
Addendum to Chapter 9:
Direct Computation of Polynomial
Representations for Sequences

Jan van Eijck (February, 2011)

In this addendum we describe a direct way to compute a polynomial rep-
resentation from a sequence of numbers. Gaussian elimination is one pos-
sibility, but the so-called calculus of finite differences from combinatorics
suggests another method.

import POL

import Ratio

First we introduce a new infix symbol for the operation of taking a falling
power (or: falling factorial, or: lower factorial).

Common notation for falling powers: xn (an alternative notation is (x)n).
xn is defined as

x(x− 1) · · · (x− n+ 1).

For example, x3 equals x(x − 1)(x − 2) = x3 − 3x2 + 2x, and 2x2 equals
2x(x− 1) = 2x2 − 2x. By stipulation x0 = 1.

infixr 8 ^-

(^-) :: Integral a => a -> a -> a

x ^- 0 = 1

x ^- n = (x ^- (n-1)) * (x - n + 1)

1

2

In a similar way, we can define rising powers (or: rising factorials, ascending
factorials, upper factorials). Common notation for rising powers: xn. We
are not going to use them below, but we throw them in for good measure.

infixr 8 ^+

(^+) :: Integral a => a -> a -> a

x ^+ 0 = 1

x ^+ n = (x ^+ (n-1)) * (x + n - 1)

We will call a polynomial representation where the exponents express falling
factorials a Newton polynomial (Isaac Newton used these in the form of the
so-called Newton interpolation formula, in his Principia Mathematica).

The so-called Newton series gives a way to express a polynomial f of degree
n as a Newton polynomial, given that we know its list of differences for
f(0). Notation: ∆nf gives the function which is the n-th difference of f .
The Newton series is defined by:

f(x) =
n∑

k=0

∆kf(0)

k!
· xk.

Here k! is the factorial function (implemented in Haskell as product [1..k]),
and xk is a falling power. The Newton series allows us to compute a polyno-
mial representation in terms of exponent lists from a list of first differences,
but we should keep in mind that the exponents express falling powers.

Here is an example. Consider the function f(x) = 2x3 + 3x. This function
is of the third degree, so we compute f(0), ∆f(0), ∆2f(0), ∆3f(0).

f(0) = 0

∆f(0) = f(1) − f(0) = 5

∆2f(0) = ∆f(1) − ∆f(0)

= ∆f(1) − 5 = f(2) − f(1) − 5 = 22 − 5 − 5 = 12

∆3f(0) = ∆2f(1) − ∆2f(0) = ∆2f(1) − 12

= ∆f(2) − ∆f(1) − 12 = (f(3) − f(2)) − (f(2) − f(1)) − 12

= f(3) − 2f(2) + f(1) − 12 = 12.

3

We could have used difLists to compute the list of first differences, of
course:

*Main> map head $ difLists [map (\x -> 2*x^3 + 3*x) [0..8]]

[12,12,5,0]

Newton’s formula now gives:

f(x) =
∆0f(0)

0!
· x0 +

∆1f(0)

1!
· x1 +

∆2f(0)

2!
· x2 +

∆3f(0)

3!
· x3

= 5x1 + 6x2 + 2x3.

We assume that the differences are given in a list [x0, . . . , xn], where xi =
∆if(0). Then the implementation of the Newton series formula is as follows:

newton :: (Fractional a, Enum a) => [a] -> [a]

newton xs =

[x / product [1..fromInteger k] | (x,k) <- zip xs [0..]]

The list of first differences can be computed from the output of the difLists
function, as follows:

firstDifs :: [Integer] -> [Integer]

firstDifs xs = reverse $ map head (difLists [xs])

Mapping a list of integers to a Newton polynomial representation (list of
factors of the exponents, with the exponents expressing falling powers):

list2npol :: [Integer] -> [Rational]

list2npol = newton . map fromInteger. firstDifs

This is not yet exactly what we want: we still need to map Newton falling
powers to standard powers. This is a matter of applying combinatorics, by

4

means of a conversion formula that uses the so-called Stirling cyclic numbers,

or Stirling numbers of the first kind. The number

[
n
k

]
gives the number of

ways in which a set of n elements can be partitioned into k cycles. It also
gives the coefficient of xk in the polynomial xn. In other words, its defining
relation is:

xn =

n∑
k=1

[
n
k

]
(−1)n−kxk. (*)

Note that (−1)n−k takes care of the sign swaps as we step down through the
powers. Looking at (*) as a definition of the coefficients of exponents in xn,

we can work out the definition of

[
n
k

]
, as follows. First, since x0 = 1, the

coefficient of exponent 0 in x0 is 1, which means that

[
0
0

]
= 1. Since the

coefficient of any exponent k > 0 in x0 equals 0, we have

[
0
k

]
= 0 for k > 0.

(There is one way to arrange the empty set in 0-sized cycles, and there are
no ways to arrange the empty set in k-sized cycles for k > 0.)

Notice that it follows from the definition of falling powers that:

xn = xn−1 · (x− n+ 1) = xxn−1 − (n− 1)xn−1

Therefore, the following holds for the coefficient of exponent xk in xn (this

coefficient is given by

[
n
k

]
):

[
n
k

]
=

[
(n− 1)
(k − 1)

]
+ (n− 1)

[
(n− 1)
k

]
.

Notice the (k − 1) caused by the fact that the coefficient of exponent xk in
xxn−1 equals the coefficient of xk−1 in xn−1, and notice the + caused by the

sign swap. So we see that

[
n
k

]
is defined by:

[
0
0

]
:= 1[

0
k

]
:= 0 for k > 0[

n
k

]
:= (n− 1)

[
(n− 1)
k

]
+

[
(n− 1)
(k − 1)

]
for n, k > 0

5

Here is the implementation:

stirlingC :: Integer -> Integer -> Integer

stirlingC 0 0 = 1

stirlingC 0 _ = 0

stirlingC n k = (n-1) * (stirlingC (n-1) k)

+ stirlingC (n-1) (k-1)

This definition can be used to convert from falling powers to standard pow-

ers. The implementation gives the coefficients of the map λn ·
∑n

k=1

[
n
k

]
xk.

fall2pol :: Integer -> [Integer]

fall2pol 0 = [1]

fall2pol n =

0 : [(stirlingC n k) * (-1)^(n-k) | k <- [1..n]]

Next, we use this to convert Newton polynomials to standard polynomials
(in coefficient list representation):

npol2pol :: Num a => [a] -> [a]

npol2pol xs =

sum [[x] * (map fromInteger $ fall2pol k) |

(x,k) <- zip xs [0..]]

Finally, here is the function for computing a polynomial from a sequence:
just a matter of composing list2npol with npol2pol.

list2pol :: [Integer] -> [Rational]

list2pol = npol2pol . list2npol

6

A standard application of this is so-called curve fitting: given a list of mea-
surements (0, x0), (1, x1), (2, x2), . . . , to find a polynomial that ‘fits’ all of
them. This is exactly what list2pol does.

Here are some checks on the function that we implemented:

*Main> list2pol (map (\n -> 7*n^2+3*n-4) [0..100])

[(-4) % 1,3 % 1,7 % 1]

*Main> list2pol [0,1,5,14,30]

[0 % 1,1 % 6,1 % 2,1 % 3]

*Main> map (p2fct $ list2pol [0,1,5,14,30]) [0..8]

[0 % 1,1 % 1,5 % 1,14 % 1,30 % 1,55 % 1,91 % 1,140 % 1,204 % 1]

difference :: (Num a,Num b) => (a -> b) -> a -> b

difference f x = f (x+1) - f x

firstDfs :: (Num a,Num b) => (a -> b) -> [b]

firstDfs f = f 0 : firstDfs (difference f)

See [GKP89] or [Ros00] for (lots of) further information.

References

[GKP89] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathe-
matics. Addison Wesley, Reading, Mass, 1989.

[Ros00] Kenneth H. Rosen, editor. Handbook of Discrete and Combinato-
rial Mathematics. CRC Press, 2000.

