
The Use of Logic: Implementing Propositional Reasoning
and Proof Construction

Jan van Eijck

June 7, 2012

Abstract

The purpose of this lecture is to demonstrate how propositional reasoning can be imple-
mented, and to point out why quantifier reasoning in general cannot. This should lead to
a clearer understanding of the limitations of computers as tools for formal/mathematical
reasoning. Also, it should provide motivation for developing our own reasoning skills.

Haskell versions of ‘not’, ‘and’ and ‘or’

We start with implementations of the Boolean connectives.

not :: Bool -> Bool

not True = False

not False = True

(&&) :: Bool -> Bool -> Bool

False && x = False

True && x = x

(||) :: Bool -> Bool -> Bool

False || x = x

True || x = True

Definitions of ⇒ and exclusive disjunction

infix 6 ==>

(==>) :: Bool -> Bool -> Bool

True ==> x = x

False ==> x = True

infixr 2 <+>

(<+>) :: Bool -> Bool -> Bool

x <+> y = x /= y

Definition of example Formulas

form1 p q = p ==> (q ==> p)

form2 p q = (p ==> q) ==> p

Definition of example Formulas

form1 p q = p ==> (q ==> p)

form2 p q = (p ==> q) ==> p

Alternative Definition with Lambda Abstraction

form1 = \ p q -> p ==> (q ==> p)

form2 = \ p q -> (p ==> q) ==> p

Definition of example Formulas

form1 p q = p ==> (q ==> p)

form2 p q = (p ==> q) ==> p

Alternative Definition with Lambda Abstraction

form1 = \ p q -> p ==> (q ==> p)

form2 = \ p q -> (p ==> q) ==> p

Read this as λpλq.(p⇒ (q ⇒ p)) and λpλq.((p⇒ q)⇒ p).

Logical Validity

Logical Validity

A propositional formula P is logically valid if it is receives the value

true for all truth values of its proposition letters.

Logical Validity

A propositional formula P is logically valid if it is receives the value

true for all truth values of its proposition letters.

To implement this, we have to distinguish propositional formulas ac-

cording to the number of different proposition letters they contain.

Logical Validity

A propositional formula P is logically valid if it is receives the value

true for all truth values of its proposition letters.

To implement this, we have to distinguish propositional formulas ac-

cording to the number of different proposition letters they contain.

We abstract over the different proposition letters, and the type of the

lambda term depends on the number of proposition letters.

Logical Validity

A propositional formula P is logically valid if it is receives the value

true for all truth values of its proposition letters.

To implement this, we have to distinguish propositional formulas ac-

cording to the number of different proposition letters they contain.

We abstract over the different proposition letters, and the type of the

lambda term depends on the number of proposition letters.

A propositional formula with two different proposition letters has type

Bool -> Bool -> Bool, one with three different proposition letters

has type Bool -> Bool -> Bool -> Bool, and so on.

valid1 :: (Bool -> Bool) -> Bool

valid1 bf = (bf True) && (bf False)

valid2 :: (Bool -> Bool -> Bool) -> Bool

valid2 bf = and [bf p q | p <- [True,False],

q <- [True,False]]

valid3 :: (Bool -> Bool -> Bool -> Bool) -> Bool

valid3 bf = and [bf p q r | p <- [True,False],

q <- [True,False],

r <- [True,False]]

Trying it Out

form1 p q = p ==> (q ==> p)

form2 p q = (p ==> q) ==> p

GSWH> :t form1

form1 :: Bool -> Bool -> Bool

GSWH> valid2 form1

True

GSWH> valid2 form2

False

Logical Equivalence

Propositional formulas are logically equivalent if they get the same

truth values, no matter what the truth values are of the proposition

letters.

logEquiv1 :: (Bool -> Bool) ->

(Bool -> Bool) -> Bool

logEquiv1 bf1 bf2 = (bf1 True == bf2 True)

&& (bf1 False == bf2 False)

logEquiv2 :: (Bool -> Bool -> Bool) ->

(Bool -> Bool -> Bool) -> Bool

logEquiv2 bf1 bf2 = and [(bf1 p q) == (bf2 p q)

| p <- [True,False],

q <- [True,False]]

logEquiv3 :: (Bool -> Bool -> Bool -> Bool) ->

(Bool -> Bool -> Bool -> Bool) -> Bool

logEquiv3 bf1 bf2 =

and [(bf1 p q r) == (bf2 p q r)

| p <- [True,False],

q <- [True,False],

r <- [True,False]]

Trying it Out

formula1 p q = (not p) && (p ==> q)

formula2 p q = not (q && (not p))

formula3 p q = p

formula4 p q = (p <+> q) <+> q

formula5 p q = p <+> (q <+> q)

Main> valid2 (\ p q -> (formula1 p q == formula2 p q))

False

Main> logEquiv2 formula1 formula2

False

Main> logEquiv2 formula3 formula4

True

Useful propositional equivalences

Useful propositional equivalences

1. P ≡ ¬¬P (law of double negation),

Useful propositional equivalences

1. P ≡ ¬¬P (law of double negation),

2. P ∧ P ≡ P ; P ∨ P ≡ P (laws of idempotence),

Useful propositional equivalences

1. P ≡ ¬¬P (law of double negation),

2. P ∧ P ≡ P ; P ∨ P ≡ P (laws of idempotence),

3. (P ⇒ Q) ≡ ¬P ∨Q;

¬(P ⇒ Q) ≡ P ∧ ¬Q,

Useful propositional equivalences

1. P ≡ ¬¬P (law of double negation),

2. P ∧ P ≡ P ; P ∨ P ≡ P (laws of idempotence),

3. (P ⇒ Q) ≡ ¬P ∨Q;

¬(P ⇒ Q) ≡ P ∧ ¬Q,

4. (¬P ⇒ ¬Q) ≡ (Q⇒ P);

(P ⇒ ¬Q) ≡ (Q⇒ ¬P);

(¬P ⇒ Q) ≡ (¬Q⇒ P) (laws of contraposition),

Useful propositional equivalences

1. P ≡ ¬¬P (law of double negation),

2. P ∧ P ≡ P ; P ∨ P ≡ P (laws of idempotence),

3. (P ⇒ Q) ≡ ¬P ∨Q;

¬(P ⇒ Q) ≡ P ∧ ¬Q,

4. (¬P ⇒ ¬Q) ≡ (Q⇒ P);

(P ⇒ ¬Q) ≡ (Q⇒ ¬P);

(¬P ⇒ Q) ≡ (¬Q⇒ P) (laws of contraposition),

5. (P ⇔ Q) ≡ [(P ⇒ Q) ∧ (Q⇒ P)]

≡ [(P ∧Q) ∨ (¬P ∧ ¬Q)],

Useful propositional equivalences

1. P ≡ ¬¬P (law of double negation),

2. P ∧ P ≡ P ; P ∨ P ≡ P (laws of idempotence),

3. (P ⇒ Q) ≡ ¬P ∨Q;

¬(P ⇒ Q) ≡ P ∧ ¬Q,

4. (¬P ⇒ ¬Q) ≡ (Q⇒ P);

(P ⇒ ¬Q) ≡ (Q⇒ ¬P);

(¬P ⇒ Q) ≡ (¬Q⇒ P) (laws of contraposition),

5. (P ⇔ Q) ≡ [(P ⇒ Q) ∧ (Q⇒ P)]

≡ [(P ∧Q) ∨ (¬P ∧ ¬Q)],

6. P ∧Q ≡ Q ∧ P ; P ∨Q ≡ Q ∨ P (laws of commutativity),

7. ¬(P ∧Q) ≡ ¬P ∨ ¬Q;

¬(P ∨Q) ≡ ¬P ∧ ¬Q (DeMorgan laws).

7. ¬(P ∧Q) ≡ ¬P ∨ ¬Q;

¬(P ∨Q) ≡ ¬P ∧ ¬Q (DeMorgan laws).

8. P ∧ (Q ∧R) ≡ (P ∧Q) ∧R;

P ∨ (Q ∨R) ≡ (P ∨Q) ∨R (laws of associativity),

7. ¬(P ∧Q) ≡ ¬P ∨ ¬Q;

¬(P ∨Q) ≡ ¬P ∧ ¬Q (DeMorgan laws).

8. P ∧ (Q ∧R) ≡ (P ∧Q) ∧R;

P ∨ (Q ∨R) ≡ (P ∨Q) ∨R (laws of associativity),

9. P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R);

P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R) (distribution laws),

7. ¬(P ∧Q) ≡ ¬P ∨ ¬Q;

¬(P ∨Q) ≡ ¬P ∧ ¬Q (DeMorgan laws).

8. P ∧ (Q ∧R) ≡ (P ∧Q) ∧R;

P ∨ (Q ∨R) ≡ (P ∨Q) ∨R (laws of associativity),

9. P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R);

P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R) (distribution laws),

You can check all of these by computer, using the implementations of

logEquiv1, logEquiv2, and logEquiv3.

Useful Quantifier Equivalences

Useful Quantifier Equivalences

1. ∀x∀yΦ(x, y) ≡ ∀y∀xΦ(x, y);

∃x∃yΦ(x, y) ≡ ∃y∃xΦ(x, y),

Useful Quantifier Equivalences

1. ∀x∀yΦ(x, y) ≡ ∀y∀xΦ(x, y);

∃x∃yΦ(x, y) ≡ ∃y∃xΦ(x, y),

2. ¬∀xΦ(x) ≡ ∃x¬Φ(x);

¬∃xΦ(x) ≡ ∀x¬Φ(x);

¬∀x¬Φ(x) ≡ ∃xΦ(x);

¬∃x¬Φ(x) ≡ ∀xΦ(x),

Useful Quantifier Equivalences

1. ∀x∀yΦ(x, y) ≡ ∀y∀xΦ(x, y);

∃x∃yΦ(x, y) ≡ ∃y∃xΦ(x, y),

2. ¬∀xΦ(x) ≡ ∃x¬Φ(x);

¬∃xΦ(x) ≡ ∀x¬Φ(x);

¬∀x¬Φ(x) ≡ ∃xΦ(x);

¬∃x¬Φ(x) ≡ ∀xΦ(x),

3. ∀x(Φ(x) ∧ Ψ(x)) ≡ (∀xΦ(x) ∧ ∀xΨ(x));

∃x(Φ(x) ∨ Ψ(x)) ≡ (∃xΦ(x) ∨ ∃xΨ(x)).

Useful Quantifier Equivalences

1. ∀x∀yΦ(x, y) ≡ ∀y∀xΦ(x, y);

∃x∃yΦ(x, y) ≡ ∃y∃xΦ(x, y),

2. ¬∀xΦ(x) ≡ ∃x¬Φ(x);

¬∃xΦ(x) ≡ ∀x¬Φ(x);

¬∀x¬Φ(x) ≡ ∃xΦ(x);

¬∃x¬Φ(x) ≡ ∀xΦ(x),

3. ∀x(Φ(x) ∧ Ψ(x)) ≡ (∀xΦ(x) ∧ ∀xΨ(x));

∃x(Φ(x) ∨ Ψ(x)) ≡ (∃xΦ(x) ∨ ∃xΨ(x)).

There is no mechanical method (like the truth table method) for check-

ing logical equivalence of quantified formulas. That’s why we need to

develop skills in proving mathematical statements . . .

Quantifiers as Procedures

any, all :: (a -> Bool) -> [a] -> Bool

any p = or . map p

all p = and . map p

To understand the implementations of all and any, one has to know

that or and and are the generalizations of (inclusive) disjunction and

conjunction to lists. They have type [Bool] -> Bool.

Saying that all elements of a list xs satisfy a property p boils down

to: the list map p xs contains only True.

Similarly, saying that some element of a list xs satisfies a property p

boils down to: the list map p xs contains at least one True.

This explains the implementation of all: first apply map p, next

apply and.

In the case of any: first apply map p, next apply or.

This explains the implementation of all: first apply map p, next

apply and.

In the case of any: first apply map p, next apply or.

The action of applying a function g :: b -> c after a function

f :: a -> b is performed by the function g . f :: a -> c , the

composition of f and g.

The definitions of all and any are used as follows:

Prelude> any (<3) [0..]

True

Prelude> all (<3) [0..]

False

Prelude>

The functions forall and exists get us even closer to standard

logical notation. These functions are like all and any, but they first

take the restriction argument, next the body:

forall, exists :: [a] -> (a -> Bool) -> Bool

forall xs p = all p xs

exists xs p = any p xs

Now, e.g., the formula ∀x ∈ {1, 4, 9}∃y ∈ {1, 2, 3} x = y2 can be

implemented as a test, as follows:

qform = forall

[1,4,9]

(\ x ->

exists [1,2,3] (\ y -> x == y^2))

Now, e.g., the formula ∀x ∈ {1, 4, 9}∃y ∈ {1, 2, 3} x = y2 can be

implemented as a test, as follows:

qform = forall

[1,4,9]

(\ x ->

exists [1,2,3] (\ y -> x == y^2))

TAMO> qform

True

But caution: the implementations of the quantifiers are procedures,

not algorithms.

A call to all or any (or forall or exists) need not terminate.

The call forall [0..] (>=0) will run forever. This illustrates once

more that the quantifiers are in essence more complex than the propo-

sitional connectives . . .

How to present a proof: general

How to present a proof: general

1 Write correct English, try to express yourself clearly.

How to present a proof: general

1 Write correct English, try to express yourself clearly.

2 Make sure the reader knows exactly what you are up to.

How to present a proof: general

1 Write correct English, try to express yourself clearly.

2 Make sure the reader knows exactly what you are up to.

3 Say what you mean when introducing a variable.

How to present a proof: general

1 Write correct English, try to express yourself clearly.

2 Make sure the reader knows exactly what you are up to.

3 Say what you mean when introducing a variable.

4 Don’t start a sentence with symbols, don’t write formulas only.

How to present a proof: general

1 Write correct English, try to express yourself clearly.

2 Make sure the reader knows exactly what you are up to.

3 Say what you mean when introducing a variable.

4 Don’t start a sentence with symbols, don’t write formulas only.

5 Use words like ‘thus’, ‘therefore’, ‘hence’, etc. to link up your

formulas.

How to present a proof: general

1 Write correct English, try to express yourself clearly.

2 Make sure the reader knows exactly what you are up to.

3 Say what you mean when introducing a variable.

4 Don’t start a sentence with symbols, don’t write formulas only.

5 Use words like ‘thus’, ‘therefore’, ‘hence’, etc. to link up your

formulas.

6 Be relevant and succinct.

How to present a proof: specific

How to present a proof: specific

7 When constructing proofs, use the following schema:

Given: . . .

To be proved: . . .

Proof: . . .

How to present a proof: specific

7 When constructing proofs, use the following schema:

Given: . . .

To be proved: . . .

Proof: . . .

8 Look up definitions of defined notions, and use these definitions

to re-write both Given and To be proved.

How to present a proof: specific

7 When constructing proofs, use the following schema:

Given: . . .

To be proved: . . .

Proof: . . .

8 Look up definitions of defined notions, and use these definitions

to re-write both Given and To be proved.

9 Make sure you have a sufficient supply of scratch paper, make a

fair copy of the end-product —whether you think it to be faultless

or not.

How to present a proof: specific

7 When constructing proofs, use the following schema:

Given: . . .

To be proved: . . .

Proof: . . .

8 Look up definitions of defined notions, and use these definitions

to re-write both Given and To be proved.

9 Make sure you have a sufficient supply of scratch paper, make a

fair copy of the end-product —whether you think it to be faultless

or not.

10 Ask yourself two things: Is this correct? Can others read it?

Proof Recipes: Subproofs

Given: A, B, . . .

To be proved: P

Proof:

. . .

Suppose C . . .

To be proved: Q

Proof: . . .

. . .

Thus Q

. . .

Thus P

Scope of Assumptions

The purpose of ‘Suppose’ is to add a new given to the list of assump-

tions that may be used, but only for the duration of the subproof of

which ‘Suppose’ is the head.

Scope of Assumptions

The purpose of ‘Suppose’ is to add a new given to the list of assump-

tions that may be used, but only for the duration of the subproof of

which ‘Suppose’ is the head.

If the current list of givens is P1, . . . , Pn then ‘Suppose Q’ extends

this list to P1, . . . , Pn, Q.

Scope of Assumptions

The purpose of ‘Suppose’ is to add a new given to the list of assump-

tions that may be used, but only for the duration of the subproof of

which ‘Suppose’ is the head.

If the current list of givens is P1, . . . , Pn then ‘Suppose Q’ extends

this list to P1, . . . , Pn, Q.

In general, inside a box, you can use all the givens and assumptions

of all the including boxes. Thus, in the innermost box of the example,

the givens are A,B,C. This illustrates the importance of indentation

for keeping track of the ‘current box’.

Scope of Assumptions

The purpose of ‘Suppose’ is to add a new given to the list of assump-

tions that may be used, but only for the duration of the subproof of

which ‘Suppose’ is the head.

If the current list of givens is P1, . . . , Pn then ‘Suppose Q’ extends

this list to P1, . . . , Pn, Q.

In general, inside a box, you can use all the givens and assumptions

of all the including boxes. Thus, in the innermost box of the example,

the givens are A,B,C. This illustrates the importance of indentation

for keeping track of the ‘current box’.

Attitude Grasp the importance of proper formatting. Use indenta-

tion to clarify the structure of your proofs. By getting it on the paper

in a structured way, you will clear up confusion in your mind.

The two ways of encountering a logical symbol

1. The symbol can appear in the given, or in an assumption.

2. The symbol can appear in the statement that is to be proved.

The two ways of encountering a logical symbol

1. The symbol can appear in the given, or in an assumption.

2. The symbol can appear in the statement that is to be proved.

In the first case the rule to use is an elimination rule, in the second

case an introduction rule.

The two ways of encountering a logical symbol

1. The symbol can appear in the given, or in an assumption.

2. The symbol can appear in the statement that is to be proved.

In the first case the rule to use is an elimination rule, in the second

case an introduction rule.

Elimination rules enable you to reduce a proof problem to a new,

hopefully simpler, one.

The two ways of encountering a logical symbol

1. The symbol can appear in the given, or in an assumption.

2. The symbol can appear in the statement that is to be proved.

In the first case the rule to use is an elimination rule, in the second

case an introduction rule.

Elimination rules enable you to reduce a proof problem to a new,

hopefully simpler, one.

Introduction rules make clear how to prove a goal of a certain given

shape.

Introduction of an Implication

Given: . . .

To be proved: Φ⇒ Ψ

Proof:

Suppose Φ

To be proved: Ψ

Proof: . . .

Thus Φ⇒ Ψ.

Use (Elimination) of an implication

This rule is also called Modus Ponens.

Given: Φ⇒ Ψ, Φ

Thus Ψ.

Example of Reasoning with Implication

Given: P ⇒ Q, Q⇒ R

To be proved: P ⇒ R

Proof:

Suppose P

To be proved: R

Proof: From P ⇒ Q and P , conclude Q.

Next, from Q⇒ R and Q, conclude R.

Thus P ⇒ R

How to prove an implication

If the ‘to be proved’ is an implication Φ⇒ Ψ, then your proof should

start with the following Obligatory Sentence:

Suppose that Φ holds.

The obligatory first sentence accomplishes the following things (cf. the

2nd commandment above).

• It informs the reader that you are going to apply the Deduction

Rule in order to establish that Φ⇒ Ψ.

• The reader also understands that it is now Ψ that you are going

to derive (instead of Φ⇒ Ψ).

• Thus, starting with the obligatory sentence informs the reader in

an efficient way about your plans.

Example

Assume that n,m ∈ N.

To show: (m is even ∧ n is even) ⇒ m + n is even.

Detailed proof:

Assume that (m even ∧ n even).

Then (∧-elimination) m and n are both even.

For instance, p, q ∈ N exist such that m = 2p, n = 2q.

Then m + n = 2p + 2q = 2(p + q) is even.

Thus (m is even ∧ n is even) ⇒ m + n is even.

Example

Assume that n,m ∈ N.

To show: (m is even ∧ n is even) ⇒ m + n is even.

Detailed proof:

Assume that (m even ∧ n even).

Then (∧-elimination) m and n are both even.

For instance, p, q ∈ N exist such that m = 2p, n = 2q.

Then m + n = 2p + 2q = 2(p + q) is even.

Thus (m is even ∧ n is even) ⇒ m + n is even.

Concise version:

Assume that m and n are even.

For instance, m = 2p, n = 2q, p, q ∈ N.

Then m + n = 2p + 2q = 2(p + q) is even.

Using and Proving Conjunctions

• Elimination of ∧: Use the given P ∧Q by using both P and Q.

Using and Proving Conjunctions

• Elimination of ∧: Use the given P ∧Q by using both P and Q.

• Introduction of ∧: Show a result of the form P∧Q by first proving

P , next proving Q.

Using and Proving Negations

Introduction of ¬:

Given: . . .

To be proved: ¬Φ

Proof:

Suppose Φ

To be proved: ⊥
Proof: . . .

Thus ¬Φ.

Using and Proving Negations

Introduction of ¬:

Given: . . .

To be proved: ¬Φ

Proof:

Suppose Φ

To be proved: ⊥
Proof: . . .

Thus ¬Φ.

Elimination of ¬:

Given: Φ, ¬Φ

Thus Ψ.

General advice: try to move negation symbols inward as much as

possible before treating them.

Example: there are infinitely many prime numbers

Example: there are infinitely many prime numbers

Suppose there are only finitely many prime numbers, and p1, . . . , pn
is a list of all primes. Consider the number m = (p1p2 · · · pn) + 1.

Note that m is not divisible by p1, for dividing m by p1 gives quotient

p2 · · · pn and remainder 1. Similarly, division by p2, p3, . . . always

gives a remainder 1.

Example: there are infinitely many prime numbers

Suppose there are only finitely many prime numbers, and p1, . . . , pn
is a list of all primes. Consider the number m = (p1p2 · · · pn) + 1.

Note that m is not divisible by p1, for dividing m by p1 gives quotient

p2 · · · pn and remainder 1. Similarly, division by p2, p3, . . . always

gives a remainder 1.

• LD(m) is prime,

• For all i ∈ {1, . . . n}, LD(m) 6= pi.

Thus, we have found a prime number LD(m) different from all the

prime numbers in our list p1, . . . , pn, contradicting the assumption

that p1, . . . , pn was the full list of prime numbers.

The assumption that there are only a finite number of primes leads

to a contradiction. Thus, there are infinitely many prime numbers.

Example: There is no rational number x with x2 = 2.

Example: There is no rational number x with x2 = 2.

Assume there is a number x ∈ Q with x2 = 2. Then there are

m,n ∈ N, n 6= 0 with (m/n)2 = 2. We can further assume that m/n

is cancelled down to its lowest form, i.e., there are no k, p, q ∈ Z with

k 6= 1, m = kp and n = kq.

Example: There is no rational number x with x2 = 2.

Assume there is a number x ∈ Q with x2 = 2. Then there are

m,n ∈ N, n 6= 0 with (m/n)2 = 2. We can further assume that m/n

is cancelled down to its lowest form, i.e., there are no k, p, q ∈ Z with

k 6= 1, m = kp and n = kq.

We have: 2 = (m/n)2 = m2/n2, and multiplying both sides by n2

we find 2n2 = m2. In other words, m2 is even, and since squares of

odd numbers are always odd, m must be even, i.e., there is a p with

m = 2p. Substitution in 2n2 = m2 gives 2n2 = (2p)2 = 4p2, and

we find that n2 = 2p2, which leads to the conclusion that n is also

even. But this means that there is a q with n = 2q, and we have a

contradiction with the assumption that m/n was in lowest form. It

follows that there is no number x ∈ Q with x2 = 2.

Example: There is no rational number x with x2 = 2.

Assume there is a number x ∈ Q with x2 = 2. Then there are

m,n ∈ N, n 6= 0 with (m/n)2 = 2. We can further assume that m/n

is cancelled down to its lowest form, i.e., there are no k, p, q ∈ Z with

k 6= 1, m = kp and n = kq.

We have: 2 = (m/n)2 = m2/n2, and multiplying both sides by n2

we find 2n2 = m2. In other words, m2 is even, and since squares of

odd numbers are always odd, m must be even, i.e., there is a p with

m = 2p. Substitution in 2n2 = m2 gives 2n2 = (2p)2 = 4p2, and

we find that n2 = 2p2, which leads to the conclusion that n is also

even. But this means that there is a q with n = 2q, and we have a

contradiction with the assumption that m/n was in lowest form. It

follows that there is no number x ∈ Q with x2 = 2.

Therefore, the square root of 2 is not rational.

Proof by Contradiction (‘uit het ongerijmde’)

In order to prove Φ, add ¬Φ as a new given, and attempt to deduce

an evidently false statement.

In a schema:

Given: . . .

To be proved: Φ

Proof:

Suppose ¬Φ

To be proved: ⊥
Proof: . . .

Thus Φ.

Example of a proof by contradiction

Derive from ¬Q⇒ ¬P that P ⇒ Q.

Given: ¬Q⇒ ¬P
To be proved: P ⇒ Q

Proof:

Suppose P

To be proved: Q

Proof:

Suppose ¬Q.

Then from ¬Q⇒ ¬P and ¬Q: ¬P ,

and contradiction with P .

Thus Q.

Thus P ⇒ Q.

Proving and Using Disjunctions

Introduction of ∨:

Given: Φ. Thus Φ ∨ Ψ.

Given: Ψ. Thus Φ ∨ Ψ.

Elimination of ∨:

Given: Φ ∨ Ψ, . . .

To be proved: Λ

Proof:

Suppose Φ

To be proved: Λ

Proof: . . .

Suppose Ψ

To be proved: Λ

Proof: . . .

Thus Λ.

Example of a proof by case distinction

Given: x ∈ (A− C).

To be proved: x ∈ (A−B) ∨ x ∈ (B − C).

Proof:

Suppose x ∈ B.

From x ∈ (A− C) we get x /∈ C, and therefore x ∈ (B − C).

Thus x ∈ (A−B) ∨ x ∈ (B − C).

Suppose x /∈ B.

From x ∈ (A− C) we get x ∈ A, and so x ∈ (A−B).

Thus x ∈ (A−B) ∨ x ∈ (B − C).

It follows that x ∈ (A−B) ∨ x ∈ (B − C).

Quantifier Reasoning: Universal Quantification

Introduction of ∀x:

Given: . . .

To be proved: ∀xE(x)

Proof:

Suppose c is an arbitrary object.

To be proved: E(c)

Proof: . . .

Thus ∀xE(x)

Key: ‘let c be an arbitrary object.’ (= “een willekeurig ding”).

Quantifier Reasoning: Universal Quantification

Introduction of ∀x:

Given: . . .

To be proved: ∀xE(x)

Proof:

Suppose c is an arbitrary object.

To be proved: E(c)

Proof: . . .

Thus ∀xE(x)

Key: ‘let c be an arbitrary object.’ (= “een willekeurig ding”).

Elimination of ∀x: conclude from ∀xE(x) that E(t).

Introduction of restricted universal quantification ∀x ∈ A:

Given: . . .

To be proved: ∀x ∈ A : E(x)

Proof:

Suppose c is an arbitrary object in A.

To be proved: E(c)

Proof: . . .

Thus ∀x ∈ A : E(x)

Key: ‘let c be an arbitrary object in A’.

Introduction of a universal quantifier with an implication:

Given: . . .

To be proved: ∀x(P (x)⇒ Q(x))

Proof:

Suppose c is an arbitary object satisfying P (c).

To be proved: Q(c)

Proof: . . .

Thus ∀x(P (x)⇒ Q(x))

Key: ‘let c be an arbitary object satisfying P (c).’

Quantifier Reasoning: Existential Quantification

Introduction of ∃x : E(x):

Conclude from E(t) that ∃x : E(x).

Quantifier Reasoning: Existential Quantification

Introduction of ∃x : E(x):

Conclude from E(t) that ∃x : E(x).

Elimination of ∃x : E(x):

Given: ∃xE(x), . . .

To be proved: Λ

Proof:

Suppose c is an object satisfying E(c).

To be proved: Λ

Proof: . . .

Thus Λ

For restricted existential quantification, just modify the key to: “sup-

pose c is an object in A that satisfies E(c).”

Refuting conjectures

There are only two kinds of mathematical statements: true statements

and false ones. All proof attempts of false statements are bound to

fail, of course!

Refuting conjectures

There are only two kinds of mathematical statements: true statements

and false ones. All proof attempts of false statements are bound to

fail, of course!

So don’t try to prove them. Instead, try to refute them.

Refuting conjectures

There are only two kinds of mathematical statements: true statements

and false ones. All proof attempts of false statements are bound to

fail, of course!

So don’t try to prove them. Instead, try to refute them.

A famous conjecture made in 1640 by Pierre de Fermat (1601–1665)

is that all numbers of the form

22n
+ 1

are prime. This holds for n = 0, 1, 2, 3, 4, for we have: 220
+ 1 =

21 + 1 = 3, 221
+ 1 = 22 + 1 = 5, 222

+ 1 = 24 + 1 = 17, 223
+ 1 =

28 + 1 = 257, which is prime, and 224
+ 1 = 216 + 1 = 65537, which

is prime. Apparently, this is as far as Fermat got.

Here is a Haskell refutation of Fermat’s conjecture:

GSWH> prime (2^2^5 + 1)

False

Primes Again

prime :: Integer -> Bool

prime n | n < 1 = error "not a positive integer"

| n == 1 = False

| otherwise = ld n == n

where

ld n = ldf 2 n

ldf k n | divides k n = k

| k^2 > n = n

| otherwise = ldf (k+1) n
divides d n = rem n d == 0

Mersenne Primes

Mn = 2n − 1 sometimes is prime when n is prime. Such primes are

called Mersenne primes.

Mersenne Primes

Mn = 2n − 1 sometimes is prime when n is prime. Such primes are

called Mersenne primes.

mersenne :: [(Integer,Integer)]

mersenne =

[(n,2^n-1) | n <- [2..], prime (2^n - 1)]

notmersenne :: [(Integer,Integer)]

notmersenne =

[(n,2^n-1) | n <- [2..],

prime n,

not (prime (2^n - 1))]

