# Representing Public Announcement Updates 

Jan van Eijck<br>jve@cwi.nl

August 5, 2008


#### Abstract

Public announcement is a means to create common knowledge: if $\varphi$ is publicly announced to a set of agents, then every agent knows $\varphi$, every agent knows that every agent knows that $\varphi$, and so on. We will first look at definitions, and then turn to implementation.


## Public Announcement as an Update

Public announcements $[\varphi]$ change knowledge states, so their semantics can be given as a function from Kripke models to Kripke models:

$$
M \mapsto M \mid \varphi
$$

$M \mid \varphi$ given by:

$$
\text { if } M=(W, V, R) \text { then } M \mid \varphi=\left(W^{\prime}, V^{\prime}, R^{\prime}\right)
$$

with

$$
\begin{aligned}
W^{\prime} & =\{w \in W \mid M, w \models \varphi\} \\
V^{\prime} & =V \upharpoonright W^{\prime} \\
R^{\prime} & =\left\{w \xrightarrow{a} w^{\prime} \mid w \xrightarrow{a} w^{\prime} \in R, w, w^{\prime} \in W^{\prime}\right\}
\end{aligned}
$$

## Effect on Actual Worlds

A pointed Kripke model is a quadruple $M=(W, V, R, U)$ with $(W, V, R)$ a Kripke model, and $U \subseteq W$ a set of points.
Intention: the actual world is among $U$.
Extension of the definition $M \mid \varphi$ to pointed models:

$$
(W, V, R, U) \mid \varphi=\left(W^{\prime}, V^{\prime}, R^{\prime}, U^{\prime}\right)
$$

where ( $W^{\prime}, V^{\prime}, R^{\prime}$ ) is as above, and

$$
U^{\prime}=\{u \in U \mid(W, V, R), u \models \varphi\}
$$

## Public Announcement with Falsehood

$\varphi$ is a falsehood in pointed model $M=(W, V, R, U)$ if

$$
(W, V, R), u \not \vDash \varphi
$$

for all $u \in U$.
The result of updating with a falsehood is an inconsistent pointed model, i.e., a pointed model of the form $\left(W^{\prime}, V^{\prime}, R^{\prime}, \emptyset\right)$.

## Learning that $p \vee q$ by public announcement

Initial model: $a$ and $b$ ignorant about $p$ and $q$, and no possibility as yet ruled out:


Result of public announcement that $p \vee q$ :


## Module Declaration

module RPAU<br>where<br>import List<br>import HFKR

## First your homework ...

```
reflR :: Eq a => [a] -> Rel a -> Bool
reflR xs r =
    [(x,x) | x <- xs] 'containedIn'r
symmR :: Eq a => Rel a -> Bool
symmR r = cnv r 'containedIn' r
transR :: Eq a => Rel a -> Bool
transR r = (r @@ r) 'containedIn' r
isS5 :: Eq a => [a] -> Rel a -> Bool
isS5 xs r = reflR xs r && transR r && symmR r
```


## Example Epistemic Model

$$
\begin{aligned}
& \text { s5example :: EpistM Integer } \\
& \text { s5example }= \\
& \text { Mo }[0 . .3] \\
& \quad[a . . c] \\
& \quad[(0,[]),(1,[P 0]),(2,[Q 0]),(3,[P 0, Q 0])] \\
& \quad([(a, x, x) \mid x<-[0.3]]++ \\
& \quad[(b, x, x) \mid x<-[0 \ldots 3]]++ \\
& \quad[(c, x, y) \mid x<-[0 . .3], y<-[0 . .3]])
\end{aligned}
$$

[1]

## Extracting domain, relations, and valuation from an epistemic model

```
dom :: EpistM a -> [a]
dom (Mo states _ _ _ _) = states
rel :: Agent -> EpistM a -> Rel a
rel a (Mo states agents val rels actual) =
        [ (x,y) | (agent,x,y) <- rels, a == agent ]
valuation :: EpistM a -> [(a, [Prop])]
valuation (Mo _ _ val _ _ ) = val
```

RPAU> rel a s5example
$[(0,0),(1,1),(2,2),(3,3)]$
RPAU> rel b s5example
$[(0,0),(1,1),(2,2),(3,3)]$
RPAU> rel c s5example
$[(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3)$,
$(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)]$
RPAU> isS5 (dom s5example) (rel a s5example)
True

## From equivalence relations to partitions

Every equivalence relation $R$ on $A$ corresponds to a partition on $A$ : the set $\left\{[a]_{R} \mid a \in A\right\}$, where $[a]_{R}=\{b \in A \mid(a, b) \in R\}$. Implementation:

```
rel2partition :: Ord a => [a] -> Rel a -> [[a]]
rel2partition [] r = []
rel2partition (x:xs) r =
    xclass : rel2partition (xs \\ xclass) r
        where
            xclass = x : [ y | y <- xs, elem (x,y) r ]
```


## Displaying S5 Models

The function rel2partition can be used to write a display function for S 5 models that shows each accessibility relation as a partition, as follows.

```
showS5 :: (Ord a,Show a) => EpistM a -> [String]
showS5 m@(Mo states agents val rels actual) =
    show states :
    show val :
    map show [ (a, (rel2partition states) (rel a m))
                            | a <- agents ]
    ++
    [show actual]
```

Here @ is used to introduce a shorthand or name for a datastructure.

## Example Display

$$
\begin{aligned}
& \text { displayS5 :: (Ord a,Show a) => EpistM a -> IO() } \\
& \text { displayS5 = putStrLn . unlines . showS5 }
\end{aligned}
$$

RPAU> displayS5 s5example
[0,1,2,3]
$[(0,[]),(1,[p]),(2,[q]),(3,[p, q])]$
(a, [[0], [1], [2], [3]])
(b, [[0], [1], [2], [3]])
(c, [ [0, 1, 2, 3] ])
[1]

## Blissful Ignorance

Blissful ignorance is the state where you don't know anything, but you know also that there is no reason to worry, for you know that nobody knows anything.
A Kripke model where every agent from agent set $A$ is in blissful ignorance about a (finite) set of propositions $P$, with $|P|=k$, looks as follows:

$$
\begin{aligned}
& M=(W, V, R) \text { where } \\
W= & \left\{0, \ldots, 2^{k}-1\right\} \\
V= & \text { any surjection in } W \rightarrow \mathcal{P}(P) \\
R= & \{x \xrightarrow{a} y \mid x, y \in W, a \in A\} .
\end{aligned}
$$

Note that $V$ is in fact a bijection, for $|\mathcal{P}(P)|=2^{k}=|W|$.

## Blissful Ignorance - Example



## Generating Models for Blissful Ignorance

```
initM :: [Agent] -> [Prop] -> EpistM Integer
initM ags props = (Mo worlds ags val accs points)
    where
            worlds = [0..(2^k-1)]
    k = length props
    val = zip worlds (sortL (powerList props))
    accs = [ (ag,st1,st2) | ag <- ags,
                        st1 <- worlds,
                        st2 <- worlds ]
points = worlds
```

powerList, sortL, zip: see below.

## powerList, sortL (sort by length)

```
powerList :: [a] -> [[a]]
powerList [] = [[]]
powerList (x:xs) =
    (powerList xs) ++ (map (x:) (powerList xs))
sortL :: Ord a => [[a]] -> [[a]]
sortL = sortBy
    (\ xs ys -> if length xs < length ys
        then LT
            else if length xs > length ys
    then GT
    else compare xs ys)
```

zip
zip is a predefined function for zipping two lists together. Home-made version:

$$
\begin{aligned}
& \operatorname{zip}::[a]->[b]->[(a, b)] \\
& \operatorname{zip} \text { xs }[]=[] \\
& \operatorname{zip}[] \text { ys }=[] \\
& \operatorname{zip}(x: x s)(y: y s)=(x, y): \text { zip xs ys }
\end{aligned}
$$

This gives:
RPAU> zip [0..2^3-1] (sortL (powerList [P 1,P 2,P 3])) [(0, []), (1, [p1]), (2, [p2]), (3, [p3]), (4, [p1, p2]),
$(5,[p 1, p 3]),(6,[p 2, p 3]),(7,[p 1, p 2, p 3])]$

## General Knowledge

The general knowledge accessibility relation of a set of agents $C$ is given by

$$
\bigcup_{c \in C} R_{c} .
$$

Implementation:

```
genK :: Ord state => [(Agent,state,state)]
    -> [Agent] -> Rel state
genK r ags = [ (x,y) | (a,x,y) <- r, a `elem' ags ]
```


## Closures of Relations

If $\mathcal{O}$ is a set of properties of relations on a set $A$, then the $\mathcal{O}$ closure of a relation $R$ on $A$ is the smallest relation $S$ that includes $R$ and that has all the properties in $\mathcal{O}$.
The most important closures of relations:

- the reflexive closure,
- the symmetric closure,
- the transitive closure,
- the reflexive transitive closure.


## Reflexive Transitive Closure

Let a set $A$ be given. Let $R$ be a binary relation on $A$. Let $I=$ $\{(x, x) \mid x \in A\}$.
We define $R^{n}$ for $n \geq 0$, as follows:

- $R^{0}=I$.
- $R^{n+1}=R \circ R^{n}$.

Next, define $R^{*}$ by means of:

$$
R^{*}=\bigcup_{n \in \mathbb{N}} R^{n} .
$$

## Computing Reflexive Transitive Closure

If $A$ is finite, any $R$ on $A$ is finite as well. In particular, there will be $k$ with $R^{k+1} \subseteq R^{0} \cup \cdots \cup R^{k}$.
Thus, in the finite case reflexive transitive closure can be computed by successively computing $\bigcup_{n \in\{0, \ldots, k\}} R^{n}$ until $R^{k+1} \subseteq \bigcup_{n \in\{0, \ldots, k\}} R^{n}$. In other words: the reflexive transitive closure of a relation $R$ can be computed from $I$ by repeated application of the operation

$$
\lambda S .(S \cup(R \circ S))
$$

until the operation reaches a fixpoint.

## Least Fixpoint

A fixpoint of an operation $f$ is an $x$ for which $f(x)=x$.
Least fixpoint calculation:

$$
\begin{aligned}
& \text { lfp :: Eq a => (a -> a) -> a -> a } \\
& \text { lfp } f x \mid x==f x=x \\
& \text { | otherwise = lfp f (f x) }
\end{aligned}
$$

## Computing Reflexive Transitive Closure

```
rtc :: Ord a => [a] -> Rel a -> Rel a
rtc xs r = lfp (\ s -> (sort.nub) (s ++ (r@@s))) i
    where i = [(x,x) | x <- xs ]
```

RPAU> rtc $[1,2,3][(1,2),(2,3)]$ $[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]$

## Computing Common Knowledge

The common knowledge relation for group of agents $C$ is the relation

$$
\left(\bigcup_{c \in C} R_{c}\right)^{*} .
$$

Given that the $R_{c}$ are represented as a list of triples
[(Agent, state, state)]
we can define a function that extracts the common knowledge relation:

```
commonK :: Ord state => [(Agent,state,state)]
    -> [Agent] -> [state] -> Rel state
commonK r ags xs = rtc xs (genK r ags)
```


## Representing Formulas

```
data Form = Top
    | Prop Prop
    | Neg Form
    | Conj [Form]
    | Disj [Form]
    | K Agent Form
    | CK [Agent] Form
    deriving (Eq,Ord)
```

CK is the operator for common knowledge.

## Example formulas

$$
\begin{aligned}
& \mathrm{p}=\operatorname{Prop}\left(\begin{array}{ll}
(\mathrm{P} & 0
\end{array}\right. \\
& \mathrm{q}=\operatorname{Prop}\left(\begin{array}{ll}
\mathrm{Q} & 0
\end{array}\right)
\end{aligned}
$$

Note the following type difference:

```
RPAU> :t (P 0)
P 0 :: Prop
RPAU> :t p
p :: Form
```

```
instance Show Form where
    show Top = "T"
    show (Prop p) = show p
    show (Neg f) = ',':(show f)
    show (Conj fs) = '&': show fs
    show (Disj fs) = 'v': show fs
    show (K agent f) = '[':show agent++"]"++show f
    show (CK agents f) = 'C': show agents ++ show f
```

This gives:
RPAU> CK [a..c] (Disj[p,K a (Neg p)]) C [a, b, c]v[p, [a]-p]

## Evaluation

```
isTrueAt :: Ord state =>
    EpistM state -> state -> Form -> Bool
```

Your homework for today.

## Evaluating the State of Bliss

test1 = isTrueAt
(initM [a..c] [P 0]) 0
(CK [a..c] (Neg (K a p)))

## Truth in a Model

Use the function isTrueAt to implement a function that checks for truth at all the designated states of an epistemic model:

```
isTrue :: Ord state => EpistM state -> Form -> Bool
isTrue m@(Mo worlds agents val acc points) f =
    and [ isTrueAt m s f | s <- points ]
```

Another test of initM

```
test2 = isTrue
    (initM [a..c] [P 0])
    (CK [a..c] (Neg (K a p)))
```


## Finally: Public Announcement Update

```
upd_pa :: Ord state =>
    EpistM state -> Form -> EpistM state
upd_pa m@(Mo states agents val rels actual) f =
    (Mo states' agents val' rels' actual')
    where
    states' = [ s | s <- states, isTrueAt m s f ]
    val' = [(s,p) | (s,p) <- val,
                        s 'elem' states' ]
    rels' = [(a,x,y) | (a,x,y) <- rels,
                        x 'elem' states',
                            y 'elem' states' ]
    actual' = [s | s <- actual, s 'elem' states' ]
```


## Examples

$$
\mathrm{mO}=\text { initM [a..c] [P 0,Q 0] }
$$

RPAU> displayS5 m0
[0,1,2,3]
$[(0,[]),(1,[p]),(2,[q]),(3,[p, q])]$
(a, $[[0,1,2,3]])$
(b, $[[0,1,2,3]])$
(c, $[[0,1,2,3]])$
[0,1,2,3]

RPAU> displayS5 (upd_pa m0 (Disj [p,q]))
$[1,2,3]$
$[(1,[p]),(2,[q]),(3,[p, q])]$
(a, [ [1, 2, 3] ])
(b, $[[1,2,3]]$ )
(c, $[[1,2,3]])$
$[1,2,3]$

## Generated Submodels

gsm :: Ord state => EpistM state -> EpistM state gsm (Mo states ags val rel points) = (Mo states' ags val' rel' points) where
states' = closure rel ags points
val' = [(s,props) | (s,props) <- val,
elem s states'
rel' $=\left[\left(a g, s, s^{\prime}\right) \mid\left(a g, s, s^{\prime}\right)<-r e l\right.$,
elem s states',
elem s' states'

The closure of a state list, given a relation and a list of agents:

```
closure :: Ord state =>
    [(Agent,state,state)] ->
    [Agent] -> [state] -> [state]
closure rel agents xs = lfp f xs
    where f = \ ys ->
    (nub .sort) (ys ++ (expand rel agents ys))
```

The expansion of a relation $R$ given a state set $S$ and a set of agents $B$ is given by $\{t \mid s \xrightarrow{b} t \in R, s \in S, b \in B\}$. Implementation:

```
expand :: Ord state =>
    [(Agent,state,state)] ->
    [Agent] -> [state] -> [state]
expand rel agnts ys = (nub . sort . concat)
    [ alternatives rel ag state | ag <- agnts,
        state <- ys
```

The epistemic alternatives for agent $a$ in state $s$ are the states in $s R_{a}$ (the states reachable through $R_{a}$ from $s$ ):

```
alternatives :: Eq state =>
    [(Agent,state,state)] ->
        Agent -> state -> [state]
alternatives rel ag current =
    [ s' | (a,s,s') <- rel, a == ag, s == current ]
```


## Homework for today

Implement the function isTrueAt for checking the truth of a formula in a state in an epistemic model.
You should use induction on the structure of the formula, of course.
Next page gives the skeleton of the definition.

```
isTrueAt :: Ord state =>
    EpistM state -> state -> Form -> Bool
isTrueAt m w Top = ...
isTrueAt
    m@(Mo worlds agents val acc points) w (Prop p) = ...
isTrueAt m w (Neg f) = ...
isTrueAt m w (Conj fs) = ...
isTrueAt m w (Disj fs) = ...
isTrueAt
    m@(Mo worlds agents val acc points) w (K ag f) = ...
isTrueAt
    m@(Mo worlds agents val acc points) w (CK ags f) = ...
```


## Tomorrow

- Bisimulations
- Computing bisimulation-minimal models
- Action models
- Updating with an action model

