# Purely Functional Algorithm Specification Exercises Day 2 - With Answers 

Jan van Eijck<br>CWI \& ILLC, Amsterdam

ESSLLI, Opole, August 7, 2012
homepages.cwi.nl/~jve/courses/12/esslli12/

```
module Answers2
```

where

## Exercises With Foldr

1. Define length in terms of foldr.

Answer:

$$
\text { myLength }=\text { foldr ( } \backslash \text { _ } n->n+1) 0
$$

2. Define elem $x$ in terms of foldr.

Answer:

```
myElem x = foldr (\ y b -> x == y || b) False
```

3. Find out what or does, and next define your own version of or in terms of foldr.

Answer:

```
myOr = foldr (||) False
```

4. Define map $f$ in terms of foldr.

Answer:

```
myMap f = foldr (\ x xs -> f x : xs) []
```

5. Define filter p in terms of foldr.

Answer:

```
myFilter p = foldr (\ x xs -> if p x then x:xs else xs)
```

6. Define $(++)$ in terms of foldr.

Answer:

```
myAppend = flip (foldr (:))
```

7. Define reversal in terms of foldr.

Answer:

```
reversal' = foldr (\ x xs -> xs ++ [x]) []
```


## Exercise with Foldl

```
for :: [a] -> (a -> b -> b) -> b -> b
for [] f y = y
for (x:xs) f y = for xs f (f x y)
```

8. Show that the function for that defines the for loop is a variant of foldl, by giving a definition of for in terms of foldl.
Answer:
```
myFor xs f y = foldl (flip f) y xs
```

Hint: you will also need $f l i p$, for flipping the arguments of a function of type a -> b -> c.

## Hoare Reasoning about GCD

```
euclidGCD :: Integer -> Integer -> Integer
euclidGCD = while2
    (\ x y -> x /= y)
    (\ x Y -> if x > Y
        then (x-y,y)
        else (x,y-x))
```

9. State a suitable loop invariant for the while loop in Euclid's GCD algorithm (the function euclidGCD).
Answer: there several possibilities.
Let $f$ be the step function of the while loop, and let $\left(x^{\prime}, y^{\prime}\right)$ be $f x y$. Then an obvious choice for the loop invariant is the statement that the set of divisors does not change in the step from $x, y$ to $x^{\prime}, y^{\prime}$.

## Hoare Reasoning about Squaring

$$
\begin{aligned}
& \text { sqr : : Int -> Int } \\
& \text { sqr } y=\text { let } \\
& \mathrm{x}=0 \\
& \mathrm{n}=0 \\
& \text { in sqr' } y \text { n } x \\
& \text { sqr' } y=w h i l e 2 \\
& \text { ( } \backslash \mathrm{n} \quad->\mathrm{n}<\mathrm{y} \text { ) } \\
& (\backslash n x \rightarrow(n+1, x+2 \star n+1))
\end{aligned}
$$

10. State a suitable loop invariant for the while loop in the squaring function (the function sqr $^{\prime}$ ).
Answer:
Let $n, x$ be the inputs to the step function for sqr' and let $\left(n^{\prime}, x^{\prime}\right)$ be the output. Then $x=n^{2}$ and $x^{\prime}={n^{\prime}}^{2}$ is an obvious choice.
