
Purely Functional Algorithm Specification
Exercises Day 3 — With Answers

Jan van Eijck
CWI & ILLC, Amsterdam

ESSLLI, Opole, August 8, 2012

homepages.cwi.nl/˜jve/courses/12/esslli12/

homepages.cwi.nl/~jve/courses/12/esslli12/

module Answers3

where
import List
import AssertiveCoding

Exercise

merge can be used as follows, to create a function for list sorting:

mergeSrt :: Ord a => [a] -> [a]
mergeSrt [] = []
mergeSrt (x:xs) = merge [x] (mergeSrt xs)

Find a suitable assertion, and write an assertive version of this.

Answer: an obvious choice is the postcondition stating that the result of mergeSrt
is sorted.

Wrapping this around the code gives:

mergeSrtA :: Ord a => [a] -> [a]
mergeSrtA = post1 sorted mergeSrt

Follow-up Exercise

Another approach to merge sort is to start by splitting the list to be sorted in equal
parts, recursively sort the parts, next merge.

Implement this, using the following split function.

split :: [a] -> ([a],[a])
split xs = let

n = (length xs) ‘div‘ 2
in
(take n xs, drop n xs)

Answer:

mrgSrt :: Ord a => [a] -> [a]
mrgSrt [] = []
mrgSrt [x] = [x]
mrgSrt xs = let

(ys,zs) = split xs
in

merge (mrgSrt ys) (mrgSrt zs)

Next, find a suitable assertion, and write an assertive version.

Answer: same postcondition as before:

mrgSrtA :: Ord a => [a] -> [a]
mrgSrtA = post1 sorted mrgSrt

Testing Euclid’s Algorithm

Suppose we want to write code for performing automated tests on Euclid’s algo-
rithm for large ranges of values, as follows:

myEuclid :: Integer -> Bool
myEuclid k = let

triv = (_ -> True)
in
and [triv $ (assert2 isGCD euclid) n m |

n <- [1..k], m <- [1..k]]

Use your Haskell system to check if this is a reasonable test.

If there is something wrong, can you correct it?

Answer:

There is something wrong.

This does not work, for the Haskell compiler is too clever: it knows that it does not

have to evaluate f on its arguments in order to find out that triv · f will yield
True.

This can be remedied by replacing the trivial function by a function that depends
on its input, e.g., the function λn.n > 0. The result is the test that was given in the
lecture slides:

testEuclid :: Integer -> Bool
testEuclid k =

and [(assert2 isGCD euclid) n m > 0 |
n <- [1..k], m <- [1..k]]

