
Representing Action Model Updates

Jan van Eijck

jve@cwi.nl

August 6, 2008

Abstract

First, we will show how bisimulation can be used to simplify Kripke models by replacing each
state in the model by its bisimilarity class, and we will present and implement an algorithm
for carrying this out.
Action models are a special kind of Kripke models, where the valuations are replaced by
precondition formulas. A wide range of communicative actions can be modelled as updates
with action models.
We define a datatype for action models, and then turn to the definition and implementation
of action model update.

When are Epistemic Models ‘Equivalent’ ?

Can you find a formula that is true in the actual world of one of the

models, but false in the actual world of the other?

0

1:[q] 2:[p] 3:[p,q] 4 5:[q] 6:[p] 7:[p,q]

0

1 2:[q] 3:[p] 4:[p,q]

Can you find a formula that is true in the actual world of one of the

models, but false in the actual world of the other?

0

1:[q] 2:[p] 3:[p,q] 4 5:[q] 6:[p] 7:[p,q]

0

1 2:[q] 3:[p] 4:[p,q]

Bisimulation — Definition

The notion of bisimulation is intended to capture state equivalences

and process equivalences.

A bisimulation Z between Models M and N is a relation on SM×SN

such that if sZt then the following hold:

Invariance VM(s) = VN(t) (the two states have the same valuation),

Zig if for some s′ ∈ SM s
a→ s′ ∈ RM then there is a t′ ∈ SN with

t
a→ t′ ∈ RN and s′Zt′.

Zag same requirement in the other direction.

Use Z : M, s ↔ N, t to indicate that Z is a bisimulation that connects

s and t. Use M, s ↔ N, t to indicate that there is a bisimulation that

connects s and t. If the models are clear, use s ↔ t. If s ↔ t one says

that s and t are bisimilar.

Invariance • •o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

Zig •

��

•o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

��• •o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

Zag •

��

•o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

��• •o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

Bisimulation — Example 1

0 1

2

In the models of the picture, 0 ↔ 1 ↔ 2.

Bisimulation — Example 2

0

1:p

2

3:p 4

5:p

In the models of the picture, 0 ↔ 2 ↔ 4 and 1 ↔ 3 ↔ 5.

Invariance for Bisimulation

A formula ϕ (of some logical language suitable for talking about Kripke

models) is called invariant for bisimulation if the following holds:

If

M, s ↔ N, t

then

M, s |= ϕ iff N, t |= ϕ.

Fact: Epistemic formulas are invariant for bisimulation.

Proof: Induction on the structure of formula ϕ.

Bisimilarity is an Equivalence

Bisimilarity within a single model M is an equivalence relation.

Reflexive Surely I : s ↔ s for every state s in M (the identity relation

is a bisimulation). Thus s ↔ s.

Symmetric Let s ↔ t. Then there is a Z with Z : s ↔ t. Note

that the invariance, zig, and zag conditions are symmetric. Thus,

Z : s ↔ t implies Zˇ : t ↔ s. Thus, t ↔ s.

Transitive Assume s ↔ t and t ↔ u. Then there are Z : s ↔ t and

Z ′ : t ↔ u. But then Z ◦ Z ′ : s ↔ u, and therefore s ↔ u.

It follows that we can simplify a Kripke model by replacing each state

s by its bisimilarity-class |s|↔.

By the fact that epistemic formulas are invariant for bisimulation this

does not affect the truth of any epistemic formulas.

Partition Refinement

Given: A Kripke model M.

Problem: find the Kripke model that results from replacing each state

s in M by its bisimilarity class |s|↔.

The problem of finding the smallest Kripke model modulo bisimulation

is similar to the problem of minimizing the number of states in a finite

automaton [5].

We will use partition refinement, in the spirit of [6].

Partition Refinement Algorithm

• Start out with a partition of the state set where all states with the

same valuation are in the same class.

• Given a partition Π, for each block b in Π, partition b into sub-

blocks such that two states s, t of b are in the same sub-block iff

for all agents a it holds that s and t have
a−→ transitions to states

in the same block of Π. Update Π to Π′ by replacing each b in Π

by the newly found set of sub-blocks for b.

• Halt as soon as Π = Π′.

Splitting a Block

Module Declaration

module RAMU where

import List

import HFKR

import RPAU

type State = Integer

Valuation Comparison

sameVal :: (Eq a,Eq b) => [(a,b)] -> a -> a -> Bool

sameVal val w1 w2 = apply val w1 == apply val w2

From Equivalence Relations to Partitions

Relations as characteristic functions.

cf2part :: (Eq a) =>

[a] -> (a -> a -> Bool) -> [[a]]

cf2part [] r = []

cf2part (x:xs) r = xblock : cf2part rest r

where

(xblock,rest) = (x : filter (r x) xs,

filter (not . (r x)) xs)

Initial Partition

We start with the partition based on the relation ‘having the same

valuation’:

initPartition :: Eq a => EpistM a -> [[a]]

initPartition (Mo states agents val rel actual) =

cf2part states (\ x y -> sameVal val x y)

The block of an object in a partition

The block of x in a partition is the block that has x as an element.

bl :: Eq a => [[a]] -> a -> [a]

bl part x = head (filter (elem x) part)

Accessible Blocks

For an agent from a given state, given a model and a partition:

accBlocks :: Eq a =>

EpistM a -> [[a]] -> a -> Agent -> [[a]]

accBlocks m@(Mo _ _ _ rel _) part s ag =

nub [bl part y | (ag’,x,y) <- rel,

ag’ == ag, x == s]

Having the same accessible blocks under a partition

sameAB :: Eq a =>

EpistM a -> [[a]] -> a -> a -> Bool

sameAB m@(Mo states ags val rel actual) part s t =

and [accBlocks m part s ag

== accBlocks m part t ag | ag <- ags]

Refinement Step of Partition by Block Splitting

Splitting the blocks bl of p:

refineStep :: Eq a => EpistM a -> [[a]] -> [[a]]

refineStep m p = refineP m p p

where

refineP :: Eq a =>

EpistM a -> [[a]] -> [[a]] -> [[a]]

refineP m part [] = []

refineP m part (bl:blocks) =

newblocks ++ (refineP m part blocks)

where

newblocks =

cf2part bl (\ x y -> sameAB m part x y)

Refining a Partition

The refining process can be implemented as a least fixpoint computation

on the operation of taking refinement steps.

refine :: Eq a => EpistM a -> [[a]] -> [[a]]

refine m = lfp (refineStep m)

Remark: least fixpoint computation is an element of many refinement

processes.

It is an example of what is called a design pattern in Software Engi-

neering [4].

Construction of Minimal Model

minimalModel :: (Eq a, Ord a) =>

EpistM a -> EpistM [a]

minimalModel m@(Mo states agents val rel actual) =

(Mo states’ agents val’ rel’ actual’)

where

states’ = refine m (initPartition m)

f = bl states’

val’ = (nub . sort)

(map (\ (x,y) -> (f x, y)) val)

rel’ = (nub . sort)

(map (\ (x,y,z) -> (x, f y, f z)) rel)

actual’ = map f actual

Map to Bisimulation Minimal Model

Map the states to their bisimilarity classes.

Next, convert the bisimilarity classes back into integers:

bisim :: (Eq a, Ord a) =>

EpistM a -> EpistM State

bisim = convert . minimalModel . gsm

Examples

lai0 :: EpistM State

lai0 = Mo

[0..7]

[a,b,c]

(zip [0..]

((powerList [P 1, P 2])

++ (powerList [P 1, P 2])))

[(ag,x,x) | ag <- [a,b,c], x <- [0..7]]

[2]

RAMU> displayS5 lai0

[0,1,2,3,4,5,6,7]

[(0,[]),(1,[p2]),(2,[p1]),(3,[p1,p2]),(4,[]),

(5,[p2]),(6,[p1]),(7,[p1,p2])]

(a,[[0],[1],[2],[3],[4],[5],[6],[7]])

(b,[[0],[1],[2],[3],[4],[5],[6],[7]])

(c,[[0],[1],[2],[3],[4],[5],[6],[7]])

[2]

RAMU> displayS5 (bisim lai0)

[0,1,2,3]

[(0,[]),(1,[p2]),(2,[p1]),(3,[p1,p2])]

(a,[[0],[1],[2],[3]])

(b,[[0],[1],[2],[3]])

(c,[[0],[1],[2],[3]])
[2]

lai1 :: EpistM State
lai1 = let worlds = [0..10] in

Mo

worlds

[a,b,c]

(zip worlds (repeat [P 0]))

[(ag,x,y) | ag <- [a,b,c],

x <- worlds, y <- worlds]

[10]

RAMU> displayS5 lai1

[0,1,2,3,4,5,6,7,8,9,10]

[(0,[p]),(1,[p]),(2,[p]),(3,[p]),(4,[p]),(5,[p]),

(6,[p]),(7,[p]),(8,[p]),(9,[p]),(10,[p])]

(a,[[0,1,2,3,4,5,6,7,8,9,10]])

(b,[[0,1,2,3,4,5,6,7,8,9,10]])

(c,[[0,1,2,3,4,5,6,7,8,9,10]])

[10]

RAMU> displayS5 (bisim lai1)

[0]

[(0,[p])]

(a,[[0]])

(b,[[0]])

(c,[[0]])
[0]

lai2 :: EpistM State

lai2 = let worlds = [0..10] in

Mo

worlds

[a,b,c]

((0,[Q 0]): (zip [1..10] (repeat [P 0])))

[(ag,x,y) | ag <- [a,b,c],

x <- worlds, y <- worlds]

[10]

RAMU> displayS5 lai2

[0,1,2,3,4,5,6,7,8,9,10]

[(0,[q]),(1,[p]),(2,[p]),(3,[p]),(4,[p]),(5,[p]),

(6,[p]),(7,[p]),(8,[p]),(9,[p]),(10,[p])]

(a,[[0,1,2,3,4,5,6,7,8,9,10]])

(b,[[0,1,2,3,4,5,6,7,8,9,10]])

(c,[[0,1,2,3,4,5,6,7,8,9,10]])

[10]

RAMU> displayS5 (bisim lai2)

[0,1]

[(0,[q]),(1,[p])]

(a,[[0,1]])

(b,[[0,1]])

(c,[[0,1]])
[1]

Action Models

Action models are like Kripke models, but with the valuation function

replaced by a precondition function.

Their components are called actions.

If an action has precondition ϕ then the action can be applied to worlds

where ϕ holds.

See [1, 3].

Representing Updates as Action Models

Suppose there are three agents, a, b, c.

0:-p

1:T

Which update is this?

Updating with an Action Model

The result of updating with an action model is defined as the product

of the epistemic model and the action model, restricted to the pairs

(w, u) where

• w satisfies the precondition of action u, and

• the accessibility relations hold between pairs (w, u) and (w′, u′)

just in case they hold both between w and w′ and between u and

u′.

The valuation of (v, u) in the new model is that of v in the old epistemic

model.

See [1, 2].

Update Execution: Formal Definition

Given an epistemic model

M = (W, V, R, U)

where U ⊆ W is the set of actual worlds, and an action model

A = (E, pre, R, F)

where F ⊆ E is the set of actual actions, we say that the result of

executing A, s in M, w is the model M ◦ A = (W ′, V ′, R′, U ′) where

• W ′ = {(v, t) | M, v |= pre(t)},

• V ′(v, b) = V (v),

• R′(a) = {((v, t), (u, u)) | (v, u) ∈ R(a) and (t, u) ∈ R(a)},

• U ′ = {(v, t) ∈ W ′ | v ∈ U, t ∈ F}.

The Action that Changes Nothing

Suppose there are three agents, a, b, c.

0:T

Blissful Ignorance

0

1:[p]

2:[q]

3:[p,q]

After Update with ‘The Action That Changes Nothing’

(0,0)

(1,0):[p]

(2,0):[q]

(3,0):[p,q]

Public Announcement of ¬p

0:-p

After Update with Public Announcement of ¬p

(0,0)

(2,0):[q]

Group Message to a, b that ¬p

0:-p

1:T

After Update with Group Message to a, b that ¬p

(0,0)

(0,1)

(1,1):[p]

(2,0):[q]

(2,1):[q]

(3,1):[p,q]

Private Message to a that ¬p

0:-p

1:T

After Update with Private Message to a that ¬p

(0,0)

(0,1)

(1,1):[p]

(2,0):[q]

(2,1):[q]

(3,1):[p,q]

Test that ¬p

0:-p

1:T

After Update with Test that ¬p

(0,0)

(0,1)

(1,1):[p]

(2,0):[q]

(2,1):[q]

(3,1):[p,q]

Bisimulation Minimal Version

[(0,0),(0,1)]

[(1,1)]:[p]

[(2,0),(2,1)]:[q]

[(3,1)]:[p,q]

Group Message to b, c that p ∨ q

0:v[p,q]

1:T

Module for Action Models

module AM where

import List

import HFKR

import RPAU

import RAMU

Datatype for Action Models

data AM state = Am

[state]

[Agent]

[(state,Form)]

[(Agent,state,state)]

[state] deriving (Eq,Show)

Action Models

In updating with an action model, we will have to make sure that the

set of agents of the action model is the same as that of the epistemic

model that gets updated.

Therefore, it makes sense to update with functions from agents to

action models:

type FAM state = [Agent] -> AM state

Updating with an Action Model

up :: (Eq state, Ord state) =>

EpistM state -> FAM state

-> EpistM (state,state)

up m@(Mo worlds ags val rel points) fam =

Mo worlds’ ags’ val’ rel’ points’

where

Am states ags’ pre susp actuals = fam ags

worlds’ = [(w,s) | w <- worlds, s <- states,

isTrueAt m w (apply pre s)]

val’ = [((w,s),props) | (w,props) <- val,

s <- states,

elem (w,s) worlds’]
rel’ = [(ag1,(w1,s1),(w2,s2)) |

(ag1,w1,w2) <- rel,

(ag2,s1,s2) <- susp,

ag1 == ag2,

elem (w1,s1) worlds’,

elem (w2,s2) worlds’]

points’ = [(p,a) | p <- points, a <- actuals,

elem (p,a) worlds’]

Update and simplify

upd :: (Eq state, Ord state) =>

EpistM state -> FAM state

-> EpistM State

upd m a = bisim (up m a)

Public Announcement Again

Update model consists of a single action, with reflexive arrows for all

agents.

Precondition is the formula that expresses the content of the announce-

ment.

public :: Form -> FAM State

public form ags = Am [0] ags [(0,form)]

[(a,0,0)| a <- ags] [0]

Example

AM> displayS5 (up lai2 (public p))

[(1,0),(2,0),(3,0),(4,0),(5,0),(6,0),(7,0),(8,0),(9,0),(10,0)]

[((1,0),[p]),((2,0),[p]),((3,0),[p]),((4,0),[p]),((5,0),[p]),((6,0),[p]),((7,0),[p]),((8,0),[p]),((9,0),[p]),((10,0),[p])]

(a,[[(1,0),(2,0),(3,0),(4,0),(5,0),(6,0),(7,0),(8,0),(9,0),(10,0)]])

(b,[[(1,0),(2,0),(3,0),(4,0),(5,0),(6,0),(7,0),(8,0),(9,0),(10,0)]])

(c,[[(1,0),(2,0),(3,0),(4,0),(5,0),(6,0),(7,0),(8,0),(9,0),(10,0)]])

[(10,0)]

AM> displayS5 (upd lai2 (public p))

[0]

[(0,[p])]

(a,[[0]])

(b,[[0]])

(c,[[0]])

[0]

Public Announcement, Group Announcement, Private Mes-
sage, Test

• All special cases of Group Announcements.

• Public Announcement: Group Announcement to All Agents

• Private Message: ‘Group’ Announcement to a Single Agent

• Test: Group Announcement to the Empty Group

Homework . . .

Implement group announcement by means of a suitable action model.

Tomorrow

• Adding Factual Change

• Wise Men Puzzle

• Muddy Children Puzzle

• . . .

References

[1] A. Baltag, L.S. Moss, and S. Solecki. The logic of public announce-

ments, common knowledge, and private suspicions. Technical re-

port, Dept of Cognitive Science, Indiana University and Dept of

Computing, Oxford University, 2003.

[2] J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication

and change. Under submission, 2005. Available from www.cwi.nl/

~jve/papers/05/lcc/.

[3] J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication

and change. Information and Computation, 204(11):1620–1662,

2006.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.

Addison Wesley Professional, 1995.

www.cwi.nl/~jve/papers/05/lcc/
www.cwi.nl/~jve/papers/05/lcc/

[5] J.E.Hopcroft. An n log n algorithm for minimizing states in a fi-

nite automaton. In Zvi Kohavi and Azaria Paz, editors, Theory of

Machines and Computations. Academic Press, 1971.

[6] Robert Paige and Robert E. Tarjan. Three partition refinement

algorithms. SIAM J. Comput., 16(6):973–989, 1987.

