
Functional Imperative Style

Jan van Eijck
CWI & ILLC, Amsterdam

August 7, 2012



Literate Programming, Again

module FunctionalImperative

where

import List



Loops in Imperative Programming

x := 0;
n := 0;
while n < y do

{
x := x + 2*n + 1;
n := n + 1;

}
return x;



What a Functional Programmer Might Write

f :: Int -> Int
f y = f’ y 0 0

f’ :: Int -> Int -> Int -> Int
f’ y x n = if n < y then

let
x’ = x + 2*n + 1
n’ = n + 1

in f’ y x’ n’
else x

This replaces a while loop by a recursive function call.



Reasoning About While Loops

To show that the imperative version computes the value of y2 in x, the key is to
show that the loop invariant x = n2 holds for the while loop:

{ x == nˆ2 }
x := x + 2*n + 1;
n := n + 1;

{ x == nˆ2 }



Reasoning About Recursion

Recursive procedures suggest inductive proofs. In this case we can use induction
on y to show that f ′ returns the square of y, for non-negative y, as follows.

Base case If y = 0, then f ′ 0 0 0 returns 0, by the definition of f ′. This is correct,
for 02 = 0.

Induction step Assume for y = m the function call f ′ m x m returns x with
x = m2. We have to show that for y = m+1, the function call f ′(m+1) x m
returns (m+ 1)2.

. . .



The Essence of a While Loop

If taken literally, the compound action ‘lather, rinse, repeat’ would look like this:

lather ; rinse



Repeated Actions With Stop Condition

repeat the lather rinse sequence until your hair is clean. This gives a more sensible
interpretation of the repetition instruction:

START

hair clean?
lather ; rinse

STOP
yes

no



Written as an Algorithm

Hair wash algorithm

• while hair not clean do:

1. lather;

2. rinse.



While in Haskell

The two ingredients are:

• a test for loop termination;

• a step function that determines the parameters for the next step in the loop.

The termination test takes a number of parameters and returns a boolean, the step
function takes the same parameters and computes new values for those parameters.



While with a Single Parameter

Suppose for simplicity that there is just one parameter. Here is an example loop:

• while even x do
x := x÷ 2.

Here ÷ is the ‘div’ operator for integer division. The result of x ÷ y is the integer
you get if you divide x by y and throw away the remainder. Thus, 9÷ 2 = 4.



Functional Version

The functional version has the loop replaced by a recursive call:

g x = if even x then
let
x’ = x ‘div‘ 2

in g x’
else x



Combination of Test and Step

g has a single parameter, and one can think of its definition as a combination of a
test p and a step h, as follows:

p x = even x
h x = x ‘div‘ 2

g1 x = if p x then g1 (h x)
else x

Let’s make this explicit . . .



While Loop With Single Parameter

Here is a definition of the general form of a while loop with a single parameter:

while1 :: (a -> Bool) -> (a -> a) -> a -> a
while1 p f x

| p x = while1 p f (f x)
| otherwise = x



While Defined in Terms of Until

Another way to express this is in terms of the built-in Haskell function until:

neg :: (a -> Bool) -> a -> Bool
neg p = \x -> not (p x)

while1 = until . neg

This allows us to write the function g as follows:

g2 = while1 p h



Reformulation

It looks like the parameters have disappeared, but we can write out the test and step
functions explicitly:

g3 = while1 (\x -> even x) (\x -> x ‘div‘ 2)

But this can be abbreviated again:

g3’ = while1 even (‘div‘ 2)

This is the functional version of the loop. This is how close functional programming
really is to imperative programming.



Example: Least Fixpoint Algorithm

Least fixpoint algorithm

• while x 6= f(x) do
x := f(x).



Least Fixpoint, Functional Style

lfp :: Eq a => (a -> a) -> a -> a
lfp f x | x == f x = x

| otherwise = lfp f (f x)



Least Fixpoint, Functional Imperative Style

lfp’ :: Eq a => (a -> a) -> a -> a
lfp’ f = while1 (\x -> x /= f x) (\x -> f x)



While With Two Parameters

while2 :: (a -> b -> Bool)
-> (a -> b -> (a,b))
-> a -> b -> b

while2 p f x y
| p x y = let (x’,y’) = f x y in

while2 p f x’ y’
| otherwise = y





Euclid’s GCD Algorithm



GCD Algorithm in Imperative Pseudo-code

Euclid’s GCD algorithm

1. while x 6= y do
if x > y then x := x− y else y := y − x;

2. return y.



GCD Algorithm in Functional Imperative Style

euclidGCD :: Integer -> Integer -> Integer
euclidGCD = while2

(\ x y -> x /= y)
(\ x y -> if x > y

then (x-y,y)
else (x,y-x))



Squaring Function in Functional Imperative Style

sqr :: Int -> Int
sqr y = let

n = 0
x = 0

in sqr’ y n x

sqr’ y = while2
(\ n _ -> n < y)
(\ n x -> (n+1, x + 2*n + 1))

Note the use of an anonymous variable .



While With Three Parameters

while3 :: (a -> b -> c -> Bool)
-> (a -> b -> c -> (a,b,c))
-> a -> b -> c -> c

while3 p f x y z
| p x y z = let

(x’,y’,z’) = f x y z
in while3 p f x’ y’ z’

| otherwise = z



Repeat Loops in Functional Imperative Style

Another hair wash algorithm

• repeat

1. lather;

2. rinse;

until hair clean.



In a Picture

START hair clean?
lather ; rinse

STOP
yes

no



Repeat in Terms of While

repeat P until C

is equivalent to:
P ; while ¬C do P.

This gives us a recipe for repeat loops in functional imperative style, using repeat
wrappers such as the following . . .



Repeat1

repeat1 :: (a -> a) -> (a -> Bool) -> a -> a
repeat1 f p = while1 (\ x -> not (p x)) f . f



Repeat2

repeat2 :: (a -> b -> (a,b))
-> (a -> b -> Bool) -> a -> b -> b

repeat2 f p x y = let
(x1,y1) = f x y
negp = (\ x y -> not (p x y))

in while2 negp f x1 y1



Repeat3

repeat3 :: (a -> b -> c -> (a,b,c))
-> (a -> b -> c -> Bool) -> a -> b -> c -> c

repeat3 f p x y z = let
(x1,y1,z1) = f x y z
negp = (\ x y z -> not (p x y z))

in while3 negp f x1 y1 z1



For Loops in Functional Imperative Style

A natural way to express an algorithm for computing the factorial function, in im-
perative style, is in terms of a “for” loop:

Factorial Algorithm

1. t := 1;

2. for i in 1 . . . n do t := i ∗ t;

3. return t.



For Wrapper in Haskell

For a faithful rendering of this in Haskell, we define a function for the “for” loop:

for :: [a] -> (a -> b -> b) -> b -> b
for [] f y = y
for (x:xs) f y = for xs f (f x y)

This gives the following Haskell version of the algorithm:

fact :: Integer -> Integer
fact n = for [1..n] (\ i t -> i*t) 1



With Initialisation

If we wish, we can spell out the initialisation, as follows:

fact :: Integer -> Integer
fact n = let

t = 1
in fact’ n t

fact’ :: Integer -> Integer -> Integer
fact’ n = for [1..n] (\ i t -> i*t)



Version With While Loop

Let’s contrast this with a version of the algorithm that uses a “while” loop:

Another Factorial Algorithm

1. t := 1;

2. while n 6= 0 do

(a) t := n ∗ t;
(b) n := n− 1;

3. return t.



Functional Imperative Version

In functional imperative style, this becomes:

factorial :: Integer -> Integer
factorial n = let

t = 1
in factorial’ n t

factorial’ = while2 (\ n _ -> n /= 0)
(\ n t -> let

t’ = n*t
n’ = n-1

in (n’,t’))



Digression on Fold

Wherever imperative programmers use “for” loops, functional programmers tend to
use fold constructions.

The pattern of recursive definitions over lists consists of matching the empty list []
for the base case, and matching the non-empty list (x:xs) for the recursive case.
Witness:

and :: [Bool] -> Bool
and [] = True
and (x:xs) = x && and xs



Foldr

This occurs so often that Haskell provides a standard higher-order function that
captures the essence of what goes on in this kind of definition:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)



Foldr in Action

Here is what happens if you call foldr with a function f , and identity element z,
and a list [x1, x2, x3, . . . , xn]:

foldr f z [x1, x2, ..., xn] = (f x1 (f x2 (f x3 . . . (f xn z) . . .).

And the same thing using infix notation:

foldr f z [x1, x2, ..., xn] = (x1 ‘f ‘ (x2 ‘f ‘ (x3 ‘f ‘ (. . . (xn ‘f ‘ z) . . .).

For instance, the and function can be defined using foldr as follows:

and = foldr (&&) True



Foldl

While foldr folds to the right, the following built-in function folds to the left:

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z0 xs0 = lgo z0 xs0

where
lgo z [] = z
lgo z (x:xs) = lgo (f z x) xs



Foldl in Action

If you apply foldl to a function f :: α → β → α, a left identity element z :: α
for the function, and a list of arguments of type β, then we get:

foldl f z [x1, x2, ..., xn] = (f . . . (f(f(f z x1) x2) x3) . . . xn)

Or, if you write f as an infix operator:

foldl f z [x1, x2, ..., xn] = (. . . (((z ‘f ‘ x1) ‘f ‘ x2) ‘f ‘ x3) . . . ‘f ‘ xn)



Factorial in Terms of Product

The standard way to define the factorial function in functional programming is:

factorial n = product [1..n]



Sum and Product in Terms of Foldl

The function product is predefined. If we look up the definition of sum and
product in the Haskell prelude, we find:

sum, product :: (Num a) => [a] -> a
sum = foldl (+) 0
product = foldl (*) 1



For2

Here is a version of “for” where the step function has an additional argument:

for2 :: [a] -> (a -> b -> c -> (b,c))
-> b -> c -> c

for2 [] f _ z = z
for2 (x:xs) f y z = let

(y’,z’) = f x y z
in
for2 xs f y’ z’



For3

With two additional arguments:

for3 :: [a] -> (a -> b -> c -> d -> (b,c,d))
-> b -> c -> d -> d

for3 [] f _ _ u = u
for3 (x:xs) f y z u = let

(y’,z’,u’) = f x y z u
in
for3 xs f y’ z’ u’

And so on.



Fordown

We can also count down instead of up:

fordown :: [a] -> (a -> b -> b) -> b -> b
fordown = for . reverse

fordown2 :: [a] -> (a -> b -> c -> (b,c))
-> b -> c -> c

fordown2 = for2 . reverse

fordown3 :: [a] -> (a -> b -> c -> d -> (b,c,d))
-> b -> c -> d -> d

fordown3 = for3 . reverse



Summary, and Further Reading

This lecture has introduced you to programming in functional imperative style.

Iteration versus recursion is the topic of chapter 2 of the classic [1]. This book is
freely available on internet, from address http://infolab.stanford.edu/
˜ullman/focs.html.

http://infolab.stanford.edu/~ullman/focs.html
http://infolab.stanford.edu/~ullman/focs.html


References

[1] Alfred V. Aho and Jeffrey D. Ullman. Foundations of Computer Science — C
edition. W. H. Freeman, 1994.


