
Getting Started with Haskell

Jan van Eijck

CWI & ILLC, Amsterdam

ESSLLI, Opole, August 6, 2012

Jan van Eijck Purely Functional Algorithm Specification 1 / 1



Functional programming with Haskell

A short history of Haskell

Jan van Eijck Purely Functional Algorithm Specification 2 / 1



Functional programming with Haskell

A short history of Haskell

In the 80s, efforts of researchers working on functional programming were
scattered across many languages (Lisp, SASL, Miranda, ML,. . . ).
In 1987 a dozen functional programmers decided to meet in order to
reduce unnecessary diversity in functional programming languages by
designing a common language that is

• based on ideas that enjoy a wide consensus

• suitable for further language research as well as applications, including
building large systems

• freely available

Jan van Eijck Purely Functional Algorithm Specification 3 / 1



Functional programming with Haskell

A short history of Haskell

In 1990, they published the first Haskell specification, named after the
logician and mathematician Haskell B. Curry (1900-1982).

Jan van Eijck Purely Functional Algorithm Specification 4 / 1



Functional programming with Haskell

Simon Peyton-Jones:
The life cycle of programming languages

years

users

5 10 15

1

100

10 000

1Mio

critical mass

threshhold of immortality

Jan van Eijck Purely Functional Algorithm Specification 5 / 1



Functional programming with Haskell

Simon Peyton-Jones:
The life cycle of programming languages

Most research languages (the quick death)

years

users

5 10 15

1

100

10 000

1Mio

critical mass

threshhold of immortality

Jan van Eijck Purely Functional Algorithm Specification 6 / 1



Functional programming with Haskell

Simon Peyton-Jones:
The life cycle of programming languages

Successful research languages (the slow death)

years

users

5 10 15

1

100

10 000

1Mio

critical mass

threshhold of immortality

Jan van Eijck Purely Functional Algorithm Specification 7 / 1



Functional programming with Haskell

Simon Peyton-Jones:
The life cycle of programming languages

C++, Java, Perl (the absence of death)

years

users

5 10 15

1

100

10 000

1Mio

critical mass

threshhold of immortality

Jan van Eijck Purely Functional Algorithm Specification 8 / 1



Functional programming with Haskell

Simon Peyton-Jones:
The life cycle of programming languages

Haskell

years

users

5 10 15

1

100

10 000

1Mio

critical mass

threshhold of immortality

Jan van Eijck Purely Functional Algorithm Specification 9 / 1



Functional programming with Haskell

Haskell is functional

A program consists entirely of functions.

• The main program itself is a function with the program’s input as
argument and the program’s output as result.

• Typically the main function is defined in terms of other functions,
which in turn are defined in terms of still more functions, until at the
bottom level the functions are language primitives.

Running a Haskell program consists in evaluating expressions (basically
functions applied to arguments).

Jan van Eijck Purely Functional Algorithm Specification 10 / 1



Functional programming with Haskell

A shift in thinking

Imperative thinking:

• Variables are pointers to storage locations whose value can be
updated all the time.

• You give a sequence of commands telling the computer what to do
step by step.

Examples:

• initialize a variable examplelist of type integer list,
then add 1, then add 2, then add 3

• in order to compute the factorial of n, initialize an integer variable f

as 1, then for all i from 1 to n, set f to f×i

Jan van Eijck Purely Functional Algorithm Specification 11 / 1


	Functional programming with Haskell

