
Representing Public Announcement Updates

Jan van Eijck

jve@cwi.nl

August 5, 2008

Abstract

Public announcement is a means to create common knowledge: if ϕ is publicly announced
to a set of agents, then every agent knows ϕ, every agent knows that every agent knows
that ϕ, and so on.
We will first look at definitions, and then turn to implementation.

Public Announcement as an Update

Public announcements [ϕ] change knowledge states, so their semantics

can be given as a function from Kripke models to Kripke models:

M 7→ M | ϕ

M | ϕ given by:

if M = (W, V, R) then M | ϕ = (W ′, V ′, R′)

with
W ′ = {w ∈ W | M, w |= ϕ}
V ′ = V � W ′

R′ = {w a→ w′ | w a→ w′ ∈ R,w, w′ ∈ W ′}

Effect on Actual Worlds

A pointed Kripke model is a quadruple M = (W, V, R, U) with (W, V, R)

a Kripke model, and U ⊆ W a set of points.

Intention: the actual world is among U .

Extension of the definition M | ϕ to pointed models:

(W, V, R, U) | ϕ = (W ′, V ′, R′, U ′)

where (W ′, V ′, R′) is as above, and

U ′ = {u ∈ U | (W, V, R), u |= ϕ}

Public Announcement with Falsehood

ϕ is a falsehood in pointed model M = (W, V, R, U) if

(W, V, R), u 6|= ϕ

for all u ∈ U .

The result of updating with a falsehood is an inconsistent pointed

model, i.e., a pointed model of the form (W ′, V ′, R′, ∅).

Learning that p ∨ q by public announcement

Initial model: a and b ignorant about p and q, and no possibility as yet

ruled out:

0

1:[p]

ab

2:[q]

ab

3:[p,q]

abab

ab

ab

Result of public announcement that p ∨ q:

0:[p]

1:[q]

abc

2:[p,q]

abc

abc

Module Declaration

module RPAU

where

import List

import HFKR

First your homework . . .

reflR :: Eq a => [a] -> Rel a -> Bool

reflR xs r =

[(x,x) | x <- xs] ‘containedIn‘ r

symmR :: Eq a => Rel a -> Bool

symmR r = cnv r ‘containedIn‘ r

transR :: Eq a => Rel a -> Bool

transR r = (r @@ r) ‘containedIn‘ r

isS5 :: Eq a => [a] -> Rel a -> Bool

isS5 xs r = reflR xs r && transR r && symmR r

Example Epistemic Model

s5example :: EpistM Integer

s5example =

Mo [0..3]

[a..c]

[(0,[]),(1,[P 0]),(2,[Q 0]),(3,[P 0, Q 0])]

([(a,x,x) | x <- [0..3]] ++

[(b,x,x) | x <- [0..3]] ++

[(c,x,y) | x <- [0..3], y <- [0..3]])

[1]

Extracting domain, relations, and valuation from an epistemic
model

dom :: EpistM a -> [a]

dom (Mo states _ _ _ _) = states

rel :: Agent -> EpistM a -> Rel a

rel a (Mo states agents val rels actual) =

[(x,y) | (agent,x,y) <- rels, a == agent]

valuation :: EpistM a -> [(a,[Prop])]

valuation (Mo _ _ val _ _) = val

RPAU> rel a s5example

[(0,0),(1,1),(2,2),(3,3)]

RPAU> rel b s5example

[(0,0),(1,1),(2,2),(3,3)]

RPAU> rel c s5example

[(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),

(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)]

RPAU> isS5 (dom s5example) (rel a s5example)

True

From equivalence relations to partitions

Every equivalence relation R on A corresponds to a partition on A: the

set {[a]R | a ∈ A}, where [a]R = {b ∈ A | (a, b) ∈ R}.
Implementation:

rel2partition :: Ord a => [a] -> Rel a -> [[a]]

rel2partition [] r = []

rel2partition (x:xs) r =

xclass : rel2partition (xs \\ xclass) r

where

xclass = x : [y | y <- xs, elem (x,y) r]

Displaying S5 Models

The function rel2partition can be used to write a display function

for S5 models that shows each accessibility relation as a partition, as

follows.

showS5 :: (Ord a,Show a) => EpistM a -> [String]

showS5 m@(Mo states agents val rels actual) =

show states :

show val :

map show [(a, (rel2partition states) (rel a m))

| a <- agents]

++

[show actual]

Here @ is used to introduce a shorthand or name for a datastructure.

Example Display

displayS5 :: (Ord a,Show a) => EpistM a -> IO()

displayS5 = putStrLn . unlines . showS5

RPAU> displayS5 s5example

[0,1,2,3]

[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]

(a,[[0],[1],[2],[3]])

(b,[[0],[1],[2],[3]])

(c,[[0,1,2,3]])

[1]

Blissful Ignorance

Blissful ignorance is the state where you don’t know anything, but you

know also that there is no reason to worry, for you know that nobody

knows anything.

A Kripke model where every agent from agent set A is in blissful ig-

norance about a (finite) set of propositions P , with |P | = k, looks as

follows:

M = (W, V, R) where

W = {0, . . . , 2k − 1}
V = any surjection in W → P(P)

R = {x a→ y | x, y ∈ W, a ∈ A}.
Note that V is in fact a bijection, for |P(P)| = 2k = |W |.

Blissful Ignorance – Example

0

1:[p]

ab

2:[q]

ab

3:[p,q]

abab

ab

ab

Generating Models for Blissful Ignorance

initM :: [Agent] -> [Prop] -> EpistM Integer

initM ags props = (Mo worlds ags val accs points)

where

worlds = [0..(2^k-1)]

k = length props

val = zip worlds (sortL (powerList props))

accs = [(ag,st1,st2) | ag <- ags,

st1 <- worlds,

st2 <- worlds]

points = worlds

powerList, sortL, zip: see below.

powerList, sortL (sort by length)

powerList :: [a] -> [[a]]

powerList [] = [[]]

powerList (x:xs) =

(powerList xs) ++ (map (x:) (powerList xs))

sortL :: Ord a => [[a]] -> [[a]]

sortL = sortBy

(\ xs ys -> if length xs < length ys

then LT

else if length xs > length ys

then GT

else compare xs ys)

zip

zip is a predefined function for zipping two lists together. Home-made

version:

zip :: [a] -> [b] -> [(a,b)]

zip xs [] = []

zip [] ys = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

This gives:

RPAU> zip [0..2^3-1] (sortL (powerList [P 1,P 2,P 3]))

[(0,[]),(1,[p1]),(2,[p2]),(3,[p3]),(4,[p1,p2]),

(5,[p1,p3]),(6,[p2,p3]),(7,[p1,p2,p3])]

General Knowledge

The general knowledge accessibility relation of a set of agents C is given

by ⋃
c∈C

Rc.

Implementation:

genK :: Ord state => [(Agent,state,state)]

-> [Agent] -> Rel state

genK r ags = [(x,y) | (a,x,y) <- r, a ‘elem‘ ags]

Closures of Relations

If O is a set of properties of relations on a set A, then the O closure of

a relation R on A is the smallest relation S that includes R and that

has all the properties in O.

The most important closures of relations:

• the reflexive closure,

• the symmetric closure,

• the transitive closure,

• the reflexive transitive closure.

Reflexive Transitive Closure

Let a set A be given. Let R be a binary relation on A. Let I =

{(x, x) | x ∈ A}.
We define Rn for n ≥ 0, as follows:

• R0 = I .

• Rn+1 = R ◦Rn.

Next, define R∗ by means of:

R∗ =
⋃
n∈N

Rn.

Computing Reflexive Transitive Closure

If A is finite, any R on A is finite as well. In particular, there will be k

with Rk+1 ⊆ R0 ∪ · · · ∪Rk.

Thus, in the finite case reflexive transitive closure can be computed by

successively computing
⋃

n∈{0,..,k} Rn until Rk+1 ⊆
⋃

n∈{0,..,k} Rn.

In other words: the reflexive transitive closure of a relation R can be

computed from I by repeated application of the operation

λS.(S ∪ (R ◦ S)),

until the operation reaches a fixpoint.

Least Fixpoint

A fixpoint of an operation f is an x for which f (x) = x.

Least fixpoint calculation:

lfp :: Eq a => (a -> a) -> a -> a

lfp f x | x == f x = x

| otherwise = lfp f (f x)

Computing Reflexive Transitive Closure

rtc :: Ord a => [a] -> Rel a -> Rel a

rtc xs r = lfp (\ s -> (sort.nub) (s ++ (r@@s))) i

where i = [(x,x) | x <- xs]

RPAU> rtc [1,2,3] [(1,2),(2,3)]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Computing Common Knowledge

The common knowledge relation for group of agents C is the relation

(
⋃
c∈C

Rc)
∗.

Given that the Rc are represented as a list of triples

[(Agent,state,state)]

we can define a function that extracts the common knowledge relation:

commonK :: Ord state => [(Agent,state,state)]

-> [Agent] -> [state] -> Rel state

commonK r ags xs = rtc xs (genK r ags)

Representing Formulas

data Form = Top

| Prop Prop

| Neg Form

| Conj [Form]

| Disj [Form]

| K Agent Form

| CK [Agent] Form

deriving (Eq,Ord)

CK is the operator for common knowledge.

Example formulas

p = Prop (P 0)

q = Prop (Q 0)

Note the following type difference:

RPAU> :t (P 0)

P 0 :: Prop

RPAU> :t p

p :: Form

instance Show Form where

show Top = "T"

show (Prop p) = show p

show (Neg f) = ’-’:(show f)
show (Conj fs) = ’&’: show fs

show (Disj fs) = ’v’: show fs

show (K agent f) = ’[’:show agent++"]"++show f

show (CK agents f) = ’C’: show agents ++ show f

This gives:

RPAU> CK [a..c] (Disj[p,K a (Neg p)])

C[a,b,c]v[p,[a]-p]

Evaluation

isTrueAt :: Ord state =>

EpistM state -> state -> Form -> Bool

Your homework for today.

Evaluating the State of Bliss

test1 = isTrueAt

(initM [a..c] [P 0]) 0

(CK [a..c] (Neg (K a p)))

Truth in a Model

Use the function isTrueAt to implement a function that checks for truth

at all the designated states of an epistemic model:

isTrue :: Ord state => EpistM state -> Form -> Bool

isTrue m@(Mo worlds agents val acc points) f =

and [isTrueAt m s f | s <- points]

Another test of initM

test2 = isTrue

(initM [a..c] [P 0])

(CK [a..c] (Neg (K a p)))

Finally: Public Announcement Update

upd_pa :: Ord state =>

EpistM state -> Form -> EpistM state

upd_pa m@(Mo states agents val rels actual) f =

(Mo states’ agents val’ rels’ actual’)

where

states’ = [s | s <- states, isTrueAt m s f]

val’ = [(s,p) | (s,p) <- val,

s ‘elem‘ states’]

rels’ = [(a,x,y) | (a,x,y) <- rels,

x ‘elem‘ states’,

y ‘elem‘ states’]

actual’ = [s | s <- actual, s ‘elem‘ states’]

Examples

m0 = initM [a..c] [P 0,Q 0]

RPAU> displayS5 m0

[0,1,2,3]

[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]

(a,[[0,1,2,3]])

(b,[[0,1,2,3]])

(c,[[0,1,2,3]])

[0,1,2,3]

RPAU> displayS5 (upd_pa m0 (Disj [p,q]))

[1,2,3]

[(1,[p]),(2,[q]),(3,[p,q])]

(a,[[1,2,3]])

(b,[[1,2,3]])

(c,[[1,2,3]])

[1,2,3]

Generated Submodels

gsm :: Ord state => EpistM state -> EpistM state

gsm (Mo states ags val rel points) =

(Mo states’ ags val’ rel’ points)

where

states’ = closure rel ags points

val’ = [(s,props) | (s,props) <- val,

elem s states’]

rel’ = [(ag,s,s’) | (ag,s,s’) <- rel,

elem s states’,

elem s’ states’]

The closure of a state list, given a relation and a list of agents:

closure :: Ord state =>

[(Agent,state,state)] ->

[Agent] -> [state] -> [state]

closure rel agents xs = lfp f xs

where f = \ ys ->

(nub .sort) (ys ++ (expand rel agents ys))

The expansion of a relation R given a state set S and a set of agents

B is given by {t | s b→ t ∈ R, s ∈ S, b ∈ B}. Implementation:

expand :: Ord state =>

[(Agent,state,state)] ->

[Agent] -> [state] -> [state]

expand rel agnts ys = (nub . sort . concat)

[alternatives rel ag state | ag <- agnts,

state <- ys]

The epistemic alternatives for agent a in state s are the states in sRa

(the states reachable through Ra from s):

alternatives :: Eq state =>

[(Agent,state,state)] ->

Agent -> state -> [state]

alternatives rel ag current =

[s’ | (a,s,s’) <- rel, a == ag, s == current]

Homework for today

Implement the function isTrueAt for checking the truth of a formula

in a state in an epistemic model.

You should use induction on the structure of the formula, of course.

Next page gives the skeleton of the definition.

isTrueAt :: Ord state =>

EpistM state -> state -> Form -> Bool

isTrueAt m w Top = ...

isTrueAt

m@(Mo worlds agents val acc points) w (Prop p) = ...

isTrueAt m w (Neg f) = ...

isTrueAt m w (Conj fs) = ...

isTrueAt m w (Disj fs) = ...

isTrueAt

m@(Mo worlds agents val acc points) w (K ag f) = ...

isTrueAt

m@(Mo worlds agents val acc points) w (CK ags f) = ...

Tomorrow

• Bisimulations

• Computing bisimulation-minimal models

• Action models

• Updating with an action model

