} .
$$

Here k ! is the factorial function (implemented in Haskell as product [1..k]), and $x^{\underline{k}}$ is a falling power. The Newton series allows us to compute a polynomial representation in terms of exponent lists from a list of first differences, but we should keep in mind that the exponents express falling powers.
Here is an example. Consider the function $f(x)=2 x^{3}+3 x$. This function is of the third degree, so we compute $f(0), \Delta f(0), \Delta^{2} f(0), \Delta^{3} f(0)$.

$$
\begin{aligned}
f(0) & =0 \\
\Delta f(0) & =f(1)-f(0)=5 \\
\Delta^{2} f(0) & =\Delta f(1)-\Delta f(0) \\
& =\Delta f(1)-5=f(2)-f(1)-5=22-5-5=12 \\
\Delta^{3} f(0) & =\Delta^{2} f(1)-\Delta^{2} f(0)=\Delta^{2} f(1)-12 \\
& =\Delta f(2)-\Delta f(1)-12=(f(3)-f(2))-(f(2)-f(1))-12 \\
& =f(3)-2 f(2)+f(1)-12=12 .
\end{aligned}
$$

We could have used difLists to compute the list of first differences, of course:
*Main> map head $\$$ difLists [map ($\backslash x$-> $2 * x \wedge 3+3 * x$) [0..8]] [12, 12, 5, 0]

Newton's formula now gives:

$$
\begin{aligned}
f(x) & =\frac{\Delta^{0} f(0)}{0!} \cdot x^{\underline{0}}+\frac{\Delta^{1} f(0)}{1!} \cdot x^{\underline{1}}+\frac{\Delta^{2} f(0)}{2!} \cdot x^{\underline{2}}+\frac{\Delta^{3} f(0)}{3!} \cdot x^{\underline{3}} \\
& =5 x^{\underline{1}}+6 x^{\underline{2}}+2 x^{\underline{3}} .
\end{aligned}
$$

We assume that the differences are given in a list $\left[x_{0}, \ldots, x_{n}\right]$, where $x_{i}=$ $\Delta^{i} f(0)$. Then the implementation of the Newton series formula is as follows:

```
newton :: (Fractional a, Enum a) => [a] -> [a]
newton xs =
    [ x / product [1..fromInteger k] | (x,k) <- zip xs [0..]]
```

The list of first differences can be computed from the output of the difLists function, as follows:

```
firstDifs :: [Integer] -> [Integer]
firstDifs xs = reverse $ map head (difLists [xs])
```

Mapping a list of integers to a Newton polynomial representation (list of factors of the exponents, with the exponents expressing falling powers):

```
list2npol :: [Integer] -> [Rational]
list2npol = newton . map fromInteger. firstDifs
```

This is not yet exactly what we want: we still need to map Newton falling powers to standard powers. This is a matter of applying combinatorics, by
means of a conversion formula that uses the so-called Stirling cyclic numbers, or Stirling numbers of the first kind. The number $\left[\begin{array}{l}n \\ k\end{array}\right]$ gives the number of ways in which a set of n elements can be partitioned into k cycles. It also gives the coefficient of x^{k} in the polynomial x^{n}. In other words, its defining relation is:

$$
x^{\underline{n}}=\sum_{k=1}^{n}\left[\begin{array}{l}
n \tag{*}\\
k
\end{array}\right](-1)^{n-k} x^{k} .
$$

Note that $(-1)^{n-k}$ takes care of the sign swaps as we step down through the powers. Looking at $\left(^{*}\right)$ as a definition of the coefficients of exponents in x^{n}, we can work out the definition of $\left[\begin{array}{l}n \\ k\end{array}\right]$, as follows. First, since $x^{\underline{0}}=1$, the coefficient of exponent 0 in x^{0} is 1 , which means that $\left[\begin{array}{l}0 \\ 0\end{array}\right]=1$. Since the coefficient of any exponent $k>0$ in x equals 0 , we have $\left[\begin{array}{l}0 \\ k\end{array}\right]=0$ for $k>0$. (There is one way to arrange the empty set in 0 -sized cycles, and there are no ways to arrange the empty set in k-sized cycles for $k>0$.)
Notice that it follows from the definition of falling powers that:

$$
x^{\underline{n}}=x^{\underline{n-1}} \cdot(x-n+1)=x x^{\underline{n-1}}-(n-1) x^{\underline{n-1}}
$$

Therefore, the following holds for the coefficient of exponent x^{k} in $x^{\underline{\underline{n}}}$ (this coefficient is given by $\left[\begin{array}{l}n \\ k\end{array}\right]$):

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left[\begin{array}{l}
(n-1) \\
(k-1)
\end{array}\right]+(n-1)\left[\begin{array}{c}
(n-1) \\
k
\end{array}\right] .
$$

Notice the $(k-1)$ caused by the fact that the coefficient of exponent x^{k} in $x x^{\underline{n-1}}$ equals the coefficient of x^{k-1} in x^{n-1}, and notice the + caused by the sign swap. So we see that $\left[\begin{array}{l}n \\ k\end{array}\right]$ is defined by:

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
0
\end{array}\right]:=1} \\
& {\left[\begin{array}{l}
0 \\
k
\end{array}\right]:=0 \text { for } k>0} \\
& {\left[\begin{array}{l}
n \\
k
\end{array}\right]:=(n-1)\left[\begin{array}{c}
(n-1) \\
k
\end{array}\right]+\left[\begin{array}{c}
(n-1) \\
(k-1)
\end{array}\right] \text { for } n, k>0}
\end{aligned}
$$

Here is the implementation:

```
stirlingC :: Integer -> Integer -> Integer
stirlingC 0 0 = 1
stirlingC 0 _ = 0
stirlingC n k = (n-1) * (stirlingC (n-1) k)
    + stirlingC (n-1) (k-1)
```

This definition can be used to convert from falling powers to standard powers. The implementation gives the coefficients of the map $\lambda n \cdot \sum_{k=1}^{n}\left[\begin{array}{l}n \\ k\end{array}\right] x^{k}$.

```
fall2pol :: Integer -> [Integer]
fall2pol 0 = [1]
fall2pol n =
    0 : [ (stirlingC n k) * (-1)^ (n-k) | k <- [1..n] ]
```

Next, we use this to convert Newton polynomials to standard polynomials (in coefficient list representation):

```
npol2pol :: Num a => [a] -> [a]
npol2pol xs =
    sum [ [x] * (map fromInteger $ fall2pol k) |
                                    (x,k) <- zip xs [0..] ]
```

Finally, here is the function for computing a polynomial from a sequence: just a matter of composing list2npol with npol2pol.

```
list2pol :: [Integer] -> [Rational]
list2pol = npol2pol . list2npol
```

A standard application of this is so-called curve fitting: given a list of measurements $\left(0, x_{0}\right),\left(1, x_{1}\right),\left(2, x_{2}\right), \ldots$, to find a polynomial that 'fits' all of them. This is exactly what list2pol does.

Here are some checks on the function that we implemented:

```
*Main> list2pol (map (\n -> 7*n^2+3*n-4) [0..100])
[(-4) % 1,3 % 1,7 % 1]
*Main> list2pol [0,1,5,14,30]
[0 % 1,1 % 6,1 % 2,1 % 3]
*Main> map (p2fct $ list2pol [0,1,5,14,30]) [0..8]
[0 % 1,1 % 1,5 % 1,14 % 1,30 % 1,55 % 1,91 % 1,140 % 1,204 % 1]
```

```
difference :: (Num a,Num b) => (a -> b) -> a -> b
difference f x = f (x+1) - f x
```

```
firstDfs :: (Num a,Num b) => (a -> b) -> [b]
firstDfs f = f 0 : firstDfs (difference f)
```

See [GKP89] or [Ros00] for (lots of) further information.

References

[GKP89] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics. Addison Wesley, Reading, Mass, 1989.
[Ros00] Kenneth H. Rosen, editor. Handbook of Discrete and Combinatorial Mathematics. CRC Press, 2000.

