
Reasoning About Functions

Jan van Eijck
CWI & ILLC, Amsterdam

August 7, 2012

Module Declaration

module Reasoning

where

import Data.List
import System.Random
import System.IO.Unsafe

Partiality in Functional Programming

One way to think about a function is as an assignment of values to some objects of
a certain type.

In mathematics, f : A → B expresses that f is a total function from A to B, i.e.,
for every x ∈ A there is an fx ∈ B.

This does not quite match the situation in functional programming. f :: a -> b
does declare f as a function from objects of type a to objects of type b, but there is
no assumption that this function is total.

The following is well-defined:

bot :: a -> b
bot _ = undefined

This defines bot as the partial function that is everywhere undefined.

Information Order

Thinking about the class of partial functions from objects of type a to objects of
type b, there is an obvious information order on them. Let us use fx = ⊥ for ‘fx
is undefined’. It follows that fx 6= ⊥ expresses that fx is defined.

We start with a partial order on basic types. For any basic type a, we introduce an
object ⊥ :: a for the undefined object of that type, and we define an ordering on the
type by means of

x v y if x = ⊥ ∨ x = y.

Thus, if u and v are two objects of type a that are different from ⊥ and from each
other, then this ordering is given by:

v = {(⊥,⊥), (⊥, u), (⊥, v), (u, u), (v, v)}.

Information Order on the Booleans

For the particular case of the Booleans, we have:

v = {(⊥,⊥), (⊥, T), (⊥, F), (T, T), (F, F)}.

The corresponding strict partial order @ on the Booleans is given by:

@ = {(⊥, T), (⊥, F)}.

In a picture:

⊥

T F

Information Order on Functions

Next, we lift this ordering to functional types, by stipulating:

f v g iff ∀x : if x 6= ⊥ ∧ fx 6= ⊥ then fx = gx.

Note that fx 6= ⊥ expresses that f is defined on x. We exclude the situation where
x = ⊥ and fx is defined. In other words, we expect our partial functions to be
monotonic for the information order v.

A function f is monotonic for v if x v y holds iff fx v fy holds.

u

Use f u g for the function h given by:

h(x) =

{
f(x) if f(x) = g(x)
⊥ otherwise

Partial Functions as a Meet Semilattice

We say that partial functions in A → B are a meet semilattice for the partial order
v.

For every pair of functions f and g with domain A and codomain B, their meet
f u g is defined.

Moreover, f u g is the largest function h in the v order that satisfies h v f and
h v g.

Action in Functional Programming

At an abstract level, action is change of state. In imperative programming, it is clear
that programming statements denote actions, for the execution of an imperative
program has as its effect that the memory state of the machine that runs the program
gets modified.

Is there also a notion of action for functional programming? Yes, there is, for
instead of change in a memory state we can look at change in a function space.
Take a function f , and an operation [x := d] that changes f into f ′, where f ′ is
given by:

f ′(x) = d, and for y 6= x, f ′(y) = f(y).

The operation [x := d] has changed the definition of the function.

This kind of update of a function is a fundamental operation in many algorithms.

Assigmnent Update

In the semantics of First Order Logic, a variable assignment is a map from the
variables of a first order language to the elements of a domain of discourse. Assume
V is the list of variables andD is a domain of discourse. Then a variable assignment
is a function from a subset of V to D. The notion of truth of a formula in a model is
defined in terms of truth of a formula in a model, given a variable assignment. The
variable assignment is needed to interpret the free variables that occur in a formula.

Consider the following example. The formula is ∀x∃yRxy, the domain of the
model consists of the first 10 natural numbers {0, 1, 2, 3, 4, 4, 5, 6, 7, 8, 9}, and the
relation symbol R is interpreted as the following set of pairs:

{(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)}.

Truth of ∀x∃yRxy

To check whether ∀x∃yRxy is true on this domain, under this interpretation for R,
check whether ∃yRxy is true for every variable assignment for x. There are ten
such variable assignments:

{(x, 0)}, {(x, 1)}, {(x, 2)}, {(x, 3)}, {(x, 4)}, {(x, 5)}, {(x, 6)}, {(x, 7)}, {(x, 8)}, {(x, 9)}.

To check whether ∃yRxy is true for all of these, we take any one of them, and
check whether we can find an appropriate extension with a value for y, to see
whether R(x, y) is true for this new assignment. It then turns out that this works
for all of them, except for {(x, 9)}. There is no element d in the domain for which
{(x, 9), (y, d)} makes R(x, y) true.

To state the truth definition in full generality, one also needs to cater for the possi-
bility that an assignment function gets changed or updated rather than extended.

Assignment Update, Ctd

The notion of an assignment update also works for assignment functions of type
V → D, i.e., for functions that are defined for every variable in the set V . Logic
textbooks have notations like

g[v/d]

or
gvd

or
g[v := d]

for the assignment that is like g except for the fact that it maps v to d.

Function Update, General Definition

We call this an update of a function. Here is the general definition of the update of
a function for a single argument-value pair:

update :: Eq a => (a -> b) -> (a,b) -> a -> b
update f (y,z) x = if x == y then z else f x

And here is the update of a function for a list of argument-value pairs:

updates :: Eq a => (a -> b) -> [(a,b)] -> a -> b
updates = foldl update

These function updates will be a key ingredient in some of the algorithms in later
chapters.

Updates and Partiality

We can use updates to change a function from undefined to defined at some partic-
ular argument(s).

partialSuccessor =
updates bot [(n,n+1)| n <- [0..100]]

Function Update as a Basic Action

We can look at function update as a basic action, and ask ourselves how basic
actions are combined, and how the results of performing such combined actions
can be specified by means of appropriate properties.

Algorithms are formal descriptions of combinations of basic actions.

Formal specifications of algorithms are formal descriptions of what the algorithms
are expected to do. A standard tool for formal specification of algorithms is dy-
namic logic, a logical tool that allows us to describe the interplay between action
and state. Action changes state, and state is what is changed by action.

Functional programming does not focus on machine state, but we will see that talk-
ing about state change still makes a lot of sense when analyzing functional pro-
grams.

Tony Hoare

About Tony Hoare

• Inventor of the QuickSort Algorithm http://en.wikipedia.org/wiki/
Quicksort

• Inventor of Hoare Logic http://en.wikipedia.org/wiki/Hoare_
logic

• Inventor of CSP (specification language for concurrent processes) and moving
force behind Occam.

• Winner of the 1980 ACM Turing Award

• Main Focus of Research: make software more reliable, explain how software
gets more reliable in practice.

• See http://en.wikipedia.org/wiki/Tony_Hoare

http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Hoare_logic
http://en.wikipedia.org/wiki/Hoare_logic
http://en.wikipedia.org/wiki/Tony_Hoare

Tony Hoare on the Purpose of Testing

Philosophers of science have pointed out that no series of experiments,
however long and however favourable can ever prove a theory correct;
but even only a single contrary experiment will certainly falsify it. And
it is a basic slogan of quality assurance that ”you cannot test quality into
a product”. How then can testing contribute to reliability of programs,
theories and products? Is the confidence it gives illusory?

Tony Hoare, How did software get so reliable without proof? [3]

The Purpose of Testing is to Test a Method

The resolution of the paradox is well known in the theory of quality con-
trol. It is to ensure that a test made on a product is not a test of the product
itself, but rather of the methods that have been used to produce it — the
processes, the production lines, the machine tools, their parameter set-
tings and operating disciplines. If a test fails, it is not enough to mend the
faulty product. It is not enough just to throw it away, or even to reject the
whole batch of products in which a defective one is found. The first prin-
ciple is that the whole production line must be re-examined, inspected,
adjusted or even closed until the root cause of the defect has been found
and eliminated.

Tony Hoare, How did software get so reliable without proof? [3]

Hoare on the Value of Testing

The real value of tests is not that they detect bugs in the code, but that
they detect inadequacy in the methods, concentration and skills of those
who design and produce the code. Programmers who consistently fail
to meet their test- ing schedules are quickly isolated, and assigned to
less intellectually demanding tasks. The most reliable code is produced
by teams of programmers who have survived the rigours of testing and
delivery to deadline over a period of ten years or more. By experience,
intuition, and a sense of personal responsibility they are well qualified
to continue to meet the highest standards of quality and reliability. But
don’t stop the tests: they are still essential to counteract the distracting
effects and the perpetual pressure of close deadlines, even on the most
meticulous programmers.

Tony Hoare, How did software get so reliable without proof? [3]

Formal Specification With Hoare Triples

In general a triple

initial state – statement – final state
{P} S {Q}

has the following operational meaning:

If execution of S in a state that satisfies P terminates, then the termination
state is guaranteed to satisfy Q.

Such triples {P}S {Q} are called Hoare triples after Tony Hoare.

The predicate for the initial state is called the precondition, and the predicate for
the final state is called the postcondition.

Key Importance of Hoare Triples for Testing

• Consider a Hoare triple {P}S {Q}

• Such a triple can be viewed as a specification for S.

• It provides the means to test whether S fits its specification.

• The predicate P specifies which values for the parameters mentioned in P are
relevant.

• The predicate Q specifies what the test outcome should be. Here is how:

• Randomly generate values for the parameters mentioned in P .

• Run S in a state where the parameters have these values.

• Check whether the program ends in a state that satisfies Q.

assignment {ϕv
a} v := a {ϕ}

skip {ϕ} SKIP {ϕ}

sequence
{ϕ} C1 {ψ} {ψ} C2 {χ}

{ϕ} C1;C2 {χ}

conditional choice
{ϕ ∧B} C1 {ψ} {ϕ ∧ ¬B} C2 {ψ}

{ϕ} if B then C1 else C2 {ψ}

guarded iteration
{ϕ ∧B} C {ϕ}

{ϕ} while B do C {ϕ ∧ ¬B}

precondition strengthening
N |= ϕ′ → ϕ {ϕ} C {ψ}

{ϕ′} C {ψ}

postcondition weakening
{ϕ} C {ψ} N |= ψ → ψ′

{ϕ} C {ψ′}

Example of Non-deterministic Processing

randomNat :: Int -> Int
randomNat n = unsafePerformIO $

getStdRandom (randomR (0,n-1))

The function randomNat 4 generates a random integer number in the range
[0..3].

A Random Tuple

Consider the following tuple:

tuple :: (Int,Int)
tuple = let x = randomNat 4 in (x, 3-x)

The result is that both elements of the tuple get assigned a number from the set
{0, 1, 2, 3}, and that the following property holds:

tupleProp :: (Int,Int) -> Bool
tupleProp = \tuple ->

fst tuple >= 2 || snd tuple >= 2

Clearly we cannot derive from this that fst tuple >= 2 nor that snd tuple >= 2.

Invalid Inference

The example shows that from

{P}S {Q ∨R}

one cannot infer that
({P}S {Q}) ∨ ({P}S {R})

Take True for P , fst tuple >= 2 for Q, and snd tuple >= 2 for R.

Hoare Rule for Repetition

{P ∧ C} S {P}
{P} while C do S {P ∧ ¬C}

The key element is finding an appropriate loop invariant P : a predicate with the
property that if it holds immediately before the step S, it also holds immediately
after the step.

{P} S {P}.

To make this fly, we also need the other rules of the calculus.

Hoare Rules for Functions

Recall that, from the functional imperative perspective, a step S is simply a func-
tion. In the simplest possible case S has type a -> a.

The rule for the function ⊥ is given by:

{P} ⊥ {P}.

Explanation: ⊥ never terminates with success, so the Hoare assertion is trivially
true.

Hoare rule for function update

{(u = x ∧ gu = y ∧ P (x, y)) ∨ P (u, fu)} g = update f(x, y) {P (u, gu)}.

Hoare rule for function composition

{P} g {R} {R} f {Q}
{P} f.g {Q}

Hoare rule for choice (function definition by cases)

{Q ∧ P} f {R} {Q ∧ ¬P} g {R}
{Q} if P then f else g {R}

This can be extended for other ways of defining functions in Haskell.

Precondition Strengthening, Postcondition Weakening

Precondition Strengthening:

P ′ ⇒ P {P} f {Q}
{P ′} f {Q}

Postcondition Weakening:

{P} f {Q} Q⇒ Q′

{P} f {Q′}

Hoare Logic as a Fragment of Dynamic Logic

Hoare logic is a fragment of the following more general system of (propositional)
dynamic logic:

The language of propositional dynamic logic was defined by Pratt in [5, 6] as a
generic language for reasoning about computation. Axiomatisations were given
independently by Segerberg [7], Fisher/Ladner [2], and Parikh [4]. These axiomati-
sations make the connection between propositional dynamic logic and modal logic
very clear.

PDL Language

Let p range over the set of basic propositions P , and let a range over a set of basic
actions A. Then the formulae ϕ and programs α of propositional dynamic logic are
given by:

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈α〉ϕ
α ::= a |?ϕ | α1;α2 | α1 ∪ α2 | α∗

Abbreviation:
[α]ϕ abbreviates¬〈α〉¬ϕ.

Expressing Hoare Triples in PDL

Floyd-Hoare correctness assertions are expressible in PDL, as follows. If ϕ, ψ are
PDL formulae and α is a PDL program, then

{ϕ} α {ψ}

translates into
ϕ→ [α]ψ.

Clearly, {ϕ} α {ψ} holds in a state in a model iff ϕ → [α]ψ is true in that state in
that model.

Deriving Hoare Rules in PDL

The Floyd-Hoare inference rules can now be derived in PDL. As an example we
derive the rule for guarded iteration:

{ϕ ∧ ψ} α {ψ}
{ψ}WHILE ϕ DO α {¬ϕ ∧ ψ}

Let the premise {ϕ ∧ ψ} α {ψ} be given, i.e. assume (1).

` (ϕ ∧ ψ)→ [α]ψ. (1)

We wish to derive the conclusion

` {ψ}WHILE ϕ DO α {¬ϕ ∧ ψ},

i.e. we wish to derive (2).

` ψ → [(?ϕ;α)∗; ?¬ϕ](¬ϕ ∧ ψ). (2)

From (1) by means of propositional reasoning:

` ψ → (ϕ→ [α]ψ).

From this, by means of the test and sequence axioms:

` ψ → [ϕ;α]ψ.

Applying the loop invariance rule gives:

` ψ → [(ϕ;α)∗]ψ.

Since ψ is propositionally equivalent with ¬ϕ → (¬ϕ ∧ ψ), we get from this by
propositional reasoning:

` ψ → [(ϕ;α)∗](¬ϕ→ (¬ϕ ∧ ψ)).

The test axiom and the sequencing axiom yield the desired result (2).

Summary, and Further Reading

The chapter on action logic in [1] develops a general perspective on the logical
analysis of actions.

References

[1] Johan van Benthem, Hans van Ditmarsch, Jan van Eijck, and Jan Jaspars.
Logic in Action. Internet, 2012. electronic book, available from www.
logicinaction.org.

[2] M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18(2):194–211, 1979.

[3] C.A.R. Hoare. How did software get so reliable without proof? In FME ’96:
Proceedings of the Third International Symposium of Formal Methods Europe
on Industrial Benefit and Advances in Formal Methods, pages 1–17, London,
UK, 1996. Springer-Verlag. Keynote Address.

[4] Rohit Parikh. The completeness of propositional dynamic logic. In Mathemat-
ical Foundations of Computer Science 1978, pages 403–415. Springer, 1978.

[5] V. Pratt. Semantical considerations on Floyd–Hoare logic. Proceedings 17th
IEEE Symposium on Foundations of Computer Science, pages 109–121, 1976.

[6] V. Pratt. Application of modal logic to programming. Studia Logica, 39:257–
274, 1980.

www.logicinaction.org
www.logicinaction.org

[7] K. Segerberg. A completeness theorem in the modal logic of programs. In
T. Traczyck, editor, Universal Algebra and Applications, pages 36–46. Polish
Science Publications, 1982.

