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Abstract

We show how to specify preconditions, postconditions, assertions and invariants,
and how to wrap these around functional code or functional imperative code. We
illustrate the use of this for writing programs for automated testing of code that
is wrapped in appropriate assertions. We call this assertive coding. An assertive
version of a function f is a function f ′ that behaves exactly like f as long as f
complies with its specification, and aborts with error otherwise. This is a much
stronger sense of self-testing than what is called self-testing code (code with built-
in tests) in test driven development. The chapter gives examples of how to use
(inefficient) specification code to test (efficient) implementation code, and how to
turn assertive code into production code by replacing the self-testing versions of the
assertion wrappers by self-documenting versions that skip the assertion tests.



Module Declaration

module AssertiveCoding

where

import Data.List
import FunctionalImperative hiding (g)



Algorithm Design and Specification: Some excellent books



And some more:



Functional Imperative Algorithm Specification

This course will teach you a purely functional way to look at algorithms as they are
designed, presented and analyzed in these books. This complements the approach
of [4] and [2], which propose to give ‘functional’ solutions for ‘classical’ algorith-
mic problems. Instead, this course will show that classical algorithmic problems
plus their classical solutions can be presented in a purely functional way.



Preconditions, Postconditions, Assertions and Invariants

A (Hoare) assertion about an imperative program [3] has the form

{Pre} Program {Post}

where Pre and Post are conditions on states.

This Hoare statement is true in state s if truth of Pre in s guarantees truth of Post in
any state s′ that is a result state of performing Program in state s.

One way to write assertions for functional code is as wrappers around functions.
This results in a much stronger sense of self-testing than what is called self-testing
code (code with built-in tests) in test driven development [1].



Precondition Wrappers

The precondition of a function is a condition on its input parameter(s), the postcon-
dition is a condition on its value.

Here is a precondion wrapper for functions with one argument. The wrapper takes
a precondition property and a function and produces a new function that behaves as
the old one, provided the precondition is satisfied,

pre1 :: (a -> Bool) -> (a -> b) -> a -> b
pre1 p f x = if p x then f x

else error "pre1"



Postcondition Wrappers

A postcondition wrapper for functions with one argument.

post1 :: (b -> Bool) -> (a -> b) -> a -> b
post1 p f x = if p (f x) then f x

else error "post1"



Example

This can be used to specify the expected behaviour of a function.

Consider the function g:

g = while1 even (‘div‘ 2)

The g function should always output an odd integer:

godd = post1 odd g

Note that godd has the same type as g, and that the two functions compute the
same value whenever godd is defined (i.e., whenever the output value of g satisfies
the postcondition).



Assertions

More generally, an assertion is a condition that may relate input parameters to the
computed value. Here is an assertion wrapper for functions with one argument. The
wrapper wraps a binary relation expressing a condition on input and output around
a function and produces a new function that behaves as the old one, provided that
the relation holds.

assert1 :: (a -> b -> Bool) -> (a -> b) -> a -> b
assert1 p f x = if p x (f x) then f x

else error "assert1"

Example use:

gA = assert1 (\ i o -> signum i == signum o) g

Note that gA has the same type as g. Indeed, as long as the assertion holds, gA and
g compute the same value.



Invariants

An invariant of a program P in a state s is a condition C with the property that if C
holds in s then C will also hold in any state that results from execution of P in s.
Thus, invariants are Hoare assertions of the form:

{C} Program {C}

If you wrap an invariant around a step function in a loop, the invariant documents
the expected behaviour of the loop.



Invariant Wrappers

First an invariant wrapper for the case of a function with a single parameter: a
function f :: a -> a fails an invariant p :: a -> Bool if the input of the
function satisfies p but the output does not:

invar1 :: (a -> Bool) -> (a -> a) -> a -> a
invar1 p f x =

let
x’ = f x

in
if p x && not (p x’) then error "invar1"
else x’



Two Examples

Example of an invariant wrap around g:

gsign = invar1 (>0) g

Another example:

gsign’ = invar1 (<0) g



Use of Invariant Inside While Loop

We can also use the invariant inside a while loop:

g3’ = while1 (\x -> even x)
(invar1 (>0) (\x -> x ‘div‘ 2))



An Assertive List Merge Algorithm

Consider the problem of merging two sorted lists into a result list that is also sorted,
and that contains the two original lists as sublists.



Implication Operator

For writing specifications an operator for Boolean implication is good to have.

infix 1 ==>

(==>) :: Bool -> Bool -> Bool
p ==> q = (not p) || q



Sorted Property

The specification for merge uses the following property:

sortedProp :: Ord a => [a] -> [a] -> [a] -> Bool
sortedProp xs ys zs =

(sorted xs && sorted ys) ==> sorted zs

sorted :: Ord a => [a] -> Bool
sorted [] = True
sorted [_] = True
sorted (x:y:zs) = x <= y && sorted (y:zs)



Sublist Property

Each list should occur as a sublist in the merge:

sublistProp :: Eq a => [a] -> [a] -> [a] -> Bool
sublistProp xs ys zs =

sublist xs zs && sublist ys zs

sublist :: Eq a => [a] -> [a] -> Bool
sublist [] _ = True
sublist (x:xs) ys =

elem x ys && sublist xs (ys \\ [x])



Assertion wrapper for functions with two parameters

assert2 :: (a -> b -> c -> Bool)
-> (a -> b -> c) -> a -> b -> c

assert2 p f x y =
if p x y (f x y) then f x y
else error "assert2"



A merge function

merge :: Ord a => [a] -> [a] -> [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys) = if x <= y

then x : merge xs (y:ys)
else y : merge (x:xs) ys

And an assertive version of the merge function:

mergeA :: Ord a => [a] -> [a] -> [a]
mergeA = assert2 sortedProp

$ assert2 sublistProp merge



Wrap Arond Wrap

We have wrapped an assertion around a wrap of an assertion around a function. This
cause no problems, for the wrap of an assertion around a function has the same type
as the original function.

Note that sortedProp is an implication. If we apply test-merge to a list that is
not sorted, the property still holds:

*AssertiveCoding> mergeA [2,1] [3..10]
[2,1,3,4,5,6,7,8,9,10]



Assertive Versions of the GCD Algorithm

A precondition of the GCD algorithm is that its arguments are positive integers.
This can be expressed as follows:

euclid = assert2 (\ m n _ -> m > 0 && n > 0)
euclidGCD

This function has the same type as euclidGCD. Both euclid and euclidGCD
are partial functions; in fact they are the same partial function. The difference is
that euclid aborts where euclidGCD diverges.



Testing Euclid with Specific Input

If we want to check that euclid behaves correctly, we can test by using very
specific input. E.g., if p and q are different prime numbers, we know that the GCD
of p and q equals 1. Here is a test of Euclid’s algorithm based on this knowledge.

testEuclid1 :: Int -> Bool
testEuclid1 k = let

primes = take k (filter prime [2..])
in
and [ euclid p q == 1 |

p <- primes, q <- primes, p /= q ]



Prime

This uses the following implementation for the property of being a prime number:

prime :: Integer -> Bool
prime n =

n > 1 && all (\ x -> rem n x /= 0) xs
where xs = takeWhile (\ y -> yˆ2 <= n) [2..]



Testing with Assertions

We can also test using assertions. An example assertion for Euclid’s algorithm is
that the result value is the greatest common divisor of the two inputs. To express
that, we implement a bit of logic.



Universal Quantification

The Haskell function all has type

(a -> Bool) -> [a] -> Bool.

Sometimes it is more convenient to have a universal quantifier of type

[a] -> (a -> Bool) -> Bool.

Here it is:

forall = flip all



Divides

The definition of GCD is given in terms of the divides relation. An integer n divides
another integer m if there is an integer k with nk = m, in other words, if the process
of dividing m by n leaves a remainder 0.

divides :: Integer -> Integer -> Bool
divides n m = rem m n == 0



GCD Definition

An integer n is the GCD of k and m if n divides both k and m, and every divisor of
k and m also divides n.

isGCD :: Integer -> Integer -> Integer -> Bool
isGCD k m n = divides n k && divides n m &&

forall [1..min k m]
(\ x -> (divides x k && divides x m)

==> divides x n)



Assertive Version of Euclid’s GCD Function

euclid’ :: Integer -> Integer -> Integer
euclid’ = assert2 isGCD euclid

In case you don’t see what’s happening: the new function euclid’ computes the
same value as euclid, but the assertion guarantees that if it would ever compute
the wrong value, an exception will be raised.



A Test

testEuclid :: Integer -> Bool
testEuclid k =

and [ (assert2 isGCD euclid) n m > 0 |
n <- [1..k], m <- [1..k] ]

The subtlety here is that the assertion allows us to define what is right and what is
wrong. Imperative programs are dumb. Functional programs are dumb, too. But
assertions allow us to relate what a program does to what the program is supposed
to do.

The following test succeeds in under 25 seconds on my 3 Ghz dualcore machine:

*AssertiveCoding> testEuclid 300
True



Finding An Invariant

Another thing we can do is find a suitable invariant. An invariant for Euclid’s step
function is that the set of common divisors does not change. The following function
gives the common divisors of two integers:

divisors :: Integer -> Integer -> [Integer]
divisors m n = let

k = min m n
in [ d | d <- [2..k], divides d m, divides d n ]



Assertion for the Step Function

We can use this in an assertion about the step function, as follows:

sameDivisors x y (x’,y’) =
divisors x y == divisors x’ y’



Wrap the assertion around the step function

euclidGCD’ :: Integer -> Integer -> Integer
euclidGCD’ = while2

(\ x y -> x /= y)
(assert2 sameDivisors
(\ x y -> if x > y

then (x-y,y)
else (x,y-x)))

Note that the assertion sameDivisors is in fact an invariant, stated as a relation
between input and output of the step function.



Invariant Wrapper for Step Functions with Two Arguments

invar2 :: (a -> b -> Bool) ->
(a -> b -> (a,b)) ->
a -> b -> (a,b)

invar2 p f x y =
let
(x’,y’) = f x y

in
if p x y && not (p x’ y’) then error "invar2"
else (x’,y’)



Example

As an example of how this is used, consider the following invariant. If d divides
both x and y before the step, then d should divide x and y after the step.

Let’s add a parameter for such a divisor d, and state the invariant:

euclidGCD’’ :: Integer -> Integer
-> Integer -> Integer

euclidGCD’’ = \ d -> while2
(\ x y -> x /= y)
(invar2 (\ x y ->

divides d x && divides d y)
(\ x y -> if x > y

then (x-y,y)
else (x,y-x)))



Use of Example in Test

testEuclid2 :: Integer -> Bool
testEuclid2 k =

and [ euclidGCD’’ d n m >= 0 |
n <- [1..k],
m <- [1..k],
d <- [2..min n m] ]



The Extended GCD Algorithm

The extended GCD algoritm extends the Euclidean algorithm, as follows. Instead
of finding the GCD of two (positive) integers M and N it finds two integers x and
y satisfying the so-called Bézout identity (or: Bézout equality):

xM + yN = gcd(M,N).

For example, for arguments M = 12 and N = 26, the extended GCD algorithm
gives the pair x = −2 and y = 1. And indeed, −2 ∗ 12+26 = 2, which is the GCD
of 12 and 26.

Here is an imperative (iterative) version of the algorithm:



Extended GCD algorithm

1. Let positive integers a and b be given.

2. x := 0;

3. lastx := 1;

4. y := 1;

5. lasty := 0;

6. while b 6= 0 do

(a) (q, r) := quotRem(a, b);

(b) (a, b) := (b, r);

(c) (x, lastx) := (lastx − q ∗ x, x);
(d) (y, lasty) := (lasty − q ∗ y, y).

7. Return (lastx, lasty).



Functional imperative version, in Haskell:

ext_gcd :: Integer -> Integer -> (Integer,Integer)
ext_gcd a b = let

x = 0
y = 1
lastx = 1
lasty = 0

in ext_gcd’ a b x y (lastx,lasty)

ext_gcd’ = while5 (\ _ b _ _ _ -> b /= 0)
(\ a b x y (lastx,lasty) -> let

(q,r) = quotRem a b
(x’,lastx’) = (lastx-q*x,x)
(y’,lasty’) = (lasty-q*y,y)

in (b,r,x’,y’,(lastx’,lasty’)))



While5

This uses a while5 loop:

while5 :: (a -> b -> c -> d -> e -> Bool)
-> (a -> b -> c -> d -> e -> (a,b,c,d,e))
-> a -> b -> c -> d -> e -> e

while5 p f x y z v w
| p x y z v w = let

(x’,y’,z’,v’,w’) = f x y z v w
in while5 p f x’ y’ z’ v’ w’

| otherwise = w



Bézout’s identity

Bézout’s identity is turned into an assertion, as follows:

bezout :: Integer -> Integer
-> (Integer,Integer) -> Bool

bezout m n (x,y) = x*m + y*n == euclid m n

Use of this to produce assertive code for the extended algorithm:

ext_gcdA = assert2 bezout ext_gcd



Extended Euclidean Algorithm, Functional Version

A functional (recursive) version of the extended Euclidean algorithm:

fct_gcd :: Integer -> Integer -> (Integer,Integer)
fct_gcd a b =

if b == 0
then (1,0)
else

let
(q,r) = quotRem a b
(s,t) = fct_gcd b r

in (t, s - q*t)

Again, an assertive version of this:

fct_gcdA = assert2 bezout fct_gcd



Assertion wrapper for functions with three arguments

assert3 :: (a -> b -> c -> d -> Bool) ->
(a -> b -> c -> d) ->
a -> b -> c -> d

assert3 p f x y z =
if p x y z (f x y z) then f x y z
else error "assert3"



Invariant wrapper for step functions with three arguments

invar3 :: (a -> b -> c -> Bool) ->
(a -> b -> c -> (a,b,c)) ->
a -> b -> c -> (a,b,c)

invar3 p f x y z =
let
(x’,y’,z’) = f x y z

in
if p x y z && not (p x’ y’ z’) then error "invar3"
else (x’,y’,z’)



Assertion wrapper for functions with four arguments

assert4 :: (a -> b -> c -> d -> e -> Bool)
-> (a -> b -> c -> d -> e)
-> a -> b -> c -> d -> e

assert4 p f x y z u =
if p x y z u (f x y z u) then f x y z u
else error "assert4"



Invariant wrapper for step functions with four arguments

invar4 :: (a -> b -> c -> d -> Bool) ->
(a -> b -> c -> d -> (a,b,c,d)) ->
a -> b -> c -> d -> (a,b,c,d)

invar4 p f x y z u =
let
(x’,y’,z’,u’) = f x y z u

in
if p x y z u && not (p x’ y’ z’ u’)
then error "invar4"
else (x’,y’,z’,u’)



Asertion wrapper for functions with five arguments

assert5 :: (a -> b -> c -> d -> e -> f -> Bool)
-> (a -> b -> c -> d -> e -> f)
-> a -> b -> c -> d -> e -> f

assert5 p f x y z u v =
if p x y z u v (f x y z u v) then f x y z u v
else error "assert5"



Invariant wrapper for step functions with five arguments

invar5 :: (a -> b -> c -> d -> e -> Bool) ->
(a -> b -> c -> d -> e -> (a,b,c,d,e)) ->
a -> b -> c -> d -> e -> (a,b,c,d,e)

invar5 p f x y z u v =
let
(x’,y’,z’,u’,v’) = f x y z u v

in
if p x y z u v && not (p x’ y’ z’ u’ v’)
then error "invar5"
else (x’,y’,z’,u’,v’)



Assertive Code is Efficient Self-Documenting Code

More often than not, an assertive version of a function is much less efficient than
the regular version: the assertions are inefficient specification algorithms to test the
behaviour of efficient functions.

But this does not matter. To turn assertive code into self-documenting production
code, all you have to do is load a module with alternative definitions of the assertion
and invariant wrappers.

Take the definition of assert1. This is replaced by:

assert1 :: (a -> b -> Bool) -> (a -> b) -> a -> b
assert1 _ = id

And so on for the other wrappers. See module AssertDoc on the Course Website.

The assertions are still in the code, but instead of being executed they now serve as
documentation. The assertive version of a function executes exactly as the version
without the assertion. Assertive code comes with absolutely no efficiency penalty.



What Are We Testing?

Suppose a program (implemented function) fails its implemented assertion. What
should we conclude? This is a pertinent question, for the assertion itself is a piece
of code too, in the same programming language as the function that we want to test.

So what are we testing:

• the correctness of the code?

• the correctness of the implememented specification for the code?



We Are Testing Both

In fact, we are testing both at the same time. Therefore, the failure of a test can
mean either of two things, and we should be careful to find out wat our situation is:

1. There is something wrong with the program.

2. There is something wrong with the specification of the assertion for the pro-
gram.

It is up to us to find out which case we are in.

In both cases it is important to find out where the problem resides. In the first case,
we have to fix a code defect, and we are in a good position to do so because we
have the specification as a yardstick. In the second case, we are not ready to fix
code defects. First and foremost, we have to fix a defect in our understanding of
what our program is supposed to do. Without that growth in understanding, it will
be very hard indeed to detect and fix possible defects in the code itself.



Summary

State-of-the-art functional programming languages are well suited not only for im-
plementing algorithms but also for specifying algorithms and wrap the specifica-
tions around the implementations, to produce assertive code. In fact you can do this
with any language, but the cost is higher (sometimes much higher) for less abstract
languages.

We have seen that imperative algorithms can be implemented directly in a func-
tional language. The while loops that were employed above are explicit about the
parameters that are used for checking loop termination and for defining the loop
step. This often makes the implemented algorithms more perspicuous.
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