Relations

Jan van Eijck

June 10, 2012

Abstract

We introduce relations in an abstract manner, and explain some fundamental relational notions.

Preview: Relations

Consider the type of actP in the database program in Chapter 4.
STAL> :t actP
actP :: ([Char],[Char]) -> Bool
This characterizes sets of pairs.
And the type of queries:
STAL> :t q2
q2 :: [([Char],[Char])]
This gives lists of pairs.
A relation is simply a set of pairs.
More precisely:
If A is a set, then a relation on A is a subset of A^{2}.

Relations as Boolean Functions and as Sets of Pairs

A relation R on a set A can be viewed as a function of type $A \rightarrow A \rightarrow$ Bool.

Example: $<$ on \mathbb{N}. For every two numbers $n, m \in \mathbb{N}$, the statement $n<m$ is either true or false. E.g., $3<5$ is true, whereas $5<2$ is false. In general: to a relation you can "input" a pair of objects, after which it "outputs" either true or false. depending on whether these objects are in the relationship given.
Alternative view: relation R on A as a set of pairs:

$$
\left\{(a, b) \in A^{2} \mid R a b \text { is true }\right\} .
$$

$<$ on $\mathbb{N}=\{(0,1),(0,2),(1,2),(0,3),(1,3),(2,3), \ldots\}$

Domain and Range

The set dom $(R)=\{x \mid \exists y(R x y)\}$, the set of all first coordinates of pairs in R, is called the domain of R.
The set $\operatorname{ran}(R)=\{y \mid \exists x(R x y)\}$, the set of second coordinates of pairs in R, is called the range of R.
The relation R is a relation from A to B or between A and B, if $\operatorname{dom}(R) \subseteq A$ and $\operatorname{ran}(R) \subseteq B$.
A relation from A to A is called on A.
$R=\{(1,4),(1,5),(2,5)\}$ is a relation from $\{1,2,3\}$ to $\{4,5,6\}$, and it also is a relation on $\{1,2,4,5,6\}$. Furthermore, $\operatorname{dom}(R)=\{1,2\}$, $\operatorname{ran}(R)=\{4,5\}$.

Identity and Inverse

$\Delta_{A}=\left\{(a, b) \in A^{2} \mid a=b\right\}=\{(a, a) \mid a \in A\}$ is a relation on A, the identity on A.
If R is a relation between A and B, then $R^{-1}=\{(b, a) \mid a R b\}$, the inverse of R, is a relation between B and A.

The inverse of the relation 'parent of' is the relation 'child of'.
$A \times B$ is the biggest relation from A to B.
\emptyset is the smallest relation from A to B.
For the usual ordering $<$ of $\mathbb{R},<^{-1}=>$.
$\left(R^{-1}\right)^{-1}=R ; \Delta_{A}^{-1}=\Delta_{A} ; \emptyset^{-1}=\emptyset$ and $(A \times B)^{-1}=B \times A$.

Properties of Relations

A relation R is reflexive on A if for every $x \in A: x R x$.
A relation R on A is irreflexive if for no $x \in A: x R x$.
A relation R on A is symmetric if for all $x, y \in A$: if $x R y$ then $y R x$.
Fact: A relation R is symmetric iff $R \subseteq R^{-1}$, iff $R=R^{-1}$.
A relation R on A is asymmetric if for all $x, y \in A$: if $x R y$ then not $y R x$.

A relation R on A is antisymmetric if for all $x, y \in A$: if $x R y$ and $y R x$ then $x=y$.

A relation R on A is linear (or: has the comparison property) if for all $x, y \in A: x R y$ or $y R x$ or $x=y$.
A relation R on A is transitive if for all $x, y, z \in A$: if $x R y$ and $y R z$ then $x R z$.

A relation R on A is intransitive if for all $x, y, z \in A$: if $x R y$ and $y R z$ then not $x R z$.

Classifying Relations with Relational Properties

A relation R on A is a pre-order if R is transitive and reflexive.
A relation R on A is a strict partial order if R is transitive and irreflexive.

Fact: every strict partial order is asymmetric.
Fact: every transitive and asymmetric relation is a strict partial order.

A relation R on A is a partial order if R is transitive, reflexive and antisymmetric.
Fact: Every strict partial order R on A is contained in a partial order (given by $R \cup \Delta_{A}$).
A relation R on A is a total order if R is transitive, reflexive, antisymmetric and linear.
A relation R on A is an equivalence relation if R is reflexive, symmetric and transitive.

Closures of Relations

If \mathcal{O} is a set of properties of relations on a set A, then the \mathcal{O}-closure of a relation R is the smallest relation S that includes R and that has all the properties in \mathcal{O}.
The most important closures are the reflexive closure, the symmetric closure, the transitive closure and the reflexive transitive closure of a relation.

To show that R is the smallest relation S that has all the properties in \mathcal{O}, show the following:

1. R has all the properties in \mathcal{O},
2. If S has all the properties in \mathcal{O}, then $R \subseteq S$.

Fact: $R \cup \Delta_{A}$ is the reflexive closure of R.
Fact: $R \cup R^{-1}$ is the symmetric closure of R.

Composing Relations

Suppose that R and S are relations on A. The composition $R \circ S$ of R and S is the relation on A that is defined by

$$
x(R \circ S) z: \equiv \exists y \in A(x R y \wedge y S z)
$$

For $n \in \mathbb{N}, n \geq 1$ we define R^{n} by means of $R^{1}:=R, R^{n+1}:=R^{n} \circ R$.
Fact: a relation R is transitive iff $R^{2} \subseteq R$.
Fact: for any relation R on A, the relation $R^{+}=\bigcup_{n \geq 1} R^{n}$ is the transitive closure of R.
Fact: for any relation R on A, the relation $R^{+} \cup \Delta_{A}$ is the reflexive transitive closure of R. Abbreviation for the reflexive transitive closure of R : R^{*}.

Sets as Ordered Lists without Duplicates

```
insertList x [] = [x]
insertList x ys@(y:ys') = case compare x y of
                        GT -> y : insertList x ys'
deleteList x [] = []
deleteList x ys@(y:ys') = case compare x y of
                GT -> y : deleteList x ys'
                        EQ -> ys'
                            _ -> ys
list2set :: Ord a => [a] -> Set a
list2set [] = Set [] 
```

```
powerSet :: Ord a => Set a -> Set (Set a)
powerSet (Set xs) =
    Set (sort (map (\xs -> (list2set xs)) (powerList xs)))
powerList :: [a] -> [[a]]
powerList [] = [[]]
powerList (x:xs) = (powerList xs)
                                    ++ (map (x:) (powerList xs))
takeSet :: Eq a => Int -> Set a -> Set a
takeSet n (Set xs) = Set (take n xs)
infixl 9 !!!
(!!!) :: Eq a => Set a -> Int -> a
(Set xs) !!! n = xs !! n
```


Implementing Relations as Sets of Pairs

type Rel a = Set (a,a)
domR gives the domain of a relation.
domR :: Ord a => Rel a -> Set a
domR (Set r) = list2set [x | (x,_) <- r]
ranR gives the range of a relation.
ranR :: Ord a => Rel a -> Set a
ranR (Set r) = list2set [y | (_, y) <- r]
idR creates the identity relation Δ_{A} over a set A :
idR :: Ord a => Set a -> Rel a
idR (Set xs) = Set [(x,x) | x <- xs]

The total relation over a set is given by:

```
totalR :: Set a -> Rel a
totalR (Set xs) = Set [(x,y) | x <- xs, y <- xs ]
```

invR inverts a relation (i.e., the function maps R to R^{-1}).
invR :: Ord a => Rel a -> Rel a
invR (Set []) = (Set [])
invR (Set ((x,y):r)) = insertSet (y,x) (invR (Set r))
inR checks whether a pair is in a relation.

```
inR :: Ord a => Rel a \(->(\mathrm{a}, \mathrm{a})\)-> Bool
inR \(r(x, y)=\operatorname{inSet}(x, y) r\)
```

The complement of a relation $R \subseteq A \times A$ is the relation $A \times A-R$. The operation of relational complementation, relative to a set A, can be implemented as follows:

$$
\begin{aligned}
& \text { complR : : Ord } a \rightarrow \text { Set } a->\operatorname{Rel} a->\operatorname{Rel} a \\
& \text { complR (Set xs) } r=\operatorname{Set}[(x, y) \mid x<-x s, y<-x s, \\
&\operatorname{not}(i n R r(x, y))]
\end{aligned}
$$

A check for reflexivity of R on a set A can be implemented by testing whether $\Delta_{A} \subseteq R$:

```
reflR :: Ord a => Set a -> Rel a -> Bool
reflR set r = subSet (idR set) r
```

A check for irreflexivity of R on A proceeds by testing whether $\Delta_{A} \cap R=$ $\emptyset:$
irreflR :: Ord a => Set a -> Rel a -> Bool
irreflR (Set xs) r =
all (\backslash pair $->$ not (inR r pair)) [(x, x) | x <- xs]

A check for symmetry of R proceeds by testing for each pair $(x, y) \in R$ whether $(y, x) \in R$:

```
symR :: Ord a => Rel a -> Bool
symR (Set []) = True
symR (Set ((x,y):pairs))
    | x == y = symR (Set pairs)
    | otherwise = inSet (y,x) (Set pairs)
    && symR (deleteSet (y,x) (Set pairs))
```

A check for transitivity of R tests for each couple of pairs $(x, y) \in$ $R,(u, v) \in R$ whether $(x, v) \in R$ if $y=u$:
transR :: Ord a => Rel a -> Bool
transR (Set []) = True
transR (Set s) = and [trans pair (Set s) | pair <- s] where

```
trans (x,y) (Set r) =
and [ inSet (x,v) (Set r) | (u,v) <- r, u == y ]
```

Now what about relation composition? This is a more difficult matter, for how do we implement $\exists z(R x z \wedge S z y)$? The key to the implementation is the following procedure for composing a single pair of objects (x, y) with a relation S, simply by forming the relation $\{(x, z) \mid(y, z) \in S\}$. This is done by:

```
composePair :: Ord a => (a,a) -> Rel a -> Rel a
composePair (x,y) (Set []) = Set []
composePair (x,y) (Set ((u,v):s))
    | y == u = insertSet (x,v) (composePair (x,y) (Set s))
    | otherwise = composePair (x,y) (Set s)
```

For relation composition we need set union:

```
unionSet :: (Ord a) => Set a -> Set a -> Set a
unionSet (Set []) set2 = set2
unionSet (Set (x:xs)) set2 =
    insertSet x (unionSet (Set xs) (deleteSet x set2))
```

Relation composition is defined in terms of composePair and unionSet:

```
compR :: Ord a => Rel a -> Rel a -> Rel a
compR (Set []) _ = (Set [])
compR (Set ((x,y):s)) r =
    unionSet (composePair (x,y) r) (compR (Set s) r)
```

Composition of a relation with itself $\left(R^{n}\right)$:

```
repeatR :: Ord a => Rel a -> Int -> Rel a
repeatR r n | n < 1 = error "argument < 1"
    | n == 1 = r
    | otherwise = compR r (repeatR r (n-1))
```

