
Graph Algorithms

Jan van Eijck
CWI & ILLC, Amsterdam

ESSLLI, Opole, August 9, 2012

Abstract

This lecture discusses a number of well-known graph algorithms, develops testable
specifications for them, and uses the specifications to write assertive (self-testing)
versions of the algorithms.

module GraphsAlgs

where

import List
import While
import Assert
import Reasoning (update,updates)

The modules While and Assert give the code for while loops and for assertion
and invariant wrappers that was developed and discussed in the lecture on Algo-
rithm Specification.

Background on the key importance of graph theory for the analysis of what goes on
in social and other networks can be found in [1]. An enlightening introduction to
graph algorithms is [4].

A Graph Reachability Algorithm

A directed graph G without parallel edges is a pair (V,E) with E ⊆ V 2. If
(v1, v2) ∈ E, we write this as v1 → v2, and we say that there is an edge from
v1 to v2.

A vertex y is reachable from a vertex x in G = (V,E) if there is a path of→ edges
from x to y, or, equivalently, if (x, y) ∈ E∗, where E∗ is the reflexive transitive
closure of E.

In an algorithm for this, we can assume G is given by its edge set E.

Algorithm for Graph Reachability

Here is an algorithm that computes the set of reachable vertices from a given vertex.

Graph reachability algorithm

• Let edge set E and vertex x be given;

• C := {x}, M := {x};

• while C 6= ∅ do:

– select y ∈ C;

– N := {z | (y, z) ∈ E, z /∈M};
– C := (C − {y}) ∪N ;

– M := M ∪N ;

• return M .

Explanation

The algorithm works by maintaining a set C of current nodes. Initially, only x is
current. Each node can be either marked (in M) or unmarked. The marked nodes
are the nodes that have been current (have been in C) at some stage in the past, or
are current now. Each step in the algorithm removes an item y from C, and adds
all its unmarked successors to C, and to M . The algorithm halts when C becomes
empty, at which stage M gives the nodes that are reachable from x.

Note that the while loop in the algorithm has two parameters, C andM ; the variable
N is local to the loop.

Haskell Version

reachable :: Eq a => [(a,a)] -> a -> [a]
reachable g x = reachable’ g [x] [x]

reachable’ :: Eq a => [(a,a)] -> [a] -> [a] -> [a]
reachable’ g = while2

(\ current _ -> not (null current))
(\ current marked -> let

(y,rest) = (head current, tail current)
newnodes = [z | (u,z) <- g, u == y,

notElem z marked]
current’ = rest ++ newnodes
marked’ = marked ++ newnodes

in
(current’, marked’))

Strong Connectedness of a Graph

A directed graph is (strongly) connected if for every pair of vertices x, y, there is a
path from x to y. Here is an implementation in terms of reachability.

isConnected :: Eq a => [(a,a)] -> Bool
isConnected g = let

xs = map fst g ‘union‘ map snd g
in
forall xs (\x -> forall xs (\ y ->

elem y (reachable g x)))

Operations on Relations

The algorithm from the previous section should fit the following specification:

reachable E x = {y | xE∗y}

where E∗ is the reflexive transitive closure of E.

To implement this specification, we need some operations on relations.

Binary relations as lists of ordered pairs:

type Rel a = [(a,a)]

Inclusion and Equality

The ⊆ relation on sets (represented by lists):

containedIn :: Eq a => [a] -> [a] -> Bool
containedIn xs ys = forall xs (\ x -> elem x ys)

Set equality on sets is defined as A = B ⇐⇒ A ⊆ B ∧ B ⊆ A. Implementation
for sets represented as lists:

equalS :: Eq a => [a] -> [a] -> Bool
equalS xs ys = containedIn xs ys && containedIn ys xs

Relational Composition

The relational composition of two relations R and S on a set A:

R ◦ S = {(x, z) | ∃y ∈ A (xRy ∧ ySz)}

For the implementation, it is useful to declare a new infix operator for relational
composition.

infixr 5 @@

(@@) :: Eq a => Rel a -> Rel a -> Rel a
r @@ s =

nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

Least Fixpoint

Computing reflexive transitive closure of a binary relation: the reflexive transive
closure of R is the relation that is the least fixpoint of the operation λS 7→ S ∪ (R ◦
S), applied to the identity relation I .

Here is the least fixpoint operation on functions:

lfp :: Eq a => (a -> a) -> a -> a
lfp f x | x == f x = x

| otherwise = lfp f (f x)

Application to Compute Reflexive Transitive Closure

To apply the least fixpoint of λS 7→ S ∪ (R ◦ S), to I , you start with I .

In the first step you apply λS 7→ S ∪ (R ◦ S) to I . This gives I ∪ (R ◦ I), that is:
I ∪R.

In the second step you apply λS 7→ S ∪ (R ◦ S) to I ∪R. This gives

I ∪R ∪ (R ◦ (I ∪R)),

that is: I ∪R ∪R2.

And so on, until the process reaches a fixpoint, that is, until there is some n for
which

I ∪R ∪R2 ∪ · · · ∪Rn = I ∪R ∪R2 ∪ · · · ∪Rn ∪Rn+1.

At this point you have computed the smallest relation S that is reflexive and transi-
tive and contains R, i.e., you have reached the reflexive transitive closure of R.

Implementation of Reflexive Transitive Closure

Here is the implementation (if you understand the code you can forget about the
elaborate explanation above):

domain :: Eq a => Rel a -> [a]
domain r = nub (foldr (\ (x,y) -> ([x,y]++)) [] r)

rtc :: Eq a => Rel a -> Rel a
rtc r = let

xs = domain r
i = [(x,x) | x <- xs]

in lfp (\ s -> (s ‘union‘ (r@@s))) i

Transitive Closure

Computing transitive closure: same as computing reflexive transitive closure, but
starting out from the relation R. Notation for the transitive closure of R is R+.

tc :: Eq a => Rel a -> Rel a
tc r = lfp (\ s -> (s ‘union‘ (r @@ s))) r

xR

If R is a binary relation on A and x ∈ A, then xR is the set {y | xRy}. Using this
notation we can write the specification for reachable as:

reachable E x = xE∗.

Implementation of xR:

image :: Eq a => a -> Rel a -> [a]
image x r = [y | (z,y) <- r, x == z]

Assertive Version of Graph Reachability Algorithm

Use this for an assertive version of the graph reachability algorithm:

reachableA :: Eq a => [(a,a)] -> a -> [a]
reachableA =

assert2 (\ g x ys -> equalS ys (image x (rtc g)))
reachable

Note that this uses an inefficient algorithm for computing E∗ to specify and test an
efficient algorithm for E∗.

Minimum Spanning Trees of Graphs

A weighted undirected graph is a symmetric graph with weights assigned to the
edges, in such manner that edges (x, y) and (y, x) have the same weight. Think of
the weight as an indication of distance.

Here is a datatype for weighted graphs:

type Vertex = Int
type Edge = (Vertex,Vertex,Float)
type Graph = ([Vertex],[Edge])

If (x, y, w) is an edge, then the edge is from vertex x to vertex y, and its weight is
w.

Proper Symmetric Graphs

The following function makes a list of edges into a proper symmetric graph, while
also removing self loops and edges with non-positive weights.

mkproper :: [Edge] -> [Edge]
mkproper xs = let

ys = List.filter
(\ (x,y,w) -> x /= y && w > 0) xs

zs = nubBy (\ (x,y,_) (x’,y’,_) ->
(x,y) == (x’,y’) || (x,y) == (y’,x’)) ys

in foldr
(\ (x,y,w) us -> ((x,y,w):(y,x,w):us))
[] zs

Example

This gives, e.g.:

*GA> mkproper [(1,2,3),(2,3,4),(3,2,-5)]
[(1,2,3),(2,1,3),(2,3,4),(3,2,4)]

Getting the vertices from an edge list

nodes :: (Eq a,Ord a) => [(a,a,b)] -> [a]
nodes = sort.nub.nds where

nds = foldr (\ (x,y,_) -> ([x,y]++)) []

Making a graph from a list of edges:

mkGraph :: [Edge] -> Graph
mkGraph es = let

new = mkproper es
vs = nodes new

in (vs,new)

Spanning Trees, Minimum Spanning Trees

Let G be a weighted, undirected (i.e., symmetric) and connected graph. Assume
there are no self-loops. (Or, if there are self-loops, make sure their weight is set to
0.)

A spanning tree for weighted graph G is a tree with a node set that coincides with
the vertex set of the graph, and an edge set that is a subset of the set of edges of the
graph.

A minimum spanning tree for weighted graph G is a spanning tree of G whose
edges sum to minimum weight. Caution: minimum spanning trees are not unique.

Applications: finding the least amount of wire necessary to connect a group of
workstations (or homes, or cities, or . . .).

Prim’s Algorithm

Prim’s minimum spanning tree algorithm finds a minimum spanning tree for an
arbitrary weighted symmetric and connected graph. See [7], [8, 4.7].

Prim’s minimum spanning tree algorithm

1. Select an arbitrary graph node r to start the tree from.

2. While there are still nodes not in the tree

(a) Select an edge of minimum weight between a tree and non-tree node.

(b) Add the selected edge and vertex to the tree.

Prim, More Formally

A more formal version of this uses variables Vin for the current vertex set of the tree,
Vout for the current vertex set outside the tree, and Etree for the current edge set of
the tree.

Prim’s minimal spanning tree algorithm (ii)

1. Let G = (V,E) be given.

2. Select an arbitrary graph vertex r ∈ V to start the tree from. Vin := {r},
Vout := V − {r}, Etree := ∅.

3. While Vout 6= ∅ (there are still nodes not in the tree):

(a) Select a member (x, y, w) fromE with x ∈ Vin, y ∈ Vout, such that there
is no (x′, y′, w′) ∈ E with x′ ∈ Vin, y′ ∈ Vout and w′ < w (the edge
(x, y, w) is an edge of minimum weight between a tree and non-tree
node).

(b) Vin := Vin ∪ {y}, Vout := Vout − {y}, Etree := Etree ∪ {(x, y, w)}.

4. Return Etree.

Remarks about the Algorithm

Note that the assumption that the graph is connected ensures that the “select a mem-
ber (x, y, w) from E . . . ” action succeeds.

It is not at first sight obvious that Prim’s algorithm always results in a minimum
spanning tree, but this fact can be checked by means of Hoare assertions, which can
be tested.

Implementation

Element in a non-empty list with minimal f -value:

minim :: (Ord b) => (a -> b) -> [a] -> a
minim f = head .

(sortBy (\ x y -> compare (f x) (f y)))

Prim’s Algorithm, initialisation:

prim :: [Edge] -> [Edge]
prim es = let

(v:vs) = nodes es
vout = vs
vin = [v]
tree = []

in prim’ es vout vin tree

Prim’s Algorithm, while loop

prim’ :: [Edge] -> [Vertex] -> [Vertex] -> [Edge]
-> [Edge]

prim’ es = while3
(\ vout _ _ -> not (null vout))
(\ vout vin tree -> let

links = [(x,y,w) | (x,y,w) <- es,
elem x vin, elem y vout]

e@(x,y,w) = minim (\ (_, _, w) -> w) links
in
(vout\\[y],y:vin,e:tree))

Reasoning about Prim

How can we see that this is correct? Here is one way. The property to prove is:

If es is the edge list of a symmetric connected weighted graph G, then prim es
gives the edges of a minimum spanning tree on G.

Let’s look at subgraphs of G. If G = (V,E), and A ⊆ V , then let GA be the
subgraph with node set A and edge set

{(x, y, w) | (x, y, w) ∈ E, x ∈ A, y ∈ A}.

We prove the following. At every stage of the algorithm,

prim’ es vout vin tree

tree is a minimum spanning tree on the subgraph of G given by Gvin.

Proof by Induction

Induction on the size of vin.

Base case. prim’ is initialized with vin = [v] and tree = []. This is cor-
rect, for ({v}, ∅) is a minimum spanning tree for G{v}.

Induction step. Assume at stage prim’ es vout vin tree the edges in tree
form a minimum spanning tree for Gvin. Let e = (x, y, w) ∈ es be a link with
x ∈ vin, y ∈ vout, with minimum weight. Then the next stage of the algorithm
is

prim’ es (vout\\[y]) (y:vin) (e:tree).

We have to show that the edges in e:tree are a minimum spanning tree for
G(y:vin). Suppose they are not. Then, since tree is a minimum spanning
tree for Gvin, there is some vertex x′ inside vin and an edge (x′, y, w′) ∈ E such
that w′ < w. Contradiction with the way in which the link (x, y, w) was selected.

Extracting Assertions from the Proof

Now that we have seen the proof, we can also turn it into an assertion or a loop
invariant. Here is the specification for a minimal spanning subtree of a graph.

mst :: [Edge] -> [Edge] -> Bool
mst _ [] = True
mst g [e] = elem e g
mst g (e@(x,y,w):es) = let

vs = nodes es
in

elem e g
&& mst g es
&& elem x vs
&& notElem y vs
&& forall g (\ (x’,y’,w’) ->

(elem x’ vs && notElem y’ vs) ==> w <= w’)

Self-Testing Version of Prim

Use this for a self-testing version of prim:

primA :: [Edge] -> [Edge]
primA = assert1 mst prim

We can also use it to formulate a loop invariant

prim’’ :: [Edge] -> [Vertex] -> [Vertex] -> [Edge]
-> [Edge]

prim’’ es = while3
(\ vout _ _ -> not (null vout))
(invar3 (\ _ _ tree -> mst es tree)
(\ vout vin tree -> let

links = [(x,y,w) | (x,y,w) <- es,
elem x vin, elem y vout]

e@(x,y,w) = minim (\ (_, _, w) -> w) links
in
(vout\\[y],y:vin,e:tree)))

Shortest Path Algorithms

For finding the shortest path between two vertices in an unweighted graph we can
use breadth first search.

In this case the distance d(x, y) between two vertices x and y in the graph is given
as the length (number of edges) in the shortest path from x to y.

In case there is no path from x to y, d(x, y) is undefined.

Breadth first search algorithm

1. Let G be given by its edge set E. Let s be some vertex of G.

2. Q := {s}, T := {s}, d(s) := 0.

3. while Q 6= ∅ do:

(a) take some u ∈ Q and let Q := Q− {u};
(b) for every edge u→ v ∈ E with v /∈ T do:

i. T := T ∪ {v},
ii. d(v) := d(u) + 1,

iii. Q := Q ∪ {v}.

4. Return the function d.

Initialisation of the breadth first search

The initial distance function gives ds = 0 for the source node, and everywhere else
↑:

bfs :: Eq a => [(a,a)] -> a -> a -> Int
bfs g s = let

d = update (_ -> undefined) (s,0)
in bfs’ g [s] [s] d

While loop of the breadth first search

bfs’ :: Eq a => [(a,a)] -> [a] -> [a]
-> (a -> Int) -> a -> Int

bfs’ g = while3 (\ q _ _ -> not (null q))
(\ (u:q) t d -> let

new = [y | (x,y) <- g,
x == u, notElem y t]

q’ = q ++ new
t’ = t ‘union‘ new
pairs = [(v, d u + 1) | v <- new]
d’ = updates d pairs

in (q’,t’,d’))

Dijkstra’s Algorithm

In case the edges have positive weights, a modification of this algorithm works for
finding shortest paths. This is called Dijkstra’s algorithm [3].

Example eighted graph

Same as the picture, but with the nodes A, B, . . . renamed as 0, 1,

exampleG = mkproper
[(0,1,5),(0,5,3),(1,2,2),(1,6,3),(2,3,6),
(2,7,10),(3,4,3),(4,5,8),(5,6,7),(6,7,2)]

Dijkstra’s algorithm

1. Let G be given by its edge set E. Let s be some vertex of G.

2. T := {s}, P := ∅, d(s) := 0.

3. while T 6= ∅ do:

(a) choose a v ∈ T for which d(v) is minimal;

(b) T := T − {v};
(c) P := P ∪ {v};
(d) for every edge (v, u, w) ∈ E do:

if u ∈ T then d(u) := min(d(u), d(v) + w)
else if u /∈ P then do:

i. d(u) := d(v) + w;
ii. T := T ∪ {u}

4. Return the function d.

Note throughout the execution of the algorithm, the function d is defined for all
members of T and P .

In other words:
{v ∈ V | d(v) 6=↑} = T ∪ P

is an invariant of the algorithm.

Implementation

Implementation of Dijkstra’s algorithm: initialisation.

dijkstra :: [Edge] -> Vertex -> Vertex -> Float
dijkstra es s = let

t = [s]
p = []
d = (\ x -> if x == s then 0 else undefined)

in
dijkstra’ es t p d

Implementation, Ctd

Implementation of Dijkstra’s algorithm: while loop.

dijkstra’ :: [Edge] -> [Vertex] -> [Vertex]
-> (Vertex -> Float) -> Vertex -> Float

dijkstra’ es = while3
(\ t _ _ -> not (null t))
(\ t p d -> let

v = minim (\ x -> d x) t
pairs = [(u,w)| (x,u,w) <- es, x == v]
old = [(u, min (d u) (d v + w)) |

(u,w) <- pairs, elem u t]
new = [(u, d v + w) | (u,w) <- pairs,

notElem u t, notElem u p]
d’ = updates d (old ++ new)
t’ = (t \\ [v]) ‘union‘ (map fst new)

in (t’,v:p,d’))

A Check

In Haskell, we cannot test for definedness without the risk of generating errors,
because undefined is implemented as error.

Instead we can assert that a distance function is defined on a given list of inputs by
checking that it computes a value ≥ 0, as follows:

definedOn :: (Num b,Ord b) => [a] -> (a -> b) -> Bool
definedOn xs f = and (map (triv.f) xs)

where triv = (\ x -> x >= 0)

An invariant of dijkstra’ is that its d function is defined on its parameters T
and P .

Assertive Version of Dijkstra’s Algorithm

dijkstraA :: [Edge] -> Vertex -> Vertex -> Float
dijkstraA es s = let

t = [s]
p = []
d = (\ x -> if x == s then 0 else undefined)

in
dijkstraA’ es t p d

Assertive Version of Dijkstra’s Algorithm, Ctd

dijkstraA’ :: [Edge] -> [Vertex] -> [Vertex]
-> (Vertex -> Float) -> Vertex -> Float

dijkstraA’ es = while3
(\ t _ _ -> not (null t))
(invar3 (\ t p d -> definedOn (t ‘union‘ p) d)
(\ t p d -> let

v = minim (\ x -> d x) t
pairs = [(u,w)| (x,u,w) <- es, x == v]
old = [(u, min (d u) (d v + w)) |

(u,w) <- pairs, elem u t]
new = [(u, d v + w) | (u,w) <- pairs,

notElem u t, notElem u p]
d’ = updates d (old ++ new)
t’ = (t \\ [v]) ‘union‘ (map fst new)

in (t’,v:p,d’)))

The Floyd-Warshall Algorithm

Another algorithm for shortest path is the Floyd-Warshall algorithm, which com-
putes a distance table for the whole graph. Assume the graph is given as a node set
N plus a distance function f that gives the distance between x and y if there is a
direct link in the graph from x to y, and 0 otherwise.

Conversions

edges2fct :: [(Int, Int, Float)]
-> Int -> Int -> Float

edges2fct es i j = let
links = filter (\ (x,y,w) -> x == i && y == j) es
ws = map (\ (_,_,w) -> w) links

in
if null ws then 0 else head ws

And conversely:

fct2edges :: Int -> (Int->Int->Float)
-> [(Int, Int, Float)]

fct2edges n f =
[(x,y,f x y) | x <- [0..n-1], y <- [0..n-1],

f x y > 0]

The Algorithm

Let {0, . . . , N − 1} be the nodes in the graph.

The algorithm computes shortest distances in subgraphs {0, . . . , k − 1} for k ∈
{0, . . . , N − 1}.
The nodes in {0, . . . , k − 1} are the nodes that are available for stopovers.

The output of the algorithm is a function d : N 3 → R, where d(k, i, j) gives the
shortest distance in G between i and j when all stopover nodes are < k.

Initially, no nodes are available for stopovers, so we have d(0, i, j) = f(i, j).

The algorithm in pseudo-code

Floyd-Warshall algorithm for shortest path

1. Let N = {0, . . . , N − 1} be the nodes of a graph G. Let f be the distance
function for G.

2. For each (i, j) ∈ N 2, let d(0, i, j) := if f(i, j) 6= 0 then f(i, j) else∞.

3. For each k ∈ N , all (i, j) ∈ N 2,
let d(k + 1, i, j) := min(d(k, i, j), d(k, i, k) + d(k, k, j)).

This construction, by the way, is the cornerstone of Kleene’s famous theorem stat-
ing that languages generated by automata are regular [6]. In fact, Floyd’s and War-
shaw’s descriptions of the algorithm were provided later (in [5] and [9], respec-
tively).

Haskell Version

Here is the Haskell version. First a definition of∞:

infty :: Float
infty = 1/0

Initialisation of the distance table:

fw :: Int -> (Int -> Int -> Float)
-> Int -> Int -> Float

fw n f = let
init = \ i j ->

if f i j > 0 then f i j else infty
in

fw’ n init

Update

For the computation of the distance table we will use a variation on update:

update2 :: (Eq a,Eq b) => (a -> b -> c) -> (a,b,c)
-> a -> b -> c

update2 f (u,v,w) x y =
if u == x && v == y then w else f x y

Computation of the distance table

Computation by means of successive updates of the initial distance table:

fw’ :: Int -> (Int -> Int -> Float)
-> Int -> Int -> Float

fw’ n = let
nodes = [0..n-1]
pairs = [(i,j) | i <- nodes, j <- nodes]

in
for pairs (\ (i,j) ->

for nodes (\ k d -> let
k’ = k-1

in
update2 d

(i,j,min (d i j) (d i k’ + d k’ j))))

Assertive Version

We can use Dijkstra’s algorithm to write an assertive version of the Floyd-Warshall
algorithm:

isShortest :: Int -> (Int -> Int -> Float)
-> Int -> Int -> Float -> Bool

isShortest n f i j w = let
g = fct2edges n f

in
w == dijkstra g i j

Assertive version of Floyd-Warshall:

fwA = assert4 isShortest fw

Some Checks

Try this out on an example graph function:

exampleF :: Int -> Int -> Float
exampleF = edges2fct exampleG

*GA> fwA 8 exampleF 0 4
11.0

Floyd-Warshall with Path Reconstruction

If one also wants to find the actual shortest path, a simple modification of the Floyd-
Warshall algorithm suffices. An additional function next : N 2 → N is constructed,
with next(i, j) equal to−1, to indicate that no intermediate point has been found on
a shortest path yet.

Floyd-Warshall algorithm with path reconstruction

1. Let N = {0, . . . , N − 1} be the nodes of a graph G. Let f be the distance
function for G.

2. For all (i, j) ∈ N 2, let d(0, i, j) := if f(i, j) 6= 0 then f(i, j) else∞.

3. For all (i, j) ∈ N 2, let next(i, j) := −1.

4. For all k ∈ N , all (i, j) ∈ N 2,
let d(k + 1, i, j) := min(d(k, i, j), d(k, i, k) + d(k, k, j));
if d(k, i, k) + d(k, k, j)) < d(k, i, j) then next(i, j) := k.

Getting the Path

The path can now be reconstructed from the two functions d and next, as follows:

GetPath(i,j)

1. if d(i, j) =∞ then return “no path”.

2. k := next(i, j).

3. if k = −1 then return []
else return GetPath(i, k) ++[k] ++GetPath(k, j).

Implementation

Implementation of the modified Floyd-Warshall algorithm: the modified algorithm
returns a function that computes a pair (w, k) consisting of a distance w and an
intermediate node k. Initialisation of the distance-next table:

mfw :: Int -> (Int -> Int -> Float) ->
Int -> Int -> (Float, Int)

mfw n f = let
init = \ i j ->

(if f i j > 0 then f i j else infty, -1)
in

mfw’ n init

Computation of the distance-next table

mfw’ :: Int -> (Int -> Int -> (Float, Int))
-> Int -> Int -> (Float, Int)

mfw’ n = let
nodes = [0..n-1]
pairs = [(i,j) | i <- nodes, j <- nodes]

in
for pairs (\ (i,j) ->

for nodes (\ k d -> let
k’ = k-1
f = \ x y -> fst (d x y)

in
if f i k’ + f k’ j < f i j then

update2 d (i,j,(f i k’ + f k’ j, k’))
else d))

Reconstructing the path

getPath :: (Int -> Int -> (Float, Int))
-> Int -> Int -> [Int]

getPath d i j = let
dist = fst (d i j)
k = snd (d i j)

in
if dist == infty then error "no path"
else if k == -1 then []
else getPath d i k ++ [k] ++ getPath d k j

This gives

*GA> getPath (mfw 8 exampleF) 0 1
[]

*GA> getPath (mfw 8 exampleF) 0 2
[1]

*GA> getPath (mfw 8 exampleF) 0 3
[1,2]

*GA> getPath (mfw 8 exampleF) 0 4
[5]

*GA> getPath (mfw 8 exampleF) 0 5
[]

*GA> getPath (mfw 8 exampleF) 0 6
[1]

*GA> getPath (mfw 8 exampleF) 0 7
[1,6]

Warshall’s Algorithm for Transitive Closure

Warshall’s original version (see [9]) computed transitive closure for directed graphs
without weights. First in pseudo-code:

Warshall’s algorithm for transitive closure

1. Let N = {0, . . . , N − 1} be the nodes of a graph G.
Let r : N 2 → {T, F} give its edge relation.

2. For all (i, j) ∈ N 2, let t(0, i, j) := r(i, j), t(k, i, j) :=↑ if k > 0.

3. For all k ∈ N , all (i, j) ∈ N 2,
let t(k + 1, i, j) := t(k, i, j) ∨ (t(k, i, k) ∧ t(k, k, j)).

Implementation

Initialisation of the t function is not necessary, for it is given by the graph function
itself.

warshall :: Int -> (Int->Int->Bool)
-> Int -> Int -> Bool

warshall n = let
nodes = [0..n-1]
pairs = [(i,j) | i <- nodes, j <- nodes]

in
for pairs (\ (i,j) ->

for nodes (\ k t -> let
k’ = k-1

in
update2 t

(i,j, t i j || (t i k’ && t k’ j))))

Assertive Version

We can use our earlier definition of transitive closure to turn this into assertive code:

isTC :: Int -> (Int->Int->Bool) -> (Int->Int->Bool)
-> Bool

isTC n r t = let
r’ = [(i,j)| i <- [0..n-1], j <- [0..n-1], r i j]
t’ = [(i,j)| i <- [0..n-1], j <- [0..n-1], t i j]

in
equalS t’ (tc r’)

warshallA :: Int -> (Int->Int->Bool) -> Int -> Int
-> Bool

warshallA = assert2 isTC warshall

Shortest Path in the Presence of Negative Weights

It is not always possible to use one algorithm to check another in this simple way.

The Bellman-Ford algorithm for shortest path [2] serves the same purpose as Di-
jkstra’s algorithm (computing shortest paths from a given vertex in a weighted di-
rected graph), but for a wider class of graphs: unlike in the case of Dijkstra’s algo-
rithm, weights are allowed to be negative.

No Negative Cycles

To ensure that the notion of shortest path still makes sense in this context, it is
assumed that the graph contains no negative cycles. A negative cycle in a weighted
directed graph is a path

v1
w1→ v2

w2→ v3 → · · · → v1

with the property that the weights on the path from v1 to v1 sum to a negative
number. In the presence of negative cycles, the notion of shortest path loses its
sense, for one could always make a path shorter by taking one more turn through a
negative loop.

Belmann-Ford algorithm

Belmann-Ford algorithm for shortest path in the presence of negative
weights

1. Let G be given as (V,E), with E ⊆ V 2. Let s be the source.

2. For each v ∈ V do:

(a) if v = s then d(v) := 0 else d(v) :=∞;

(b) if (v, s) ∈ E then p(v) := s else p(v) := ⊥.

3. For i from 1 to |V | − 1 do:
for each u w→ v in E do: if d(u) + w < d(v) then:

(a) d(v) := d(u) + w;

(b) p(v) := u.

4. For each u w→ v in E:
if d(u) + w < d(v) then error “Graph contains a negative-weight cy-

cle”.

Implementation

The initialisation of the two functions:

bfInit :: Vertex -> [Edge]
-> (Vertex -> Float,Vertex -> Vertex)

bfInit s es = let
d = update (\ _ -> infty) (s,0)
p = \ _ -> undefined

in
(d,p)

Implementation of the main “for” loop

bfLoop :: [Edge]
-> (Vertex -> Float,Vertex -> Vertex)
-> (Vertex -> Float,Vertex -> Vertex)

bfLoop es = let
ns = nodes es
is = [1..length(ns) - 1]

in
for is (\ _ (d,p) -> let

us =
filter (\ (u,v,w) -> d(u) + w < d(v)) es

pairs = map (\ (u,v,w) -> (v,d(u) + w)) us
vs = map (\ (u,v,_) -> (v,u)) us

in
(updates d pairs, updates p vs))

The whole program

bf :: Vertex -> [Edge] ->
(Vertex -> Float,Vertex -> Vertex)

bf s es = bfLoop es (bfInit s es)

‘Correcting’ the Order

infixl 2 ##

(##) :: a -> (a -> b) -> b
x ## f = f x

belmanFord :: Vertex -> [Edge] ->
(Vertex -> Float,Vertex -> Vertex)

belmanFord s es = bfInit s es ## bfLoop es

Tracing Back

We can use the predecessor function to reconstruct the shortest path, by tracing back
from the destination to the source, using the predecessor function:

traceBack :: (Vertex -> Vertex)
-> Vertex -> Vertex -> [Vertex]

traceBack p s t =
if s == t then [s]
else t : traceBack p s (p t)

This gives, e.g.:

*GA> traceBack (snd (bf exampleG 0)) 0 7
[7,6,1,0]

Implementation of the check for negative cycles

bfCheck :: [Edge] -> (Vertex -> Float) -> Bool
bfCheck es d =

forall es (\ (u,v,w) -> d u + w >= d v)

We can use the check for negative cycles — once we have convinced ourselves that
it is correct — as an assertion about the computed distance function:

bfLoopA :: [Edge]
-> (Vertex -> Float,Vertex -> Vertex)
-> (Vertex -> Float,Vertex -> Vertex)

bfLoopA =
assert2 (\ es _ (d,_) -> bfCheck es d) bfLoop

The whole program again, with the assertion added

bfA :: [Edge] -> Vertex
-> (Vertex -> Float,Vertex -> Vertex)

bfA es s = bfLoopA es (bfInit s es)

Summary

If we have several graph algorithms that perform similar computations (connected-
ness, transitive closure, shortest path), then we can use one algorithm as a specifi-
cation for the other, and vice versa.

Assertive code provides documentation and tests at the same time. It describes what
algorithms are supposed to compute, but it has to do so in terms of other algorithms.

If an assertive function raises an error both the implementation of the function and
the implementation of the asserted specification can be at fault.

References

[1] Albert-László Barabási. Linked. Penguin, 2002.

[2] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics,
16:87–90, 1958.

[3] E.W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269–271, 1959.

[4] Shimon Even. Graph Algorithms, 2nd Edition. Cambridge University Press,
2012.

[5] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM,
5(6):345, June 1962.

[6] S.C. Kleene. Representation of events in nerve nets and finite automata.
In C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3–42.
Princeton University Press, 1956.

[7] R.C. Prim. Shortest connection networks and some generalizations. Bell Sys-
tem Technical Journal, 36:1389–1401, 1957.

[8] Steven S. Skiena. The Algorithm Design Manual. Springer Verlag, New York,
1998. Second Printing.

[9] Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM,
9(1):11–12, 1962.

[10] Jin Y. Yen. An algorithm for finding shortest routes from all source nodes to
a given destination in general networks. Quarterly of Applied Mathematics,
27:526–530, 1970.

