
Purely Functional Algorithm Specification
Course Overview

Jan van Eijck
CWI & ILLC, Amsterdam

ESSLLI, Opole, August 6–10, 2012

homepages.cwi.nl/˜jve/courses/12/esslli12/

homepages.cwi.nl/~jve/courses/12/esslli12/


Algorithms

An algorithm is an effective method expressed as a list of instructions
describing a computation for calculating a result. Algorithms have to
be written in human readable form, either using pseudocode (natural
language looking like executable code), a high level specification lan-
guage like Dijkstra’s Guarded Command Language, or an executable
formal specification formalism such as Z.

Algorithms are usually specified in imperative style.



Functional View on Imperative Algorithms

The course will adopt a purely functional view on the key ingredients
of imperative programming: while loops, repeat loops, and for loops,
and demonstrate how this can be used for specifying (executable) al-
gorithms, and for automated testing of Hoare correctness statements
about these algorithms.

Inspiration for this was the talk by Leslie Lamport at CWI, Ams-
terdam, on the executable algorithm specification language PlusCal
[3], plus Edsger W. Dijkstra, ”EWD472: Guarded commands, non-
determinacy and formal derivation of programs” [1]. Instead of for-
mal program derivation, we demonstrate test automation of Hoare
style assertions.



Prerequisites

This is course has no formal prerequisites at all. The introduction will
be at a serious speed, while remaining accessible to students with a
wide variety of backgrounds. Anyone with a willingness to learn for-
mal methods should be able to follow. Students with some previous
experience with (functional) programming will be at an advantage,
though.

To benefit the most, install the Haskell platform on your laptop, and
attack some of the exercises.

Please don’t worry about the fact that this course was classified by the
ESSLLI program commitee as advanced.



Haskell as a Tool for Functional Algorithm Specification

Our tool for functional algorithm specification will be the language
Haskell.

www.haskell.org

http://hackage.haskell.org/platform/

The first lecture will be devoted to a lightning introduction to Haskell.

www.haskell.org
http://hackage.haskell.org/platform/


The Haskell Road [2]



Functional Imperative Style

This lecture explains how imperative algorithms can be written di-
rectly in functional style.

We show how to define while loops as functional programs, and how
this trick can be used to write what we call functional imperative code.



Reasoning About Functions

This lecture explains reasoning about functions using assertions taken
from Hoare logic and dynamic logic.

{P} C {Q}.



Algorithm Specification for Assertive Coding

We show how to specify preconditions, postconditions, assertions and
invariants, and how to wrap these around functional code or func-
tional imperative code. We illustrate the use of this for writing pro-
grams for automated testing of code that is wrapped in appropriate
assertions. We call this assertive coding.

An assertive version of a function f is a function f ′ that behaves ex-
actly like f as long as f complies with its specification, and aborts
with error otherwise.



Graph Algorithms

This lecture discusses a number of well-known graph algorithms, de-
velops testable specifications for them, and uses the specifications to
write assertive (self-testing) versions of the algorithms.



Algorithms for Matching and Task Assignment

This lecture deals with algorithms for matching and assignment.

The matching problem is the problem of connecting nodes in a bipar-
tite graph, while making sure that certain requirements are met.

Exemplar for this is the stable marriage algorithm.



Fair Division Algorithms

This lecture discusses fair division algorithms, develops testable spec-
ifications for them, and uses the specifications to write self-testing
versions of the algorithms.

The problem of cutting a cake among N participant in such a way that
every participant is satisfied with her share serves as an exemplar.



References

[1] E.W. Dijkstra. Guarded commands, nondeterminacy and the
formal derivation of programs. Communications of the ACM,
18:453–457, 1975.

[2] K. Doets and J. van Eijck. The Haskell Road to Logic, Maths and
Programming, volume 4 of Texts in Computing. College Publica-
tions, London, 2004.

[3] Leslie Lamport. The PlusCal algorithm language. In Mar-
tin Leucker and Carroll Morgan, editors, Theoretical Aspects of
Computing – ICTAC 2009, number 5684 in Lecture Notes in
Computer Science, pages 36–60. Springer, 2009.


