
Algorithms for Matching and Fair Division

Jan van Eijck
CWI & ILLC, Amsterdam

ESSLLI, Opole, August 10, 2012

Abstract

This lecture deals with algorithms for matching and assignment, and for fair divi-
sion.

The matching problem is the problem of connecting nodes in a bipartite graph,
while making sure that certain requirements are met. An assignment problem is a
problem of assigning tasks to agents. Any agent can be assigned to perform any
task, incurring some cost that may vary depending on the agent-task assignment.
The requirement is to perform all tasks by assigning distribing the tasks over the
agents in such a way that the total cost of the assignment is minimized.

The problem of cutting a cake among N participants in such a way that every par-
ticipant is satisfied with his or her share will serve as an exemplar for fair division.

module MatchingDivision

where

import List
import While
import Assert
--import Reasoning (update,updates)

The Stable Marriage Problem

Suppose equal sets of men and women are given, each man has listed the women
in order of preference, and vice versa for the women. A stable marriage match
between men and women is a one-to-one mapping between the men and women
with the property that if a man prefers another woman over his own wife then that
woman does not prefer him to her own husband, and if a woman prefers another
man over her own husband, then that man does not prefer her to his own wife.

The computer scientists Gale and Shapley proved that stable matchings always ex-
ist, and gave an algorithm for finding such matchings, the so-called Gale-Shapley
algorithm [7]. This has many important applications, also outside of the area of
marriage counseling.

See http://en.wikipedia.org/wiki/Stable_marriage_problem for
more information.

http://en.wikipedia.org/wiki/Stable_marriage_problem

Gale-Shapley

Gale-Shapley algorithm for stable marriage

1. Initialize all m in M and w in W to free;

2. while there is a free man m who still has a woman w to propose to

(a) w is the highest ranked woman to whom m has not yet proposed

(b) if w is free, (w,m) become engaged
else (some pair (w,m′) already exists)
if w prefers m to m′

i. (w,m) become engaged
ii. m′ becomes free

else (w,m′) remain engaged

On the next page is a slightly more formal version using named variables.

Gale-Shapley algorithm for stable marriage (ii)

1. Let equal-sized sets M and W of men and women be given.
Let pr be a preference function.

2. F :=M , E := ∅.

3. While F 6= ∅ do

(a) take m ∈ F ;

(b) w := the highest ranked woman to whom m has not yet proposed;

(c) delete w from the preference list of m;

(d) if ¬∃m′ : (w,m′) ∈ E then

i. E := E ∪ {(w,m)};
ii. F := F − {m};

else (∃m′ : (w,m′) ∈ E) if prwmm
′ then do

i. E := (E − {(w,m′}) ∪ {(w,m)};
ii. F := (F − {m}) ∪ {m′};

Parameters of the While Loop

• the preference list of the men

• the list of current engagements

• the list of current free men.

It may look like we also need the preference list of the women as a parameter, but
this list is not used for stating the exit condition and it is not changed by the step
function, and we can keep it outside the loop.

So it is possible to phrase the algorithm in terms of while3.

Type Declarations

Type declarations, for readability of the code:

type Man = Int
type Woman = Int
type Mpref = [(Man,[Woman])]
type Wpref = [(Woman,[Man])]
type Engaged = [(Woman,Man)]

Example tables of preferences

mt :: Mpref
mt = [(1,[2,1,3]), (2, [3,2,1]), (3,[1,3,2])]

wt :: Wpref
wt = [(1,[1,2,3]),(2,[3,2,1]), (3,[1,3,2])]

In mt, the entry (1,[2,1,3]) indicates that man 1 prefers woman 2 over woman
1 and woman 1 over woman 3. We assume that preferences are transitive, so man 1
also prefers woman 2 over woman 3.

Stable Match?

mt = [(1,[2,1,3]), (2, [3,2,1]), (3,[1,3,2])]
wt = [(1,[1,2,3]),(2,[3,2,1]), (3,[1,3,2])]

◦ for the women, • for the men:

Conversion

An auxiliary function for converting a preference list to a function, which allows us
to express w prefers m to m’ in a simple way.

type PrefFct = Int -> Int -> Int -> Bool

plist2pfct :: [(Int,[Int])] -> PrefFct
plist2pfct table x y y’ =

let
Just prefs = lookup x table

in elem y (takeWhile (/= y’) prefs)

Initialisation

The list of all men is extracted from the table of men’s preferences, all men are free,
no-one is engaged to start with. Note that map fst mpref gives us the list of all
men.

stableMatch :: Wpref -> Mpref -> Engaged
stableMatch wpref mpref =

let
men = map fst mpref
free = men
engaged = []

in
stable wpref mpref free engaged

While Loop

The test function for the while loop just checks whether the list of free men is
exhausted.

The step function for the while loop has an argument of type Mpref for the current
list of men’s preferences, Engaged for the list of currently engaged (w,m) pairs,
and an argument of type [Man] for the list of currently free (not engaged) men.
The list of men’s preferences changes in the loop step, for each woman that a man
proposes to is crossed from his preference list.

The algorithm assumes that there are equal numbers of men and women to start
with, and that both men and women have listed all members of the opposite sex in
order of preference.

Implementation

stable :: Wpref -> Mpref -> [Man] -> Engaged
-> Engaged

stable wpref = let
wpr = plist2pfct wpref

in while3 (\ _ free _ -> not (null free))
(\ mpr (m:free) engaged ->
let

Just (w:ws) = lookup m mpr
match = lookup w engaged
mpr’ = (m,ws) : (delete (m,w:ws) mpr)
(engaged’,free’) = case match of

Nothing -> ((w,m):engaged,free)
Just m’ ->

if wpr w m m’ then (
(w,m) :

(delete (w,m’) engaged),
m’:free)

else (engaged, m:free)
in (mpr’,free’,engaged’))

Recall the example tables of preferences

mt :: Mpref
mt = [(1,[2,1,3]), (2, [3,2,1]), (3,[1,3,2])]

wt :: Wpref
wt = [(1,[1,2,3]),(2,[3,2,1]), (3,[1,3,2])]

A simple example

To demonstrate how the function stableMatch is used:

makeMatch = stableMatch mt wt

This gives:

*AS> makeMatch
[(2,2),(3,3),(1,1)]

This gives (w,m) pairs. So woman 1 is married to man 1, and so on. Note that the
first woman ends up with the man of her preference, but the other two women do
not. But this match is still stable, for although the second woman is willing to swap
her husband for the third man, she is at the bottom of his list. And so on.

Correctness: Termination

To show that this algorithm is correct, we have to show two things: termination and
stability of the constructed match.

Exercise 1 Show that if there are equal numbers of men and women, the algorithm
always terminates. Hint: analyze what happens to the preference lists of the men.
Observe that no man proposes to the same woman twice.

See exercises for today.

Correctness: Stability

To show stability, we have to show that each step through the step function preserves
the invariant “the set of currently engaged men and women is stable.”

What does it mean for E to be stable on W and M? Let us use prwmm
′ for w

prefers m over m′.

• ∀(w,m) ∈ E∀(w′,m′) ∈ E: if prmw
′w then prw′m′m;

• ∀(w,m) ∈ E∀(w′,m′) ∈ E: if prwmm then prm′w′w.

What is the requirement on free?

• free equals the set of all men minus the men that are engaged.

We see that these requirements hold for the first call to stable, for in that call
engaged is set to [] and free is set to the list of all men. The empty list of
engaged pairs is stable by definition.

Inspection of the Step Function

Next, inspect what happens in the step function for stable. The precondition for
the step to be performed is that there is at least one free man m left. m proposes to
the woman w who is on the top of his list.

Proposal to a Free Woman

If w is free, w accepts the proposal, and they become engaged. Is the new list of
engaged pairs stable? We only have to check for the new pair (w,m).

• Suppose that there is a free w′ with prmw
′w. This cannot be, for w is at the top

of m’s list.

• Suppose there is m′ with prwm
′m. Then if m′ is engaged, this must mean

that not prm′ww′, where w′ is the fiancee of m′. For otherwise m′ would have
proposed to w instead of to w′.

• The new list of free men equals the old list, minus m. This is correct, for m
just got engaged.

Proposal to an Engaged Woman

Now the other case: w is already engaged. There are two subcases. In case w
prefers her own current fiancee, nothing happens. The resulting list of engaged
pairs is still stable. The list of free men remains the same, for m proposed and got
rejected.

In case w prefers m to her own fiancee m′, she swaps: (w,m) replaces (w,m′) in
the list of engaged pairs. Again, it is easy to see that the resulting list of engaged
pairs is stable. m gets replaced by m′ on the list of free men.

So the two stability requirements are satisfied.

The requirement that in any call to stable its last argument contains the list of
currently free men is also satisfied, for m gets replaced by m′ on the list of free
men.

An Assertive Version of the Stable Marriage Algorithm

An alternative to reasoning about the correctness of an algorithm is specification-
based testing, which we will explore now.

One of the properties that has to be maintained through the loop step function for
stable marriage is: “Each man is either free or engaged, but never both.” This is
implemented as follows:

freeProp :: Mpref -> [Man] -> Engaged -> Bool
freeProp mpref free engaged = let

men = map fst mpref
emen = map snd engaged

in forall men (\x -> elem x free == notElem x emen)

Stability Property

The other invariant is the stability property. Here is the definition of stability for a
relation E consisting of engaged (w,m) pairs:

∀(w,m) ∈ E∀(w′,m′) ∈ E
((prwm

′m→ prm′w′w) ∧ (prmw
′w → prw′m′m)).

What this says (once more) is: if w prefers another guy m′ to her own fiancee m
then m′ does prefer his own fiancee w′ to w, and if m prefers another woman w′ to
his own fiancee w then w′ does prefer her own fiancee m′ to m.

Implementation

Once it is written like this it is straightforward to implement it, for we have all the
ingredients:

isStable :: Wpref -> Mpref -> Engaged -> Bool
isStable wpref mpref engaged = let

wf = plist2pfct wpref
mf = plist2pfct mpref

in
forall engaged (\ (w,m) -> forall engaged

(\ (w’,m’) -> (wf w m’ m ==> mf m’ w’ w)
&&
(mf m w’ w ==> wf w’ m’ m)))

Assertive Version of Stable Matching

This property can be used as a test on the output of stableMatch, as follows:

stableMatch’ :: Wpref -> Mpref -> Engaged
stableMatch’ = assert2 isStable stableMatch

Another Possibility

Another possibility is to use the assertion as an invariant. This version has to check
stability for a new pair:

stablePair :: Wpref -> Mpref
-> (Woman,Man) -> Engaged -> Bool

stablePair wpref mpref (w,m) engaged = let
wf = plist2pfct wpref
mf = plist2pfct mpref

in
forall engaged

(\ (w’,m’) -> (wf w m’ m ==> mf m’ w’ w)
&&
(mf m w’ w ==> wf w’ m’ m))

Still Stable?

Distinguish between the full preference list of the men and their current preference
list.

Use the current preference list to pick the current most preferred woman of the first
free man. This excludes the women he has been rejected by, or who have swapped
him for a better match in the preceding steps of the algorithm.

Check that in case the current most preferred woman of the first free man is still
free, the result of their engagement does not spoil stability:

stillStable :: Wpref -> Mpref
-> Mpref -> [Man] -> Engaged -> Bool

stillStable wpr mpr currentmpr [] eng = True
stillStable wpr mpr currentmpr (m:free) eng = let

Just (w:ws) = lookup m currentmpr
match = lookup w eng

in
match == Nothing ==> stablePair wpr mpr (w,m) eng

Version of the code including the two invariants

stableMatchA :: Wpref -> Mpref -> Engaged
stableMatchA wpref mpref =

let
men = map fst mpref
free = men
engaged = []

in
stableA wpref mpref mpref free engaged

We have one more parameter, for the preference function for the men. This is
needed to implement the stability check correctly. The code inside the while3
loop does not change.

stableA :: Wpref -> Mpref ->
Mpref -> [Man] -> Engaged -> Engaged

stableA wpref mpref = let
wf = plist2pfct wpref

in while3 (\ _ free _ -> not (null free))
(invar3 freeProp
(invar3 (stillStable wpref mpref)
(\ mpr (m:free) engaged ->

let
Just (w:ws) = lookup m mpr
match = lookup w engaged
mpr’ = (m,ws) : (delete (m,w:ws) mpr)
(engaged’,free’) = case match of

Nothing -> ((w,m):engaged,free)
Just m’ ->
if wf w m m’ then (

(w,m) : (delete (w,m’) engaged),
m’:free)

else (engaged, m:free)
in (mpr’,free’,engaged’))))

Note that we have stacked the two invariant tests, by wrapping one invariant around
the wrap of the other invariant around the step function.

Example preference list for the men

mt2 = [(1, [1, 5, 3, 9, 10, 4, 6, 2, 8, 7]),
(2, [3, 8, 1, 4, 5, 6, 2, 10, 9, 7]),
(3, [8, 5, 1, 4, 2, 6, 9, 7, 3, 10]),
(4, [9, 6, 4, 7, 8, 5, 10, 2, 3, 1]),
(5, [10, 4, 2, 3, 6, 5, 1, 9, 8, 7]),
(6, [2, 1, 4, 7, 5, 9, 3, 10, 8, 6]),
(7, [7, 5, 9, 2, 3, 1, 4, 8, 10, 6]),
(8, [1, 5, 8, 6, 9, 3, 10, 2, 7, 4]),
(9, [8, 3, 4, 7, 2, 1, 6, 9, 10, 5]),
(10, [1, 6, 10, 7, 5, 2, 4, 3, 9, 8])]

And for the women

wt2 =[(1, [2, 6, 10, 7, 9, 1, 4, 5, 3, 8]),
(2, [2, 1, 3, 6, 7, 4, 9, 5, 10, 8]),
(3, [6, 2, 5, 7, 8, 3, 9, 1, 4, 10]),
(4, [6, 10, 3, 1, 9, 8, 7, 4, 2, 5]),
(5, [10, 8, 6, 4, 1, 7, 3, 5, 9, 2]),
(6, [2, 1, 5, 9, 10, 4, 6, 7, 3, 8]),
(7, [10, 7, 8, 6, 2, 1, 3, 5, 4, 9]),
(8, [7, 10, 2, 1, 9, 4, 8, 5, 3, 6]),
(9, [9, 3, 8, 7, 6, 2, 1, 5, 10, 4]),
(10, [5, 8, 7, 1, 2, 10, 3, 9, 6, 4])]

And a test run with this

makeMatch2 = stableMatchA mt2 wt2

This gives:

*AS> makeMatch2
[(4,6),(5,10),(1,9),(9,8),(7,7),(8,5),
(10,1),(6,2),(3,4),(2,3)]

The Weighted Matching Problem

The weighted matching problem seeks to find a matching in a weighted bipartite
graph that has maximum weight. Maximum weighted matchings do not have to
be stable, but in some applications a maximum weighted matching is better than a
stable one.

College or Hospital Admission

In the college/hospital admission problem, several students or doctors can propose
to the same college or hospital.

The Task Assignment Problem

In the task assignment problem, a number of tasks has to be performed by a number
of agents at minimal cost. An example is a taxi cab scheduling systems, where
a number of taxis at different locations have to pick up a number of customers at
different locations.

Fair Division

For background on fair division, see [2, 3, 1, 10, 12].

A Tale From India

Two farmers, Ram and Shyam were eating chapatis. Ram had 3 pieces
of the flat, round bread and Shyam had 5. A traveller who looked hungry
and tired rode up to the two men. Ram and Shyam decided to share their
chapatis with him. The 3 men stacked the 8 chapatis (like pancakes) and
cut the stack into 3 equal parts. They shared the pieces equally and ate
until nothing was left. The traveller, who was a nobleman, was so grateful
that he gave the two farmers 8 gold coins for his share of the food.

After the traveller left, Ram and Shyam wondered how they should share

the 8 gold coins. Ram said that there were 8 coins and only 2 people, so
each person should get an equal share of 4 coins. “But thats not fair,” said
Shyam, “since I had 5 chapatis to begin with.” Ram could see his point,
but he didnt really want to give 5 of the coins to Shyam. So he suggested
they go see Maulvi, who was very wise. Shyam agreed.

Ram and Shyam told the whole story to Maulvi. After thinking for a long
time, he said that the fairest way to share the coins was to give Shyam
7 coins and Ram only 1 coin. Both men were surprised. But when they
asked Maulvi to explain his reasoning, they were satisfied that it was a
fair division of the 8 coins.

T.V. Padma, Mathematwist: Number Tales from Around the World [11]

One could easily conclude from this tale that fairness is too subjective to allow for
formal analysis. We will demonstrate in this chapter that that would be a mistake.

See Exercises for Further Reflection

Cake Cutting Algorithms

Problems of fair division can often be represented as cake cutting problems. The
assumption is that the cake is non-heterogeneous: it contains a variety of goodies
(cream topping, fruit, chocolate, etcetera) at a variety of places, and these goodies
are valued differently by the participants in the cake-sharing process. Without this
assumption cake-cutting is easy, of course. Just give each of N contestants 1

N of the
cake, with 1

N calculated according to the valuation they all agree on.

Assumption of Selfishness

We will assume the participants in a cake cutting process are unashamedly selfish.
Each wants the largest piece he can get away with. Here is a relevant quote from
[12]:

We encourage the reader to envision yourself in a life-or-death struggle
with siblings to see that you get a “fair share” of a literal leftover piece of
your favorite cake. Don’t give up a crumb!

In case a pie is to be shared between two people, we can use the oldest social proce-
dure of the world. Cut and choose (also known as ‘I cut, you choose’) is a procedure
for two-person fair division of some desirable or undesirable heterogeneous good.

Valuations

Indeed, let X be a set representing the good to be divided. A valuation function µ
for X is a function from P(X) to [0, 1] with the properties that

• µ(∅) = 0,

• µ(X) = 1, and

• A ⊆ B ⊆ X implies µ(A) ≤ µ(B).

If two valuation measures µm and µy (for my valuation and your valuation of X)
are different, this means that you and I value some items in X differently.

I Cut, You Choose

Cake cutting for two: “I Cut, You Choose”

1. Let X be given, together with two valuation functions µ1, µ2 : P(X) →
[0..1].

2. Person 1 uses µ1 to divide X into X1 and X2 with µ1(X1) = µ1(X2).

3. If µ2(X1) ≥ µ2(X2), person 2 gets X1, otherwise person 2 gets X2.

If the two participants have different value judgements on parts of the goods, it is
possible that both participants feel they received more than 50 percent of the goods.
It follows, as was already observed by Hugo Steinhaus in 1948, that there exists
a division that gives both parties more than their due part; “this fact disproves the
common opinion that differences in estimation make fair division difficult”[13].

Knowledge Matters

It matters whether the valuations are known to the other party. Such knowledge
can be used to advantage by the one who cuts. First consider the case that your
valuation is unknown to me, and vice versa. Then if I cut, the best I can do is
follow the algorithm above: pick sets A,B ⊆ X with A ∩ B = ∅, A ∪ B = X ,
and µm(A) = µm(B). If you choose, you will use µy to pick the maximum of
{µy(A), µy(B)}. It follows immediately that cutting guarantees a fair share, but no
more than that, while choosing holds a promise for a better deal. So if you ever
get the choice between cutting and choosing in a situation where both parties only
know their own valuation, then it is to your advantage to leave the cutting to the
other person.

Moving Knife Algorithm

Below, to keep matters simple, we will assume that valuations are private (not
known to the other participants). Here is a specification for the “Moving Knife”
cake cutting algorithm for N participants, with N ≥ 2 (described in [5]).

‘Moving knife’ algorithm for cake cutting

A knife is slowly moved at constant speed parallel to itself over the top of the
cake. At each instant the knife is poised so that it could cut a unique slice of the
cake. As time goes by the potential slice increases monotonely from nothing until
it becomes the entire cake. The first person to indicate satisfaction with the slice
then determined by the position of the knife receives that slice and is eliminated
from further distribution of the cake. (If two or more participants simultaneously
indicate satisfaction with the slice, it is given to ny one of them.) The process is
repeated with the other N −1 participants and with what remains of the cake [5].

Modelling Assumptions

To get a bit closer to implementation, assume that X is the line segment from 0 to
1. A valuation function for this is a function µ that assigns values to sub-intervals
[ai . . . bi] with 0 ≤ ai < bi ≤ 1, with the following properties:

1. If I, J are subintervals of [0..1] with I ⊆ J , then µ(I) ≤ µ(J),

2. µ([0..1]) = 1, µ(∅) = 0,

3. if 0 ≤ a < b ≤ 1, then µ[a..b] > 0.

If a participant i holds valuation function µi, then Eval(i, a, b) := µi[a..b] expresses
how i values the interval [a..b].

Another useful function is Cut(i, a, v), which gives the smallest b > a for which
µi[a..b] ≥ v.

Banach-Knaster Algorithm

Here is an algorithm due to the Polish mathematicians Banach and Knaster (de-
scribed in [13]) using these concepts.

Banach-Knaster algorithm for cake cutting

1. Let N be the set of people sharing interval [a..1].

2. If N = 1, the remaining person gets [a..1].

3. Otherwise, let i ∈ N be such that b = Cut(i, a, 1−a|N |) is minimal.

4. Give [a..b] to i, and continue the cake cutting with N − {i} and interval
[b..1].

Note the definition of b = Cut(i, a, 1−a|N |). This ensures that, in the valuation of i, the
portion [a..b] of the cake is worth 1

|N | of the current piece under discussion, which
is [a..1].

Trimming

This is often called Banach and Knaster’s trimming algorithm, because one might
think of the determination of

“let i ∈ N be such that b = Cut(i, a, 1−a|N |) is minimal”

as a process of trimming a given piece of cake down until no participant considers
it too big anymore. Another way to think about this is as a process of determining
where to cut, taking the valuations of all participants into account. (Looked at this
way, the algorithm proposes a single cut, not a succession of cuts that get closer and
closer to the final decision.)

Type Definitions

Here are some useful type abbreviations for an implementation:

type Agent = Int
type Value = Rational
type Boundary = Rational
type Valuation = Agent -> Boundary -> Value

Evaluation Function

The evaluation function can be defined from a valuation table:

eval :: Valuation -> Agent
-> Boundary -> Boundary -> Value

eval f i a b = (f i) b - (f i) a

Illustration

To illustrate this, it is useful to define an example valuation table. table i b
gives the value that agent i assigns to the interval [0..b]. Agents 1 and 2 have uniform
valuation: all parts of the cake are alike to them.Agent 3 and 4 values the first half
more than the second half. With agent 5 and 6 it is the reverse. Agents 7 and 8
value the first one third of the cake less than the rest.

table :: Valuation
table 1 b = b
table 2 b = b
table 3 b = if b < 1/2

then b * (3/2)
else (3/4) + (1/2)*(b - 1/2)

table 4 b = if b < 1/2
then b * (3/2)
else (3/4) + (1/2)*(b - 1/2)

table 5 b = if b < 1/2
then b * (1/2)
else (1/4) + (3/2)*(b - 1/2)

table 6 b = if b < 1/2
then b * (1/2)
else (1/4) + (3/2)*(b - 1/2)

table 7 b = if b < 1/3
then b * (1/2)
else (1/6) + (5/4)*(b - 1/3)

table 8 b = if b < 1/3
then b * (1/2)
else (1/6) + (5/4)*(b - 1/3)

Next, some weird valuations:

table 9 b = let
n = fromIntegral

(length [x | x <- goodies, x < b])
in n/3

table 10 b = if chocolate <= b then 1 else 0

This uses:

goodies = [1/3, 1/2, 2/3]
chocolate = 1/2

Agent 9 cares only about the goodies, while agent 10 is obsessed with chocolate:
she cares about nothing else. Note that the valuations for these agents are not
proper: they do not satisfy the condition that each non-empty segment of the cake
should have a positive value.

Checks

Check that all valuation functions defined so far in this table are proper valuation
functions.

Here is a partial check:

check :: Valuation -> Agent -> [Value]
check table agent =

[eval table agent 0 (1/fromIntegral(n)) |
n <- [1..]]

This gives:

*MatchingDivision> take 10 (check table 1)
[1 % 1,1 % 2,1 % 3,1 % 4,1 % 5,1 % 6,1 % 7,
1 % 8,1 % 9,1 % 10]

*MatchingDivision> take 10 (check table 3)
[1 % 1,3 % 4,1 % 2,3 % 8,3 % 10,1 % 4,3 % 14,
3 % 16,1 % 6,3 % 20]

*MatchingDivision> take 10 (check table 5)
[1 % 1,1 % 4,1 % 6,1 % 8,1 % 10,1 % 12,1 % 14,
1 % 16,1 % 18,1 % 20]

*MatchingDivision> take 10 (check table 7)
[1 % 1,3 % 8,1 % 6,1 % 8,1 % 10,1 % 12,1 % 14,
1 % 16,1 % 18,1 % 20]

The tables of agents 9 and 10 are different, for they contain intervals that are worth
nothing at all, according to the agent:

*MatchingDivision> take 10 (check table 9)
[1 % 1,1 % 3,0 % 1,0 % 1,0 % 1,0 % 1,0 % 1,
0 % 1,0 % 1,0 % 1]

*MatchingDivision> take 10 (check table 10)
[1 % 1,1 % 1,0 % 1,0 % 1,0 % 1,0 % 1,0 % 1,
0 % 1,0 % 1,0 % 1]

We will use these weird valuations below to illustrate that the fairness of the Banach-
Knaster algorithm depends on properties of the valuation functions.

Cut

The cut function can be defined from a valuation table provided we allow for some
margin of error. The reason for this is that for cutting we need the inverse of the
valuation, to determine the cut that yields a particular value.

epsilon = 1/10000

cut :: Valuation -> Agent
-> Boundary -> Value -> Boundary

cut f i a v = approxCut f i v epsilon a a 1

Right cut location

The right cut location is found by binary search:

approxCut :: Valuation -> Agent -> Value -> Boundary
-> Boundary -> Boundary -> Boundary -> Boundary

approxCut f i v error a left right = let
m = left + (right - left)/2
guess = eval f i a m

in
if guess == v || right - left < error then m
else if guess > v then
approxCut f i v error a left m

else approxCut f i v error a m right

Example cuts

*FDA> cut table 3 (1/2) (1/8)
3 % 4

*FDA> cut table 1 (1/2) (1/8)
5 % 8

*FDA> cut table 3 (1/2) (1/8)
3 % 4

*FDA> cut table 3 0 (1/2)
10923 % 32768

*FDA> cut table 7 0 (1/2)
19661 % 32768

*FDA> cut table 2 (1/2) (1/8)
5 % 8

*FDA> cut table 2 (1/2) (1/5)
22937 % 32768

*FDA> cut table 3 (1/2) (1/5)
29491 % 32768

*FDA> cut table 5 (1/2) (1/5)
20753 % 32768

*FDA> cut table 3 0 (1/2)
10923 % 32768

Type for “I cut, you choose”

In the implementation, the function for ”I cut, you choose” has the following type:

cutAndChoose :: Valuation -> Agent -> Agent
-> Boundary -> [(Agent,Boundary,Boundary)]

The implementation assumes that the first argument represents the cutter and the
second argument the chooser:

cutAndChoose f i j a = let
b = cut f i a ((1-a)/2)

in
if eval f j a b >= eval f j b 1

then [(j,a,b),(i,b,1)]
else [(i,a,b),(j,b,1)]

Idea

Note that the idea is to fairly divide the part [a..1] of the interval [0..1]. Half of this
part should have value 1−a

2 .

Now we can illustrate our earlier point that if valuations are private, it is better to
choose that to cut.

Agent 1 does the cutting

This is what happens if agent 1, who has uniform valuation, is the cutter:

*FDA> cutAndChoose table 1 3 0
[(3,0 % 1,1 % 2),(1,1 % 2,1 % 1)]

Agent 3 gets the part that is much more valuable to her:

*FDA> eval table 3 0 (1/2)
3 % 4

*FDA> eval table 3 (1/2) 1
1 % 4

Agent 3 does the cutting

If agent 3 does the cutting, this is what happens:

*FDA> cutAndChoose table 3 1 0
[(3,0 % 1,10923 % 32768),(1,10923 % 32768,1 % 1)]

Agent 3 gets a smaller part now. This is much better for agent 1, for:

*FDA> eval table 1 0 (10923/32768)
10923 % 32768

*FDA> eval table 1 (10923/32768) 1
21845 % 32768

Banach-Knaster, Implementation

To implement the Banach-Knaster algorithm, we need an auxiliary function for
picking an element in a non-empty list with minimal f -value:

minim :: (Ord b) => (a -> b) -> [a] -> a
minim f = head .

(sortBy (\ x y -> compare (f x) (f y)))

In the implementation of Banach-Knaster we use minim to pick the agent who
cuts the smallest piece. The function fromIntegral converts n to a floating
point number, which is needed for the division (1/n).

bk :: Valuation -> [Agent] -> Boundary
-> [(Agent,Boundary,Boundary)]

bk f [i] a = [(i,a,1)]
bk f js a = let

n = fromIntegral (length js)
g = \ j -> cut f j a ((1-a)/n)
i = minim g js
b = g i

in
(i,a,b) : bk f (js \\ [i]) b

An auxiliary function for evaluating all the pieces

evl :: Valuation -> [(Agent,Boundary,Boundary)]
-> [(Agent,Value)]

evl table = let
f = \ (i,a,b) -> (i, eval table i a b)

in map f

Fairness

We call a cake division among N agents fair if each agent receives a slice that she
values as at least 1

N of the cake.

fair :: Valuation -> Boundary
-> [(Agent,Boundary,Boundary)] -> [Bool]

fair table a xs = let
pairs = evl table xs
n = fromIntegral (length xs)
f = \ (i,v) -> v + epsilon >= (a-1)/n

in
map f pairs

Illustration

*FDA> bk table [1,3] 0
[(3,0 % 1,10923 % 32768),(1,10923 % 32768,1 % 1)]

*FDA> fair table 0 $ bk table [1,3] 0
[True,True]

*FDA> bk table [1,3,5] 0
[(3,0 % 1,7281 % 32768),(1,7281 % 32768,40049 % 65536),

(5,40049 % 65536,1 % 1)]

*FDA> fair table 0 $ bk table [1,3,5] 0
[True,True,True]

Assertive Version of the Algorithm

We can use this to write an assertive version of the Banach-Knaster cake cutting
algorithm:

bkA :: Valuation -> [Agent] -> Boundary
-> [(Agent,Boundary,Boundary)]

bkA = let
allFair = (\ f _ a outcome ->

and (fair f a outcome))
in assert3 allFair bk

Iterative formulation of the Banach-Knaster algorithm

Banach-Knaster algorithm for cake cutting (iterative version)

1. Let N be the set of people sharing interval [a..1].

2. While |N | > 1 do

(a) let i ∈ N be such that b = Cut(i, a, 1−a|N |) is minimal;

(b) give [a..b] to i;

(c) N := N − {i};
(d) a := b.

3. The remaining person gets [a..1].

Implementation of the iterative version of the Banach-Knaster
algorithm

bki :: Valuation -> [Agent]
-> [(Agent,Boundary,Boundary)]

bki f js = bki’ f js 0 []

bki’ :: Valuation -> [Agent] -> Boundary
-> [(Agent,Boundary,Boundary)]
-> [(Agent,Boundary,Boundary)]

bki’ f = while3
(\ js _ _ -> not (null js))
(\ js a xs -> let

n = fromIntegral (length js)
g = \ j -> cut f j a ((1-a)/n)
i = minim g js
b = if n > 1 then g i else 1

in
(js\\[i], b, (i,a,b):xs))

Another version, using a “for” loop

bki :: Valuation -> [Agent]
-> [(Agent,Boundary,Boundary)]

bki f js = let
k = length js in

bki’ f k js 0 []

bki’ :: Valuation -> Int -> [Agent] -> Boundary
-> [(Agent,Boundary,Boundary)]
-> [(Agent,Boundary,Boundary)]

bki’ f k = for3 [1..k]
(\ m js a xs -> let

n = fromIntegral ((k+1) - m)
g = \ j -> cut f j a ((1-a)/n)
i = minim g js
b = if n > 1 then g i else 1

in
(js\\[i], b, (i,a,b):xs))

Analysis

Will a cake partition found by the Banach-Knaster algorithm always be fair? That
depends on the properties of the valuations. For valuations that satisfy all require-
ments stated above, the answer is ‘yes’. This can easily be proved by induction, as
follows.

If there is only one agent, Banach-Knaster gives the cake fragment [a..1] to that
agent. This is fair by definition.

Suppose the Banach-Knaster division is fair for any cake fragment [b..1] and n
agents. We have to show that the Banach Knaster division is also fair for any cake
fragment and n+ 1 agents.

Banach-Knaster, for n + 1 agent set A and cake fragment [a..1], instructs us to
compute [a..b], where b = mini∈A Cut(i, a, 1−a

N+1), and give this to an i ∈ A with
Cut(i, a, 1−an+1) = b.

Then fi[a..b] = 1
n+1 [a..1], so i gets a fair share of [a..1]. Now take some arbitrary

j ∈ A− {i}.

Then Cut(j, a, 1−an+1) ≥ b. Will we be able to give j a fair share of [b..1]? If the
valuation function for j is proper, then the answer is yes, for then it follows from
the fact that Cut(j, a, 1−an+1) ≥ b that fj[a..b] ≤ 1

n+1 [a..1], and therefore,

fj[b..1] = fj[a..1]− fj[a..b] ≥
n

n+ 1
[a..1].

By the induction hypothesis, j gets a fair share of [b..1].

Some Background on Valuation and Measure

A valuation function with the properties mentioned on page 49 is often called a
measure function.

Measure functions arise in probability theory as well, and it turns out that the valua-
tion functions we need for expressing the individual appreciation of parts of a cake
are related to so-called mass density functions in the same way as in probability
theory.

A probability density function (p.d.f.) expresses the relative likelihood that a ran-
dom variable takes a particular value. A probability density function is non-negative
everywhere, and its integral is equal to one.

In our context, a mass density function is a function that is positive on any x in the
interval [0..1], and has an integral equal to one.

The uniform valuation (the valuation of agents 1 and 2 in table) arises from the
mass density function λx 7→ 1. It is the function F that has λx 7→ 1 as its derivative,
i.e., the function F = λx 7→ x. For if F (x) = x then F ′(x) = 1.

And so on.

Envy-Free Cake Cutting

We have seem that the cake divisions produced by Banach-Knaster are fair. Still,
the results of the division may cause hard feelings among the participants. Suppose
Alice gets her fair share which she considers worth 1

3 of the cake. Next, Bob and
Carol divide the rest. Both get a fair share: at least half of the rest, in their own
evaluation. But Alice sees to her dismay that the piece that Bob considered a fair
share is worth much more than the piece she got herself. (It follows that Alice also
believes that the piece that Carol received is worth much less than her own piece,
but such findings are generally easier to live with.)

Can we cut cakes in such a way that these feelings of envy are avoided? In the case
of cake cutting for two, we can, for we know that “cut and choose” has as result
that the cutter has one half of the cake (in his own estimation), while the chooser
estimates to have at least one half. Neither of them wants to swap with the other.

In the case of three or more, matters are different. The example above shows that
the Banach-Knaster algorithm does not guarantee envy-freeness, even in the simple
case of sharing a cake with three participants.

Stromquist [14] describes the following algorithm for envy-free cake cutting for 3.

Envy-free Cake Cutting for Three: Moving Knives

“A referee moves a sword from left to right over the cake, hypothetically dividing
it in a small left piece and a large right piece. Each player holds a knife over
what he considers to be the midopoint of the right piece. As the referee moves
his word, the players continually adjust their knives, aways keeping them parallel
tot the sword [..]. When any player shouts “cut” the cake is cut by the sword and
by whichever of the players’ knives happens to be in the middle of the three.
The player who shouted “cut” receives the left piece. He must be satisfied, be-
cause he knew what all three pieces would be when he said the word. Then the
player whose knife ended nearest to the sword, if he didn’t shout “cut,” takes
the center piece; and the player whose knife was farthest from the sword, if he
didn’t shout “cut,” takes the right piece. The player whose knife was used to cut
the cake, if he hasn’t already taken the left piece, will be satisfied with whatever
piece is left over. If ties must be broken — either because two or three players
shout simultaneously or because two or three knives coincide — they may be
broken arbitrarily.” [14]

Algorithm for envy free division for 3, attributed (in [4]) to Conway and Selfridge.

On next page.

Envy Free Division for 3 Players (Conway, Selfridge)

1. Call the measures of the three players µ1, µ2, µ3.

2. Player 1 cuts cake into 3 equal pieces (according to µ1).

3. If the two largest pieces according to µ2 have unequal sizes, player 2 cuts
the largest of them down to size by slicing off a piece L. This gives pieces
X, Y, Z, and maybe a leftover piece L, trimmed from X .

4. Players 3, 2, 1, in that order, choose a piece. If 2 trimmed X , he has to
choose X if player 3 does not choose it.

5. If there was no trimming we are done. Otherwise, let x be the player that
received X , and let y be the other from players 2, 3. Let y cut L into three
equal pieces L1, L2, L3 (according to µy).

6. The three pieces L1, L2, L3 are divided by letting x choose first and y next,
while 1 has to take the remaining piece.

Dividing an Estate, or Dividing a Burden

Suppose we want to divide m desirable objects (an ‘estate’) or undesirable objects
(a burden) among n participants who are each entitled to an equal share of the estate
(or obliged to an equal share in the burden). Each participant has her own valuation
of the items. Can we make a division that is fair and envy-free? Each participant
should receive at least 1

n of the estate, in her own estimation. Or in the case of a
burden: each participant has to take care of at most 1

n , in her own estimation. And
(envy-freeness) no participant should be willing to trade her share with that of any
other participant. Here is a simple example.

Alice, Bob and Carol have to divide an estate consisting of a cabrio car, a station
car, a sailing boat, a grand piano and a collector’s wrist watch. Given that these
items are so diverse, they each have different valuations for the objects. Is there a
procedure for fair division that will not cause hard feelings?

It turns out that there is. The big equalizer is money.

Explain and implement the procedure proposed by Haake, Raith and Su in [8],
where money is used to establish fairness and envy-freeness through internal market
pricing.

Explanation by example

Alice Bob Carol
car
boat
grand piano

Splitting the Rent

My friend’s dilemma was a practical question that mathematics could
answer, both elegantly and constructively. He and his housemates were
moving to a house with rooms of various sizes and features, and were
having trouble deciding who should get which room and for what part of
the total rent. He asked, “Do you think there’s always a way to partition
the rent so that each person prefers a different room?” [15]

If you want to stay informed . . .

The material of the course is undergoing further revision.

Send me an email: jve@cwi.nl.

References

[1] S.J. Brams and A.D. Taylor. Fair Division: From Cake-Cutting to Dispute-
Resolution. Cambridge University Press, 1996.

[2] Steven Brams. Fair division. In Barry R. Weingast and Donald Wittman, edi-
tors, Oxford Handbook of Political Economy. Oxford University Press, 2005.

[3] Steven Brams. Mathematics and Democracy:Designing Better Voting and Fair
Division Procedures. Princeton University Press, 2008.

[4] Steven J. Brams and Alan D. Taylor. An envy-free cake division protocol. The
American Mathematical Monthly, 102(1):9–18, January 1995.

[5] L.E. Dubisn and E.H. Spanier. How to cut a cake fairly. American Mathemat-
ical Monthly, 68(1):1–17, 1961.

[6] S. Even and A. Paz. A note on cake cutting. Discrete Applied Mathematics,
7:285–296, 1984.

[7] D. Gale and L. Shapley. College admissions and the stability of marriage.
American Mathematical Monthly, 69:9–15, 1962.

[8] Claus-Jochen Haake, Matthias G. Raith, and Francis Edward Su. Bidding
for envy-freeness: a procedural approach to n-player fair-division problems.
Social Choice and Welfare, 19(4):723–749, 2002.

[9] Robert W. Irving. An efficient algorithm for the “stable roommates” problem.
Journal of Algorithms, 6(4):577–595, 1985.

[10] Hervé Moulin. Fair Division and Collective Welfare. MIT Press, 2004.

[11] T.V. Padma. Mathematwist: Number Tales from Around the World. Tulika
Publishers, Chennai, India, 2007.

[12] Jack Robertson and William Webb. Cake-Cutting Algorithms – Be Fair if You
Can. A.K. Peters, 1998.

[13] H. Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.

[14] Walter Stromquist. How to cut a cake fairly. American Mathematical Monthly,
87(8):640–644, 1980.

[15] Francis Edward Su. Rental harmony: Sperner’s lemma in fair division. Amer-
ican Mathematical Monthly, 106(10):930–942, 1999.

