
Getting Started with Haskell

Jan van Eijck

CWI

June 5, 2012

Jan van Eijck Specification and Testing 1 / 44

Functional programming with Haskell

A short history of Haskell

Jan van Eijck Specification and Testing 2 / 44

Functional programming with Haskell

A short history of Haskell

In 1990, they published the first Haskell specification, named after the
logician and mathematician Haskell B. Curry (1900-1982).

Jan van Eijck Specification and Testing 4 / 44

Functional programming with Haskell

Simon Peyton-Jones:
The life cycle of programming languages

years

users

5 10 15

1

100

10 000

1Mio

critical mass

threshhold of immortality

Jan van Eijck Specification and Testing 5 / 44

Functional programming with Haskell

Simon Peyton-Jones:
The life cycle of programming languages

Most research languages (the quick death)

years

users

5 10 15

1

100

10 000

1Mio

critical mass

threshhold of immortality

Jan van Eijck Specification and Testing 6 / 44

Functional programming with Haskell

Simon Peyton-Jones:
The life cycle of programming languages

Successful research languages (the slow death)

years

users

5 10 15

1

100

10 000

1Mio

critical mass

threshhold of immortality

Jan van Eijck Specification and Testing 7 / 44

Functional programming with Haskell

Simon Peyton-Jones:
The life cycle of programming languages

C++, Java, Perl (the absence of death)

years

users

5 10 15

1

100

10 000

1Mio

critical mass

threshhold of immortality

Jan van Eijck Specification and Testing 8 / 44

Functional programming with Haskell

Simon Peyton-Jones:
The life cycle of programming languages

Haskell

years

users

5 10 15

1

100

10 000

1Mio

critical mass

threshhold of immortality

Jan van Eijck Specification and Testing 9 / 44

Functional programming with Haskell

Haskell is functional

A program consists entirely of functions.

• The main program itself is a function with the program’s input as
argument and the program’s output as result.

• Typically the main function is defined in terms of other functions,
which in turn are defined in terms of still more functions, until at the
bottom level the functions are language primitives.

Running a Haskell program consists in evaluating expressions (basically
functions applied to arguments).

Jan van Eijck Specification and Testing 10 / 44

Functional programming with Haskell

Some Simple Examples

module Week1

where

import Data.List

import Data.Char

Jan van Eijck Specification and Testing 20 / 44

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on

and on and on and on and on and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck Specification and Testing 21 / 44

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on

and on and on and on and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck Specification and Testing 21 / 44

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on and on

and on and on and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck Specification and Testing 21 / 44

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on and on and on

and on and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck Specification and Testing 21 / 44

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on and on and on and on

and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck Specification and Testing 21 / 44

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on and on and on and on and on

and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck Specification and Testing 21 / 44

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on and on and on and on and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck Specification and Testing 21 / 44

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on and on and on and on and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck Specification and Testing 21 / 44

Functional programming with Haskell

A lazy list

sentences = "Sentences can go " ++ onAndOn

onAndOn = "on and " ++ onAndOn

Jan van Eijck Specification and Testing 22 / 44

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck Specification and Testing 23 / 44

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck Specification and Testing 23 / 44

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck Specification and Testing 23 / 44

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck Specification and Testing 23 / 44

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck Specification and Testing 23 / 44

Functional programming with Haskell

String Functions in Haskell

Prelude> (\ x -> x ++ " emeritus") "professor"

"professor emeritus"

This combines lambda abstraction and concatenation.
The types:

Prelude> :t (\ x -> x ++ " emeritus")

\x -> x ++ " emeritus" :: [Char] -> [Char]

Prelude> :t "professor"

"professor" :: String

Prelude> :t (\ x -> x ++ " emeritus") "professor"

(\x -> x ++ " emeritus") "professor" :: [Char]

Jan van Eijck Specification and Testing 24 / 44

Functional programming with Haskell

String Functions in Haskell

Prelude> (\ x -> x ++ " emeritus") "professor"

"professor emeritus"

This combines lambda abstraction and concatenation.

The types:

Prelude> :t (\ x -> x ++ " emeritus")

\x -> x ++ " emeritus" :: [Char] -> [Char]

Prelude> :t "professor"

"professor" :: String

Prelude> :t (\ x -> x ++ " emeritus") "professor"

(\x -> x ++ " emeritus") "professor" :: [Char]

Jan van Eijck Specification and Testing 24 / 44

Functional programming with Haskell

String Functions in Haskell

Prelude> (\ x -> x ++ " emeritus") "professor"

"professor emeritus"

This combines lambda abstraction and concatenation.
The types:

Prelude> :t (\ x -> x ++ " emeritus")

\x -> x ++ " emeritus" :: [Char] -> [Char]

Prelude> :t "professor"

"professor" :: String

Prelude> :t (\ x -> x ++ " emeritus") "professor"

(\x -> x ++ " emeritus") "professor" :: [Char]

Jan van Eijck Specification and Testing 24 / 44

Functional programming with Haskell

Concatenation

The type of the concatenation function:

Prelude> :t (++)

(++) :: forall a. [a] -> [a] -> [a]

The type indicates that (++) not only concatenates strings. It works for
lists in general.

Jan van Eijck Specification and Testing 25 / 44

Functional programming with Haskell

Concatenation

The type of the concatenation function:

Prelude> :t (++)

(++) :: forall a. [a] -> [a] -> [a]

The type indicates that (++) not only concatenates strings. It works for
lists in general.

Jan van Eijck Specification and Testing 25 / 44

Functional programming with Haskell

More String Functions in Haskell

Prelude> (\ x -> "nice " ++ x) "guy"

"nice guy"

Prelude> (\ f -> \ x -> "very " ++ (f x))

(\ x -> "nice " ++ x) "guy"

"very nice guy"

The types:

Prelude> :t "guy"

"guy" :: [Char]

Prelude> :t (\ x -> "nice " ++ x)

(\ x -> "nice " ++ x) :: [Char] -> [Char]

Prelude> :t (\ f -> \ x -> "very " ++ (f x))

(\ f -> \ x -> "very " ++ (f x))

:: forall t. (t -> [Char]) -> t -> [Char]

Jan van Eijck Specification and Testing 26 / 44

Functional programming with Haskell

More String Functions in Haskell

Prelude> (\ x -> "nice " ++ x) "guy"

"nice guy"

Prelude> (\ f -> \ x -> "very " ++ (f x))

(\ x -> "nice " ++ x) "guy"

"very nice guy"

The types:

Prelude> :t "guy"

"guy" :: [Char]

Prelude> :t (\ x -> "nice " ++ x)

(\ x -> "nice " ++ x) :: [Char] -> [Char]

Prelude> :t (\ f -> \ x -> "very " ++ (f x))

(\ f -> \ x -> "very " ++ (f x))

:: forall t. (t -> [Char]) -> t -> [Char]

Jan van Eijck Specification and Testing 26 / 44

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Turing" and "Chomsky" (note the double
quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck Specification and Testing 27 / 44

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Turing" and "Chomsky" (note the double
quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck Specification and Testing 27 / 44

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Turing" and "Chomsky" (note the double
quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck Specification and Testing 27 / 44

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Turing" and "Chomsky" (note the double
quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck Specification and Testing 27 / 44

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Turing" and "Chomsky" (note the double
quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck Specification and Testing 27 / 44

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Turing" and "Chomsky" (note the double
quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck Specification and Testing 27 / 44

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Turing" and "Chomsky" (note the double
quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck Specification and Testing 27 / 44

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Turing" and "Chomsky" (note the double
quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck Specification and Testing 27 / 44

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck Specification and Testing 28 / 44

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck Specification and Testing 28 / 44

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck Specification and Testing 28 / 44

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck Specification and Testing 28 / 44

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck Specification and Testing 28 / 44

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck Specification and Testing 28 / 44

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck Specification and Testing 28 / 44

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck Specification and Testing 29 / 44

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck Specification and Testing 29 / 44

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck Specification and Testing 29 / 44

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck Specification and Testing 29 / 44

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck Specification and Testing 29 / 44

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck Specification and Testing 29 / 44

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck Specification and Testing 29 / 44

Functional programming with Haskell

List Reversal

CHOMSKY

YKSMOHC

GNIRUT

TURING

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck Specification and Testing 30 / 44

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC
GNIRUT

TURING

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck Specification and Testing 30 / 44

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC
GNIRUT TURING

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck Specification and Testing 30 / 44

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC
GNIRUT TURING

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck Specification and Testing 30 / 44

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC
GNIRUT TURING

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck Specification and Testing 30 / 44

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.
To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck Specification and Testing 31 / 44

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.
To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck Specification and Testing 31 / 44

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.
To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck Specification and Testing 31 / 44

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.
To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck Specification and Testing 31 / 44

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.
To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck Specification and Testing 31 / 44

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck Specification and Testing 31 / 44

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.
To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck Specification and Testing 31 / 44

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck Specification and Testing 32 / 44

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck Specification and Testing 32 / 44

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck Specification and Testing 32 / 44

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck Specification and Testing 32 / 44

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck Specification and Testing 32 / 44

Functional programming with Haskell

Mapping

If you use the Hugs command :t to find the types of the function map,
you get the following:

Prelude> :t map

map :: forall a b. (a -> b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing
the results of applying the function to the individual list members.
If f is a function of type a -> b and xs is a list of type [a], then
map f xs will return a list of type [b]. E.g., map (^2) [1..9] will
produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Jan van Eijck Specification and Testing 33 / 44

Functional programming with Haskell

Mapping

If you use the Hugs command :t to find the types of the function map,
you get the following:

Prelude> :t map

map :: forall a b. (a -> b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing
the results of applying the function to the individual list members.

If f is a function of type a -> b and xs is a list of type [a], then
map f xs will return a list of type [b]. E.g., map (^2) [1..9] will
produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Jan van Eijck Specification and Testing 33 / 44

Functional programming with Haskell

Mapping

If you use the Hugs command :t to find the types of the function map,
you get the following:

Prelude> :t map

map :: forall a b. (a -> b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing
the results of applying the function to the individual list members.
If f is a function of type a -> b and xs is a list of type [a], then
map f xs will return a list of type [b]. E.g., map (^2) [1..9] will
produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Jan van Eijck Specification and Testing 33 / 44

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck Specification and Testing 34 / 44

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck Specification and Testing 34 / 44

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck Specification and Testing 34 / 44

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck Specification and Testing 34 / 44

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck Specification and Testing 34 / 44

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck Specification and Testing 34 / 44

Functional programming with Haskell

Map

If p is a property (an operation of type a -> Bool) and l is a list of type
[a], then map p l will produce a list of type Bool (a list of truth
values), like this:

Prelude> map (>3) [1..6]

[False, False, False, True, True, True]

Prelude>

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : map f xs

Jan van Eijck Specification and Testing 35 / 44

Functional programming with Haskell

Map

If p is a property (an operation of type a -> Bool) and l is a list of type
[a], then map p l will produce a list of type Bool (a list of truth
values), like this:

Prelude> map (>3) [1..6]

[False, False, False, True, True, True]

Prelude>

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : map f xs

Jan van Eijck Specification and Testing 35 / 44

Functional programming with Haskell

Map

If p is a property (an operation of type a -> Bool) and l is a list of type
[a], then map p l will produce a list of type Bool (a list of truth
values), like this:

Prelude> map (>3) [1..6]

[False, False, False, True, True, True]

Prelude>

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : map f xs

Jan van Eijck Specification and Testing 35 / 44

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]

[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Jan van Eijck Specification and Testing 36 / 44

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]

[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Jan van Eijck Specification and Testing 36 / 44

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]

[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Jan van Eijck Specification and Testing 36 / 44

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]

[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Jan van Eijck Specification and Testing 36 / 44

Functional programming with Haskell

List comprehension

List comprehension is defining lists by the following method:

[x | x <- xs, property x]

This defines the sublist of xs of all items satisfying property. It is
equivalent to:

filter property xs

Jan van Eijck Specification and Testing 37 / 44

Functional programming with Haskell

Examples

someEvens = [x | x <- [1..1000] , even x]

evensUntil n = [x | x <- [1..n], even x]

allEvens = [x | x <- [1..] , even x]

Equivalently:

someEvens = filter even [1..1000]

evensUntil n = filter even [1..n]

allEvens = filter even [1..]

Jan van Eijck Specification and Testing 38 / 44

Functional programming with Haskell

Examples

someEvens = [x | x <- [1..1000] , even x]

evensUntil n = [x | x <- [1..n], even x]

allEvens = [x | x <- [1..] , even x]

Equivalently:

someEvens = filter even [1..1000]

evensUntil n = filter even [1..n]

allEvens = filter even [1..]

Jan van Eijck Specification and Testing 38 / 44

Functional programming with Haskell

Nub

nub removes duplicates, as follows:

nub :: Eq a => [a] -> [a]

nub [] = []

nub (x:xs) = x : nub (filter (/= x) xs)

Jan van Eijck Specification and Testing 39 / 44

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck Specification and Testing 40 / 44

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck Specification and Testing 40 / 44

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck Specification and Testing 40 / 44

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck Specification and Testing 40 / 44

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck Specification and Testing 40 / 44

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck Specification and Testing 40 / 44

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

Jan van Eijck Specification and Testing 41 / 44

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

Jan van Eijck Specification and Testing 41 / 44

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

Jan van Eijck Specification and Testing 41 / 44

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

Jan van Eijck Specification and Testing 41 / 44

Functional programming with Haskell

Sonnet 73

sonnet73 =

"That time of year thou mayst in me behold\n"

++ "When yellow leaves , or none , or few , do hang\n"

++ "Upon those boughs which shake against the cold ,\n"

++ "Bare ruin ’d choirs , where late the sweet birds sang.\n"

++ "In me thou seest the twilight of such day\n"

++ "As after sunset fadeth in the west ,\n"

++ "Which by and by black night doth take away ,\n"

++ "Death ’s second self , that seals up all in rest.\n"

++ "In me thou see ’st the glowing of such fire\n"

++ "That on the ashes of his youth doth lie ,\n"

++ "As the death -bed whereon it must expire\n"

++ "Consumed with that which it was nourish ’d by.\n"

++ "This thou perceivest , which makes thy love more strong ,\n"

++ "To love that well which thou must leave ere long."

Jan van Eijck Specification and Testing 42 / 44

Functional programming with Haskell

Counting

count :: Eq a => a -> [a] -> Int

count x [] = 0

count x (y:ys) | x == y = succ (count x ys)

| otherwise = count x ys

average :: [Int] -> Rational

average [] = error "empty list"

average xs = toRational (sum xs) / toRational (length xs)

Jan van Eijck Specification and Testing 43 / 44

Functional programming with Haskell

Counting

count :: Eq a => a -> [a] -> Int

count x [] = 0

count x (y:ys) | x == y = succ (count x ys)

| otherwise = count x ys

average :: [Int] -> Rational

average [] = error "empty list"

average xs = toRational (sum xs) / toRational (length xs)

Jan van Eijck Specification and Testing 43 / 44

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt the programming exercises from Chapter 1 and 2 of “The
Haskell Road”.

Jan van Eijck Specification and Testing 44 / 44

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt the programming exercises from Chapter 1 and 2 of “The
Haskell Road”.

Jan van Eijck Specification and Testing 44 / 44

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt the programming exercises from Chapter 1 and 2 of “The
Haskell Road”.

Jan van Eijck Specification and Testing 44 / 44

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt the programming exercises from Chapter 1 and 2 of “The
Haskell Road”.

Jan van Eijck Specification and Testing 44 / 44

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt the programming exercises from Chapter 1 and 2 of “The
Haskell Road”.

Jan van Eijck Specification and Testing 44 / 44

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt the programming exercises from Chapter 1 and 2 of “The
Haskell Road”.

Jan van Eijck Specification and Testing 44 / 44

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt the programming exercises from Chapter 1 and 2 of “The
Haskell Road”.

Jan van Eijck Specification and Testing 44 / 44

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt the programming exercises from Chapter 1 and 2 of “The
Haskell Road”.

Jan van Eijck Specification and Testing 44 / 44

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt the programming exercises from Chapter 1 and 2 of “The
Haskell Road”.

Jan van Eijck Specification and Testing 44 / 44

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt the programming exercises from Chapter 1 and 2 of “The
Haskell Road”.

Jan van Eijck Specification and Testing 44 / 44

	Functional programming with Haskell

