Functional Imperative Style

Jan van Eijck
CWI \& ILLC, Amsterdam

August 7, 2012

Literate Programming, Again

```
module FunctionalImperative
where
import List
```


Loops in Imperative Programming

```
x := 0;
n := 0;
while n < y do
    {
        x := x + 2*n + 1;
        n := n + 1;
    }
return x;
```


What a Functional Programmer Might Write

```
f :: Int -> Int
f y = f' y 0 0
f' :: Int -> Int -> Int -> Int
f' y x n = if n < y then
    let
        x' = x + 2*n + 1
            n'}=n + 
    in f' y x' n'
    else x
```

This replaces a while loop by a recursive function call.

Reasoning About While Loops

To show that the imperative version computes the value of y^{2} in x, the key is to show that the loop invariant $x=n^{2}$ holds for the while loop:

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
\left.\mathrm{x}=\mathrm{n}^{\wedge} 2\right\} \\
\mathrm{x} \\
\mathrm{n}
\end{array}=\mathrm{x}+2 \star \mathrm{n}+1 ;\right. \\
\{\mathrm{n}+1 ; \\
\mathrm{x}
\end{array}=\mathrm{n}^{\wedge} 2\right\}
$$

Reasoning About Recursion

Recursive procedures suggest inductive proofs. In this case we can use induction on y to show that f^{\prime} returns the square of y, for non-negative y, as follows.

Base case If $y=0$, then $f^{\prime} 000$ returns 0 , by the definition of f^{\prime}. This is correct, for $0^{2}=0$.

Induction step Assume for $y=m$ the function call $f^{\prime} m x m$ returns x with $x=m^{2}$. We have to show that for $y=m+1$, the function call $f^{\prime}(m+1) x m$ returns $(m+1)^{2}$.

The Essence of a While Loop

If taken literally, the compound action 'lather, rinse, repeat' would look like this:

Repeated Actions With Stop Condition

repeat the lather rinse sequence until your hair is clean. This gives a more sensible interpretation of the repetition instruction:

Written as an Algorithm

Hair wash algorithm

- while hair not clean do:

1. lather;
2. rinse.

While in Haskell

The two ingredients are:

- a test for loop termination;
- a step function that determines the parameters for the next step in the loop.

The termination test takes a number of parameters and returns a boolean, the step function takes the same parameters and computes new values for those parameters.

While with a Single Parameter

Suppose for simplicity that there is just one parameter. Here is an example loop:

- while even x do

$$
x:=x \div 2 .
$$

Here \div is the 'div' operator for integer division. The result of $x \div y$ is the integer you get if you divide x by y and throw away the remainder. Thus, $9 \div 2=4$.

Functional Version

The functional version has the loop replaced by a recursive call:

$$
\begin{aligned}
g \mathrm{x}= & \text { if even } \mathrm{x} \text { then } \\
& \text { let } \\
& \mathrm{x}^{\prime}=\mathrm{x} \text { 'div' } 2 \\
& \text { in } g x^{\prime} \\
& \text { else } x
\end{aligned}
$$

Combination of Test and Step

g has a single parameter, and one can think of its definition as a combination of a test p and a step h, as follows:

```
p x = even x
h x = x 'div' 2
g1 x = if p x then g1 (h x)
    else x
```

Let's make this explicit ...

While Loop With Single Parameter

Here is a definition of the general form of a while loop with a single parameter:

```
whilel :: (a -> Bool) -> (a -> a) -> a -> a
while1 p f x
    | p x = whilel p f (f x)
    | otherwise = x
```


While Defined in Terms of Until

Another way to express this is in terms of the built-in Haskell function until:

```
neg :: (a -> Bool) -> a -> Bool
neg p = \x -> not (p x)
whilel = until . neg
```

This allows us to write the function g as follows:

$$
\mathrm{g} 2=\text { while1 p h }
$$

Reformulation

It looks like the parameters have disappeared, but we can write out the test and step functions explicitly:

```
g3 = while1 (\x -> even x) (\x -> x `div` 2)
```

But this can be abbreviated again:

```
g3' = while1 even (`div` 2)
```

This is the functional version of the loop. This is how close functional programming really is to imperative programming.

Example: Least Fixpoint Algorithm

Least fixpoint algorithm

- while $x \neq f(x)$ do

$$
x:=f(x) .
$$

Least Fixpoint, Functional Style

$$
\begin{array}{rl}
\operatorname{lfp}:: E q & =>(a->a)->a->a \\
\operatorname{lfp} f x \mid x==f x & x \\
& \mid \text { otherwise }=\operatorname{lfp} f(f x)
\end{array}
$$

Least Fixpoint, Functional Imperative Style

```
lfp' :: Eq a => (a -> a) -> a -> a
lfp' f = while1 (\x -> x /= f x) (\x -> f x)
```


While With Two Parameters

$$
\begin{aligned}
& \text { while2 :: (a -> b -> Bool) } \\
& \text {-> (a -> b -> }(\mathrm{a}, \mathrm{~b})) \\
& \text {-> a -> b -> b } \\
& \text { while2 p f x y } \\
& \mid \mathrm{p} x \mathrm{y}=\operatorname{let}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)=\mathrm{f} \mathrm{x} y \text { in } \\
& \text { while2 } p \text { f } x^{\prime} y^{\prime} \\
& \text { | otherwise = y }
\end{aligned}
$$

Euclid's GCD Algorithm

GCD Algorithm in Imperative Pseudo-code

Euclid's GCD algorithm

1. while $x \neq y$ do

$$
\text { if } x>y \text { then } x:=x-y \text { else } y:=y-x
$$

2. return y.

GCD Algorithm in Functional Imperative Style

```
euclidGCD :: Integer -> Integer -> Integer
euclidGCD = while2
\[
\begin{aligned}
(\backslash x y-> & x /=y) \\
(\backslash x y-> & i f x>y \\
& \\
& \text { then }(x-y, y) \\
& \quad \text { else }(x, y-x))
\end{aligned}
\]
```


Squaring Function in Functional Imperative Style

$$
\begin{aligned}
& \text { sqr : : Int }->\text { Int } \\
& \text { sqr } y=\text { let } \\
& \mathrm{n}=0 \\
& \mathrm{x}=0 \\
& \text { in sqr' } y \mathrm{n} x \\
& \text { sqr' } y=w h i l e 2 \\
& \begin{array}{l}
(\backslash n->n<y) \\
(\backslash n x->(n+1, x+2 \star n+1))
\end{array}
\end{aligned}
$$

Note the use of an anonymous variable _.

While With Three Parameters

$$
\begin{aligned}
& \text { while3 :: (a -> b -> c -> Bool) } \\
& \text {-> (a -> b -> c -> }(\mathrm{a}, \mathrm{~b}, \mathrm{c})) \\
& \text {-> a -> b -> c -> c } \\
& \text { while3 p f x y z } \\
& \text { | } \mathrm{p} x \mathrm{y} \mathrm{z}=\text { let } \\
& \left(x^{\prime}, y^{\prime}, z^{\prime}\right)=f x y z \\
& \text { in while3 p f } x^{\prime} y^{\prime} z^{\prime} \\
& \text { | otherwise = z }
\end{aligned}
$$

Repeat Loops in Functional Imperative Style

Another hair wash algorithm

- repeat

1. lather;
2. rinse;
until hair clean.

In a Picture

Repeat in Terms of While

$$
\text { repeat } P \text { until } C
$$

is equivalent to:

$$
P \text {; while } \neg C \text { do } P \text {. }
$$

This gives us a recipe for repeat loops in functional imperative style, using repeat wrappers such as the following...

Repeat1

```
repeat1 :: (a -> a) -> (a -> Bool) -> a -> a
repeat1 f p = while1 (\ x -> not (p x)) f . f
```


Repeat2

```
repeat2 :: (a -> b -> (a,b))
    -> (a -> b -> Bool) -> a -> b -> b
repeat2 f p x y = let
        (x1,y1) = f x y
        negp = (\ x y -> not (p x y))
    in while2 negp f x1 yl
```


Repeat3

$$
\begin{aligned}
& \text { repeat } 3 \text { :: (} \mathrm{a}->\mathrm{b}->\mathrm{c}->(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \text {) } \\
& \text {-> (a -> b -> c -> Bool) -> a -> b -> c -> c } \\
& \text { repeat } 3 \mathrm{f} p \mathrm{x} y \mathrm{z}=\text { let } \\
& (x 1, y 1, z 1)=f x y z \\
& \text { negp } \quad=(\backslash x y z->\operatorname{not}(p x y z)) \\
& \text { in while3 negp } f \text { x1 y1 z1 }
\end{aligned}
$$

For Loops in Functional Imperative Style

A natural way to express an algorithm for computing the factorial function, in imperative style, is in terms of a "for" loop:

Factorial Algorithm

1. $t:=1$;
2. for i in $1 \ldots n$ do $t:=i * t$;
3. return t.

For Wrapper in Haskell

For a faithful rendering of this in Haskell, we define a function for the "for" loop:

```
for :: [a] -> (a -> b -> b) -> b -> b
for [] f Y = Y
for (x:xS) f y = for xs f (f x y)
```

This gives the following Haskell version of the algorithm:

```
fact :: Integer -> Integer
fact n = for [1..n] (\ i t -> i*t) 1
```


With Initialisation

If we wish, we can spell out the initialisation, as follows:

```
fact :: Integer -> Integer
fact n = let
    t = 1
    in fact' n t
fact' :: Integer -> Integer -> Integer
fact' n = for [1..n] (\ i t -> i*t)
```


Version With While Loop

Let's contrast this with a version of the algorithm that uses a "while" loop:

Another Factorial Algorithm

1. $t:=1$;
2. while $n \neq 0$ do
(a) $t:=n * t$;
(b) $n:=n-1$;
3. return t.

Functional Imperative Version

In functional imperative style, this becomes:

$$
\begin{aligned}
& \text { factorial :: Integer }->\text { Integer } \\
& \text { factorial } n=\text { let } \\
& t=1 \\
& \text { in factorial' n t } \\
& \begin{aligned}
\text { factorial' = while2 } & (\backslash n-->n /=0) \\
& (\backslash n t->\text { let } \\
& t^{\prime}=n * t \\
& n^{\prime}=n-1 \\
& \text { in } \left.\left(n^{\prime}, t^{\prime}\right)\right)
\end{aligned}
\end{aligned}
$$

Digression on Fold

Wherever imperative programmers use "for" loops, functional programmers tend to use fold constructions.

The pattern of recursive definitions over lists consists of matching the empty list [] for the base case, and matching the non-empty list ($\mathrm{x}: \mathrm{xs}$) for the recursive case. Witness:

```
and :: [Bool] -> Bool
and [] = True
and (x:x:S) = x && and xS
```


Foldr

This occurs so often that Haskell provides a standard higher-order function that captures the essence of what goes on in this kind of definition:

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xS) = f x (foldr f b xs)
```


Foldr in Action

Here is what happens if you call foldr with a function f, and identity element z, and a list $\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right]$:

$$
\text { foldr } f z\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\left(f x _ { 1 } \left(f x_{2}\left(f x_{3} \ldots\left(f x_{n} z\right) \ldots\right) .\right.\right.
$$

And the same thing using infix notation:

$$
\text { foldr } f z\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\left(x _ { 1 } f ^ { \iota } \left(x _ { 2 } f ^ { \iota } \left(x_{3}{ }^{‘} f^{\iota}\left(\ldots\left(x_{n} f^{`} z\right) \ldots\right) .\right.\right.\right.
$$

For instance, the and function can be defined using foldr as follows:

```
and = foldr (&&) True
```


Foldl

While foldr folds to the right, the following built-in function folds to the left:

$$
\begin{aligned}
& \text { foldl : : (} \mathrm{a}->\mathrm{b}->\mathrm{a}) \quad->\mathrm{a}->[\mathrm{b}]->\mathrm{a} \\
& \text { foldl f z0 xs0 = lgo z0 xs0 } \\
& \text { where } \\
& \text { lgo } \mathrm{z} \text { [] }=\mathrm{z} \\
& \operatorname{lgo} z(x: x S)=\operatorname{lgo}(f \quad z \quad x) x S
\end{aligned}
$$

Foldl in Action

If you apply foldl to a function $f:: \alpha \rightarrow \beta \rightarrow \alpha$, a left identity element $z:: \alpha$ for the function, and a list of arguments of type β, then we get:

$$
\text { foldl } f z\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\left(f \ldots\left(f\left(f\left(f z x_{1}\right) x_{2}\right) x_{3}\right) \ldots x_{n}\right)
$$

Or, if you write f as an infix operator:

$$
\text { foldl } f z\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\left(\ldots\left(\left(\left(z^{\prime} f^{\prime} x_{1}\right){ }^{\prime} f^{`} x_{2}\right)^{\prime} f^{\iota} x_{3}\right) \ldots{ }^{\prime} f^{\iota} x_{n}\right)
$$

Factorial in Terms of Product

The standard way to define the factorial function in functional programming is:

```
factorial n = product [1..n]
```


Sum and Product in Terms of Foldl

The function product is predefined. If we look up the definition of sum and product in the Haskell prelude, we find:

```
sum, product
    :: (Num a) => [a] -> a
sum
= foldl (+) 0
product = foldl (*) 1
```


For2

Here is a version of "for" where the step function has an additional argument:

```
for2 :: [a] -> (a -> b -> c -> (b,c))
    -> b -> c -> c
for2 [] f - z = z
for2 (x:xs) f y z = let
        (y', z') = f x y z
    in
        for2 xs f y' }\mp@subsup{z}{}{\prime
```


For3

With two additional arguments:

$$
\begin{aligned}
& \text { for3 :: [a] -> (a -> b -> c -> d -> (b, c, d)) } \\
& \text {-> b -> c -> d -> d } \\
& \text { for } 3 \text { [] } \mathrm{f}-\mathrm{u}=\mathrm{u} \\
& \text { for3 (x:xs) f y } z \text { u = let } \\
& \left(y^{\prime}, z^{\prime}, u^{\prime}\right)=f x y z u \\
& \text { in } \\
& \text { for3 } x s \text { f } y^{\prime} z^{\prime} u^{\prime}
\end{aligned}
$$

And so on.

Fordown

We can also count down instead of up:
fordown :: [a] -> (a -> b -> b) -> b -> b
fordown = for . reverse

```
fordown2 :: [a] -> (a -> b -> c -> (b,c))
    -> b -> c -> c
```

fordown2 $=$ for2 . reverse

$$
\begin{aligned}
& \text { fordown3 :: [a] -> (a -> b -> c -> d -> (b, c, d)) } \\
& \text {-> b -> c -> d -> d }
\end{aligned}
$$

fordown3 = for3 . reverse

Summary, and Further Reading

This lecture has introduced you to programming in functional imperative style. Iteration versus recursion is the topic of chapter 2 of the classic [1]. This book is freely available on internet, from address http://infolab. stanford.edu/
~ullman/focs.html.

References

[1] Alfred V. Aho and Jeffrey D. Ullman. Foundations of Computer Science - C edition. W. H. Freeman, 1994.

