
Haskell for Knowledge Representation

Jan van Eijck

jve@cwi.nl

August 4, 2008

Abstract

The purpose of this lecture is to give a lightning introduction to the functional programming
language Haskell, and to make preparations for using Haskell for knowledge representation.

Course Homepage

http://www.cwi.nl/~jve/courses/esslli08/

http://www.cwi.nl/~jve/courses/esslli08/

Learning Something New: Key ingredients

New Facts You will learn a few facts about how functional programs

are written.

New Skills The main focus of this lecture.

• skills in (functional) computation, in learning to think function-

ally

• skills in representation, in getting from definitions to programs,

in ‘seeing’ the program hidden in a definition.

• skills in working with ‘the stuff of knowledge representation’.

Attitude The most important thing. But how do you acquire it? Once

you have acquired the correct attitude you can learn to do anything.

Using the Hugs Haskell Interpreter

jve@vuur:~/courses/esslli08$ hugs

__ __ __ __ ____ ___ ___

|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard

||___|| ||__|| ||__|| __|| Copyright (c) 1994-2005

||---|| ___|| World Wide Web: http://haskell.org/hugs

|| || Report bugs to: hugs-bugs@haskell.org

|| || Version: 20050308 ___

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :? for help

Hugs.Base>

http://haskell.org/hugs

http://haskell.org/hugs

Using the GHCI Haskell Interpreter

jve@vuur:~/courses/esslli08$ ghci

___ ___ _

/ _ \ /\ /\/ __(_)

/ /_\// /_/ / / | | GHC Interactive, version 6.6, for Haskell 98.

/ /_\\/ __ / /___| | http://www.haskell.org/ghc/

____/\/ /_/____/|_| Type :? for help.

Loading package base ... linking ... done.

Prelude>

http://www.haskell.org/ghc/

http://www.haskell.org/ghc/

Haskell

These slides form a literate program. The text you are reading is the

documentation. The actual code is the part typeset in frames. This is

how the code begins:

module HFKR

where

import List

This declares a module and imports another module. The code of the

module HFKR consists of the text in frames in the slides that follow.

Loading the module

jve@vuur:~/courses/esslli08$ hugs HFKR

__ __ __ __ ____ ___ ___

|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard

||___|| ||__|| ||__|| __|| Copyright (c) 1994-2005

||---|| ___|| World Wide Web: http://haskell.org/hugs

|| || Report bugs to: hugs-bugs@haskell.org

|| || Version: 20050308 ___

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :? for help

HFKR>

About Haskell

Haskell was named after the logician Haskell B. Curry. Curry, together

with Alonzo Church, laid the foundations of functional computation in

the era BC (Before the Computer), around 1940.

Haskell is a functional programming language, and a member of the

Lisp family. Others family members are Scheme, ML, Occam, Clean.

Haskell98 is intended as a standard for lazy functional programming.

With Haskell, the step from formal definition to program is particularly

easy. This presupposes, of course, that you are at ease with formal

definitions.

Our reason for combining an introduction to epistemic logic with an

introduction to functional programming is to enable you to ‘play’ with

the formal definitions on a computer. This will greatly speed up your

learning process.

Implementation of a Prime Number Test

A natural number n is prime if n > 1 and n has only 1 and itself as

proper divisors.

A proper divisor of a natural number n is a number m such that dividing

n by m leaves no remainder.

The Haskell command rem n m gives the remainder of n/m.

Here is our first Haskell program:

prime n =

n > 1 && all (\ x -> rem n x /= 0) [2..n-1]

Looking at the ingredients one by one, we see that this is an almost

literal rendering of the definition of being a prime.

prime n =

n > 1 && all (\ x -> rem n x /= 0) [2..n-1]

• && denotes conjunction.

• rem n x /= 0 expresses that the remainder of the process of di-

viding n by x is non-zero. In other words, x is not a proper divisor

of n.

• (\ x -> rem n x /= 0) is the property of not being a proper

divisor of n.

• [2..n-1] denotes the list of integers from 2 until (and including)

n-1,

• all denotes a check that a property holds of all members of a list.

Trying it out

somePrimes = filter prime [1..1000]

primesUntil n = filter prime [1..n]

allPrimes = filter prime [1..]

More on the filter function below.

HFKR> primesUntil 50

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47]

Type Declarations and Function Definitions

The truth values true and false are rendered in Haskell as True and

False, respectively. The type of a truth value is called Bool.

All function definitions are typed: in a type declaration we indicate

the type of the argument or arguments and the type of the value. A

function foo that takes an integer as its first argument, and an integer

as its second argument and yields a truth value has type

Integer -> Integer -> Bool.

Here is a type declaration for such a function, together with the actual

definition:

divides :: Integer -> Integer -> Bool

divides m n = rem n m == 0

The type Integer -> Integer -> Bool should be read as

Integer -> (Integer -> Bool).

A type of the form a -> b classifies a procedure that takes an argument

of type a to produce a result of type b.

Thus, divides takes an argument of type Integer and produces a

result of type Integer -> Bool.

The result of applying divides to an integer is a function that takes

an argument of type Integer, and produces a result of type Bool.

HFKR> :t divides 5

divides 5 :: Integer -> Bool

HFKR> :t divides 5 7

divides 5 7 :: Bool

HFKR> divides 5 7

False

HFKR> divides 5 10

True

Lambda Abstraction

Take the statement Hillary respects Barack. By means of abstraction,

we can get all kinds of properties and relations from this statement:

• ‘respecting Barack’

• ‘being respected by Hillary’

• ‘respecting’

• ‘being respected by’

This works as follows. We replace the element that we abstract over by

a variable, and we bind that variable by means of a lambda operator.

Lambda Abstraction – 2

Like this:

• ‘λx. x respects Barack’ expresses ‘respecting Barack’.

• ‘λx. Hillary respects x’ expresses ‘being respected by Hillary’.

• ‘λxλy. x respects y’ expresses ‘respecting’.

• ‘λyλx. x respects y’ expresses ‘being respected by’.

Lambda Abstraction – 3

In Haskell, \ x expresses lambda abstraction over variable x.

We have already seen an example: (\ x -> rem n x /= 0).

In Haskell, abstractions can be used as nameless functions.

But we can also give them names, as in the following example:

sqr :: Int -> Int

sqr = \ x -> x * x

The intention is that variabele x stands proxy for a number of type

Int. The result, the squared number, also has type Int. The function

sqr is a function that, when combined with an argument of type Int,

yields a value of type Int. This is precisely what the type-indication

Int -> Int expresses.

List processing in Haskell

Integer is the type of arbitrary size integers, Int the type of fixed

size integers.

[Integer] is the type of lists of Integers, [Int] the type of lists of

Ints.

Here is a function that gives the minimum of a list of integers:

mnmInt :: [Int] -> Int

mnmInt [] = error "empty list"

mnmInt [x] = x

mnmInt (x:xs) = min x (mnmInt xs)

This uses a predefined function min for the minimum of two integers.

It also uses pattern matching for lists:

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Haskell Types

The basic Haskell types are:

• Int and Integer, to represent integers. Elements of Integer are

unbounded. That’s why we used this type in the implementation

of the prime number test.

• Float and Double represent floating point numbers. The ele-

ments of Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For

these, a, b, . . . , are used.

New types can be formed in several ways:

• By list-formation: if a is a type, [a] is the type of lists over a.

Examples: [Int] is the type of lists of integers; [Char] is the

type of lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is

the type of pairs with an object of type a as their first component,

and an object of type b as their second component. If a, b and

c are types, then (a,b,c) is the type of triples with an object of

type a as their first component, an object of type b as their second

component, and an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes

arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type

declaration. More about this in due course.

Working with Lists: the map and filter Functions

If you use the Hugs command :t to find the types of the function map,

you get the following:

HFKR> :t map

map :: (a -> b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing

the results of applying the function to the individual list members.

If f is a function of type a -> b and xs is a list of type [a], then

map f xs will return a list of type [b]. E.g., map (^2) [1..9] will

produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Sections

In general, if op is an infix operator, (op x) is the operation resulting

from applying op to its righthand side argument, (x op) is the opera-

tion resulting from applying op to its lefthand side argument, and (op)

is the prefix version of the operator. Thus (2^) is the operation that

computes powers of 2, and map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

Similarly, (>3) denotes the property of being greater than 3, and (3>)

the property of being smaller than 3.

map

If p is a property (an operation of type a -> Bool) and l is a list of

type [a], then map p l will produce a list of type Bool (a list of

truth values), like this:

HFKR> map (>3) [1..6]

[False, False, False, True, True, True]

map is predefined in Haskell. Home-made definition:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : (map f xs)

Note the use of : for placing an element at the head of a list.

filter

Another useful function is filter, for filtering out the elements from

a list that satisfy a given property. This is predefined, but here is a

home-made version:

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Note the use of | p x and | otherwise for making a case distinction.

HFKR> filter (>3) [1..10]

[4,5,6,7,8,9,10]

List comprehension

List comprehension is defining lists by the following method:

[x | x <- xs, property x]

This defines the sublist of xs of all items satisfying property. It is

equivalent to:

filter property xs

somePrimes = [x | x <- [1..1000], prime x]

primesUntil n = [x | x <- [1..n], prime x]

allPrimes = [x | x <- [1..], prime x]

Equivalently:

somePrimes = filter prime [1..1000]

primesUntil n = filter prime [1..n]

allPrimes = filter prime [1..]

sort

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) | x <= y = x:y:ys

| otherwise = y: insert x ys

nub

nub removes duplicates, as follows:

nub :: Eq a => [a] -> [a]

nub [] = []

nub (x:xs) = x : nub (filter (/= x) xs)

Contained in

A ⊆ B :≡ ∀x ∈ A : x ∈ B.

containedIn :: Eq a => [a] -> [a] -> Bool

containedIn xs ys = all (\ x -> elem x ys) xs

elem, all

elem and all are predefined.

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Note the use of (.) for function composition (predefined).

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

Representing Relations

Various options:

• Lists of pairs, type [(a,a)].

• Characteristic functions, type a -> a -> Bool

• Characteristic functions of pairs, type (a,a) -> Bool.

• Range functions, type a -> [a]

• And so on.

Choice does not matter much, as these can easily converted into each

other.

We will (mostly) use lists of pairs.

Relations as Lists of Pairs

type Rel a = [(a,a)]

Example relations:

r1 = [(1,2),(2,1)]

r2 = [(1,2),(2,1),(2,1)]

These relations have the same pairs, so they are in fact equal.

Test for equality of relations

sameR :: Ord a => Rel a -> Rel a -> Bool

sameR r s = sort (nub r) == sort (nub s)

Operations on relations: converse

Relational converse Rˇ is given by:

Rˇ = {(y, x) | (x, y) ∈ R}

Implementation

cnv :: Rel a -> Rel a

cnv r = [(y,x) | (x,y) <- r]

Operations on relations: composition

The relational composition of two relations R and S on a set A:

R ◦ S = {(x, z) | ∃y ∈ A(xRy ∧ ySz)}

For the implementation, it is useful to declare a new infix operator for

relational composition.

infixr 5 @@

(@@) :: Eq a => Rel a -> Rel a -> Rel a

r @@ s =

nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

Note that (@@) is the prefix version of @@.

Testing for Euclideanness

A relation R is euclidian if ∀xyz((Rxy ∧Rxz) → Ryz).

Proposition:

R is euclidean iff Rˇ◦R ⊆ R.

Proof:

⇒. Suppose R is euclidean. Assume (x, y) ∈ Rˇ ◦ R. Then for some

z, (x, z) ∈ Rˇ and (z, y) ∈ R. Then (z, x) ∈ R and (z, y) ∈ R, so by

euclideanness of R, (x, y) ∈ R. This proves Rˇ◦R ⊆ R.

⇐. Suppose Rˇ◦R ⊆ R. We must show that R is euclidean. Assume

(x, y) ∈ R, (x, z) ∈ R. We must show that (y, z) ∈ R. This follows

immediately from (y, x) ∈ R ,̌ (x, z) ∈ R and Rˇ◦R ⊆ R.

Use this proposition for a test of Euclideanness:

euclR :: Eq a => Rel a -> Bool

euclR r = (cnv r @@ r) ‘containedIn‘ r

Note the use of backquotes to make ‘containedIn‘ an infix operator.

HFKR> euclR [(1,2),(1,3)]

False

HFKR> euclR [(1,2),(1,3),(2,3)]

False

HFKR> euclR [(1,2),(1,3),(2,3),(3,2)]

False

HFKR> euclR [(1,2),(1,3),(2,3),(3,2),(2,2),(3,3)]

True

Test for Seriality

A relation R is serial if ∀x∃yRxy holds.

Here is a test:

serialR :: Eq a => Rel a -> Bool

serialR r =

all (not.null)

(map (\ (x,y) -> [v | (u,v) <- r, y == u]) r)

HFKR> serialR [(1,2)]

False

HFKR> serialR [(1,2),(2,3)]

False

HFKR> serialR [(1,2),(2,3),(3,2)]
True

Testing for Transitivity

A relation R is transitive if ∀xyz((Rxy ∧Ryz) → Rxz).

Implementation of a test for transitivity transR is left for you as a

computer lab exercise.

Testing for KD45

Once we have tests for seriality, transitivity and euclideanness we can

implement the test for their combination as follows:

isKD45 :: Eq a => Rel a -> Bool

isKD45 r = transR r && serialR r && euclR r

Testing for S5

An accessibility relation is S5 if it is an equivalence.

Implementing a test for being an equivalence relation is left for you as

a computer lab exercise.

Representing Epistemic Models: Agents

data Agent = A | B | C | D | E deriving (Eq,Ord,Enum)

a,alice, b,bob, c,carol, d,dave, e,ernie :: Agent

a = A; alice = A

b = B; bob = B

c = C; carol = C

d = D; dave = D

e = E; ernie = E

instance Show Agent where

show A = "a"; show B = "b"; show C = "c";

show D = "d" ; show E = "e"

Representing Epistemic Models: Basic Propositions

data Prop = P Int | Q Int | R Int deriving (Eq,Ord)

instance Show Prop where

show (P 0) = "p"; show (P i) = "p" ++ show i

show (Q 0) = "q"; show (Q i) = "q" ++ show i

show (R 0) = "r"; show (R i) = "r" ++ show i

A Datatype for Epistemic Models

data EpistM state = Mo

[state]

[Agent]

[(state,[Prop])]

[(Agent,state,state)]

[state] deriving (Eq,Show)

Tomorrow: . . .

• Representing formulas

• Implementing evaluation of formulas in epistemic models

• Public Announcement Logic

• Representing public announcements.

• . . .

Background reading: [2], [1], [8], [3], [7], [6], [4], [5].

Homework Exercises

1. Implement a test for reflexivitity of a relation on a given domain.

The type declaration is:

reflexiveR :: Eq a => [a] -> Rel a -> Bool.

The constraint Eq a => expresses that a has to be a type for which

equality is defined. The first argument gives the domain.

2. Implement a test for symmetry of relations. The type declaration

is:

symmR :: Eq a => Rel a -> Bool.

3. Implement a test for transitivity of relations. Here is the type

declaration:

transR :: Eq a => Rel a -> Bool

4. Implement a test for being an S5 relation, on a given domain. The

type declaration is:

isS5 :: Eq a => [a] -> Rel a -> Bool.

The first argument gives the domain.

References

[1] Hal Daume. Yet another Haskell tutorial. www.cs.utah.edu/

~hal/docs/daume02yaht.pdf.

[2] K. Doets and J. van Eijck. The Haskell Road to Logic, Maths and

Programming, volume 4 of Texts in Computing. College Publica-

tions, London, 2004.

[3] The Haskell Team. The Haskell homepage. http://www.

haskell.org.

[4] P. Hudak, J. Fasel, and J. Peterson. A gentle introduction to Haskell.

Technical report, Yale University, 1996. Online version: http://

www.haskell.org/tutorial/.

[5] Mark P. Jones, Alastair Reid, et al. The Hugs98 user manual. http:

//cvs.haskell.org/Hugs/pages/hugsman/index.html.

www.cs.utah.edu/~hal/docs/daume02yaht.pdf
www.cs.utah.edu/~hal/docs/daume02yaht.pdf
http://www.haskell.org
http://www.haskell.org
http://www.haskell.org/tutorial/
http://www.haskell.org/tutorial/
http://cvs.haskell.org/Hugs/pages/hugsman/index.html
http://cvs.haskell.org/Hugs/pages/hugsman/index.html

[6] S. Peyton Jones, editor. Haskell 98 Language and Libraries; The

Revised Report. Cambridge University Press, 2003.

[7] S. Peyton Jones, J. Hughes, et al. Report on the programming

language Haskell 98. Available from the Haskell homepage: http:

//www.haskell.org, 1999.

[8] The GHC Team. The Glasgow Haskell compiler (GHC). http:

//www.haskell.org/ghc/.

http://www.haskell.org
http://www.haskell.org
http://www.haskell.org/ghc/
http://www.haskell.org/ghc/

