Representing Public Announcement Updates

Jan van Eijck

jve@cwi.nl

August 5, 2008

Abstract

Public announcement is a means to create common knowledge: if ¢ is publicly announced
to a set of agents, then every agent knows ¢, every agent knows that every agent knows

that ¢, and so on.
We will first look at definitions, and then turn to implementation.

Public Announcement as an Update

Public announcements [] change knowledge states, so their semantics
can be given as a function from Kripke models to Kripke models:

M— M|

M | ¢ given by:

if M = (W,V,R) then M | o = (W', V', R))
with

W= {weW|Muw ¢}

Vo= VW

R ={wSuw|wduweRww W}

A pointed Kripke model is a quadruple M = (W, V, R, U) with (W, V, R)
a Kripke model, and U C W a set of points.

Intention: the actual world is among U.

Extension of the definition M | ¢ to pointed models:

W, V,R,U) | =W V' R U
where (W' V' R’) is as above, and

U={ueU]| (W, V,R),ul ¢}

Public Announcement with Falsehood

@ is a falsehood in pointed model M = (W, V, R, U) if
(W, VL R),u i~ ¢

for all u € U.

The result of updating with a falsehood is an inconsistent pointed
model, i.e., a pointed model of the form (W' V' R’ ().

Learning that p vV ¢ by public announcement

Initial model: a and b ignorant about p and ¢, and no possibility as yet
ruled out:

Result of public announcement that p V ¢:

Module Declaration

module RPAU

where
import List
import HFKR

reflR :: Eq a => [a] -> Rel a —> Bool
reflR xs r =
[(x,x) | x <= xs8] ‘containedIn‘ r

symmR :: Eq a => Rel a -> Bool
symmR r = cnv r ‘containedIn‘ r

transR :: Eq a => Rel a -> Bool
transR r = (r @@ r) ‘containedIn® r

isS5 :: Eq a => [a] -> Rel a -> Bool
1855 xs r = reflR xs r &&% transR r && symmR r

Example Epistemic Model

sbexample :: EpistM Integer
sbexample =
Mo [0..3]
[a..c]
[Co,[1),(1,[P 01),(2,[Q 01),(3,[P 0, Q 0])]
([(a,x,x) | x <= [0..3]] ++
[(b,x,x) | x <= [0..3]] ++
[(c,x,y) | x <= [0..3], y <- [0..3] 1)
[1]

Extracting domain, relations, and valuation from an epistemic
model

dom :: EpistM a -> [al
dom (Mo states _ _ _ _) = states

rel :: Agent -> EpistM a -> Rel a
rel a (Mo states agents val rels actual) =
[(x,y) | (agent,x,y) <- rels, a == agent]

valuation :: EpistM a -> [(a, [Propl)]
valuation (Mo _ _ val _) =val

RPAU> rel a sbexample

[€0,0),(1,1),(2,2),(3,3)]

RPAU> rel b sbexample

[(0,0),(1,1),(2,2),(3,3)]

RPAU> rel c sbexample
[(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),
(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)]

RPAU> isS5 (dom sb5example) (rel a sbexample)

True

From equivalence relations to partitions

Every equivalence relation R on A corresponds to a partition on A: the

set {[a]r | a € A}, where [a]g ={b€ A | (a,b) € R}.

Implementation:

rel2partition :: Ord a => [a] -> Rel a -> [[all]
rel2partition [1 r = []
rel2partition (x:xs) r =
xclass : rel2partition (xs \\ xclass) r
where
xclass = x : [y | y <= xs, elem (x,y) 1]

The function rel2partition can be used to write a display function
for S5 models that shows each accessibility relation as a partition, as
follows.

showS5 :: (Ord a,Show a) => EpistM a -> [String]
showS5 m@(Mo states agents val rels actual) =
show states
show val
map show [(a, (rel2partition states) (rel a m))
| a <- agents]
++
[show actuall

Here @ is used to introduce a shorthand or name for a datastructure.

displayS5 :: (Ord a,Show a) => EpistM a -> I0Q)
displaySb = putStrLn . unlines . showSb

RPAU> displayS5 sbexample
[0,1,2,3]
[C0,0]),(1,[p)),(2,[q]),(3,[p,ql)]
(a, [[0], [11,[2],[311)

(b, [[O], [1],[2],[3]1])
(c,[[0,1,2,31])

[1]

Blissful ignorance is the state where you don't know anything, but you
know also that there is no reason to worry, for you know that nobody
knows anything.
A Kripke model where every agent from agent set A is in blissful ig-
norance about a (finite) set of propositions P, with |P| = k, looks as
follows:
M = (W,V, R) where

W = {0,...,2" -1}

V= any surjection in W — P(P)

R ={zSy|a,yeWac A}

Note that V is in fact a bijection, for |P(P)| = 2% = |W/|.

Blissful Ignorance — Example

Generating Models for Blissful Ignorance

initM :: [Agent] -> [Prop] -> EpistM Integer
initM ags props = (Mo worlds ags val accs points)

where
worlds = [0..(27k-1)]
k = length props
val = zip worlds (sortL (powerList props))
accs = [(ag,stl,st2) | ag <- ags,

stl <- worlds,
st2 <- worlds
points = worlds

]

powerList, sortL, zip: see below.

powerList :: [a] -> [[all
powerList [] = [[]]
powerList (x:xs) =
(powerList xs) ++ (map (x:) (powerList xs))

sortL :: Ord a => [[a]] -> [[a]]
sortlL = sortBy
(\ xs ys -> if length xs < length ys
then LT
else if length xs > length ys
then GT
else compare xs ys)

zip is a predefined function for zipping two lists together. Home-made
version:

zip :: [a]l -> [b] -> [(a,b)]

zip xs [1 = [

zip [ys = [1]

zip (x:xs) (y:ys) = (x,y) : zip xs ys

This gives:

RPAU> zip [0..273-1] (sortlL (powerList [P 1,P 2,P 3]))
[CO,[1), (1, [p1]),(2,[p2]),(3,[p3]), (4, [p1,p2]),
(5, [p1,p31), (6, [p2,p31), (7, [p1,p2,p3])]

The general knowledge accessibility relation of a set of agents C' is given

by
| Re.

ceC

Implementation:

genK :: Ord state => [(Agent,state,state)]
-> [Agent] -> Rel state
genK r ags = [(x,y) | (a,x,y) <-r, a ‘elemn‘ ags]

Closures of Relations

If O is a set of properties of relations on a set A, then the O closure of
a relation R on A is the smallest relation S that includes R and that
has all the properties in O.

The most important closures of relations:

e the reflexive closure,
e the symmetric closure,
e the transitive closure,

e the reflexive transitive closure.

Reflexive Transitive Closure

Let a set A be given. Let R be a binary relation on A. Let [=
{(z,x) | x € A}.
We define R for n > 0, as follows:

o RV =1.

o "l = Ro R"

Next, define R* by means of:

m:Um.

neN

If A is finite, any R on A is finite as well. In particular, there will be &
with RF1 C ROU -~ U RF,

Thus, in the finite case reflexive transitive closure can be computed by
successively computing UnE{O iy 12 until RFFL C Une{o R

In other words: the reflexive transitive closure of a relation R can be
computed from I by repeated application of the operation

AS.(SU(Ro S)),

until the operation reaches a fixpoint.

A fixpoint of an operation f is an x for which f(z) = x.

Least fixpoint calculation:

1fp :: Ega=> (a > a) -> a > a
lfpf x| x==£fx =x
| otherwise = 1fp f (f x)

Computing Reflexive Transitive Closure

rtc :: Ord a => [a] -> Rel a -> Rel a
rtc xs r = 1fp (\ s -> (sort.nub) (s ++ (r@@s))) i
where 1 = [(x,x) | x <= xs]

RPAU> rtc [1,2,3] [(1,2),(2,3)]
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

The common knowledge relation for group of agents C' is the relation
(L Ry
ceC
Given that the R, are represented as a list of triples
[(Agent,state,state)]

we can define a function that extracts the common knowledge relation:

commonK :: Ord state => [(Agent,state,state)]
-> [Agent] -> [state] -> Rel state
commonK r ags xs = rtc xs (genK r ags)

Representing Formulas

data Form = Top
Prop Prop
Neg Form

Disj [Form]

K Agent Form

CK [Agent] Form
deriving (Eq,0rd)

|
|
| Conj [Form]
|
|
|

CK is the operator for common knowledge.

Example formulas

Prop (P 0)
q = Prop (Q 0)

ol
I

Note the following type difference:

RPAU> :t (P 0)
P O :: Prop
RPAU> :t p

p :: Form

instance Show Form where

show Top = "T"

show (Prop p) = show p

show (Neg f) = ’-7:(show f)
show (Conj fs) = ’%’: show fs

’v’: show fs
’[’ :show agent++"]"++show f
show (CK agents f) = ’C’: show agents ++ show f

show (Disj fs)

show (K agent f)

This gives:

RPAU> CK [a..c] (Disjlp,K a (Neg p)]1)
Cla,b,clvp, [a]l-p]

isTrueAt :: Ord state =>
EpistM state -> state -> Form -> Bool

Your homework for today.

Evaluating the State of Bliss

testl = isTrueAt
(initM [a..c] [P 0]) O
(CK [a..c] (Neg (K a p)))

Use the function isTrueAt to implement a function that checks for truth
at all the designated states of an epistemic model:

isTrue :: Ord state => EpistM state -> Form -> Bool
isTrue m@(Mo worlds agents val acc points) f =
and [isTrueAt m s £ | s <- points]

Another test of initM

test2 = isTrue
(initM [a..c] [P 01)
(CK [a..c] (Neg (K a p)))

upd_pa :: Ord state =>
EpistM state -> Form -> EpistM state
upd_pa m@(Mo states agents val rels actual) f =
(Mo states’ agents val’ rels’ actual’)

where
states’ = [s | s <- states, isTrueAt m s f]
val’ = [(s,p) | (s,p) <- val,

s ‘elem‘ states’]
rels’ = [(a,x,y) | (a,x,y) <- rels,

x ‘elem® states’,
y ‘elem‘ states’]
actual’ = [s | s <- actual, s ‘elem‘ states’]

mO = initM [a..c] [P 0,Q O]

RPAU> displayS5 mO

[0,1,2,3]
[C0,01),(1,[p)),(2,0q]1),(3,[p,ql)]
(a,[[0,1,2,3]11)

(b, [[0,1,2,3]1])

(c,[[0,1,2,3]])

[0,1,2,3]

RPAU> displayS5 (upd_pa mO (Disj [p,ql))
[1,2,3]

[(1,[pl),(2,[q]),(3,[p,ql)]

(a, [[1,2,3]1])

(b, [[1,2,3]11)

(c,[[1,2,3]1])

[1,2,3]

gsm :: Ord state => EpistM state -> EpistM state
gsm (Mo states ags val rel points) =
(Mo states’ ags val’ rel’ points)

where

states’ = closure rel ags points

val’ = [(s,props) | (s,props) <- val,
elem s states’

rel’ = [(ag,s,s’) | (ag,s,s’) <- rel,

elem s states’,
elem s’ states’

The closure of a state list, given a relation and a list of agents:

closure :: 0Ord state =>
[(Agent,state,state)] —>
[Agent] -> [state] -> [state]
closure rel agents xs = 1lfp f xs
where f = \ ys ->
(nub .sort) (ys ++ (expand rel agents ys))

The expansion of a relation R given a state set S and a set of agents
B is given by {t | s Lt R,s € S;b € B}. Implementation:

expand :: Ord state =>
[(Agent,state,state)] ->
[Agent] -> [state] -> [state]
expand rel agnts ys = (nub . sort . concat)
[alternatives rel ag state | ag <- agnts,
state <- ys]

The epistemic alternatives for agent a in state s are the states in sR,
(the states reachable through R, from s):

alternatives :: Eq state =>
[(Agent,state,state)] ->
Agent -> state -> [statel
alternatives rel ag current =
[s | (a,s,s’) <- rel, a == ag, s == current]

Implement the function isTrueAt for checking the truth of a formula
in a state in an epistemic model.

You should use induction on the structure of the formula, of course.

Next page gives the skeleton of the definition.

isTrueAt :: Ord state =>

EpistM state -> state -> Form -> Bool

isTrueAt m w Top = ...
isTrueAt
m@(Mo worlds agents val

acc points) w (Prop p) = ...

isTrueAt m w (Neg f) = ...

isTrueAt m w (Conj fs) = ...

isTrueAt m w (Disj fs) = ...

isTrueAt
m@ (Mo worlds agents val
isTrueAt
m@ (Mo worlds agents val

acc points) w (K ag f) = ...

acc points) w (CK ags f) = ...

e Bisimulations
e Computing bisimulation-minimal models
e Action models

e Updating with an action model

