
Purely Functional Algorithm Specification
Exercises Day 3

Jan van Eijck
CWI & ILLC, Amsterdam

ESSLLI, Opole, August 8, 2012

homepages.cwi.nl/˜jve/courses/12/esslli12/

homepages.cwi.nl/~jve/courses/12/esslli12/

module Exerc3

where
import List
import While
import Assert
import Reasoning (update,updates)
import AssertiveCoding

Exercise

merge can be used as follows, to create a function for list sorting:

mergeSrt :: Ord a => [a] -> [a]
mergeSrt [] = []
mergeSrt (x:xs) = merge [x] (mergeSrt xs)

Find a suitable assertion, and write an assertive version of this.

Follow-up Exercise

Another approach to merge sort is to start by splitting the list in equal parts, recur-
sively sort the parts, next merge.

Implement this, using the following split function.

split :: [a] -> ([a],[a])
split xs = let

n = (length xs) ‘div‘ 2
in
(take n xs, drop n xs)

Next, find a suitable assertion, and write an assertive version.

Testing Euclid’s Algorithm

Suppose we want to write code for performing automated tests on Euclid’s algo-
rithm for large ranges of values, as follows:

myEuclid :: Integer -> Bool
myEuclid k = let

triv = (_ -> True)
in
and [triv $ (assert2 isGCD euclid) n m |

n <- [1..k], m <- [1..k]]

Use your Haskell system to check if this is a reasonable test.

If there is something wrong, can you correct it?

