
Logic of Information Flow on Communication Channels

Tracking Number:377

ABSTRACT
In this paper, we develop an epistemic logic to specify and reason
about the information flow on the underlying communication chan-
nels. By combining ideas from Dynamic Epistemic Logic (DEL)
and Interpreted Systems (IS), our semantics offers a natural and
neat way of modelling multi-agent communication scenarios with
different assumptions about the observational power of agents. We
relate our logic to the standard DEL and IS approaches and demon-
strate its use by studying a telephone call communication scenario.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods—modal logic; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—multiagent systems

General Terms
Theory

Keywords
modal logic, dynamic epistemic logic, interaction structures, pro-
tocol, channel

1. INTRODUCTION
The 1999 ‘National Science Quiz’ of The Netherlands Organisa-

tion for Scientific Research (NWO)1 had the following question [10,
16]

Six friends each have one piece of gossip. They start
making phone calls. In every call they exchange all
pieces of gossip that they know at that point. How
many calls at least are needed to ensure that everyone
knows all six pieces of gossip?

To reason about the information flow in such scenario, we need
to take into account the following issues: the messages that agents
possess (e.g. secrets), the knowledge of agents, the dynamics of the
system in terms of the information passing (e.g. telephone calls)

1It is the 10th question from the 1999 edition. For a list of refer-
ences about the problem c.f. [10].

Cite as: Logic of Information Flow on Communication Channels, Au-
thor(s), Proc. of 9th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2010), van der Hoek, Kaminka, Luck and Sen
(eds.), May, 10–14, 2010, Toronto, Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and the underlying communication channels (e.g. network of land-
lines). To incorporate specific designs for such issues, we first need
to make a choice between two mainstream logical frameworks to
multi-agent systems: Interpreted Systems and Dynamic Epistemic
Logic.

Interpreted Systems (ISs), introduced by [7] and [12] indepen-
dently, are mathematical structures that combine history-based tem-
poral components of a system with epistemic ones (defined in terms
of local states of the agents). ISs are convenient to model knowl-
edge development based on the given temporal development of a
system. In ISs the epistemic structure is generated from the tempo-
ral structure in a uniform way. However, the generation of temporal
structures is not specified in the framework.

A different perspective on the dynamics of multi-agent systems
is provided by Dynamic Epistemic Logic (DEL) [8, 3]. The main
focus of DEL is not on the temporal structure of the system but on
the epistemic impact of events as the agents perceive them. The
development of a system through time is essentially generated by
executing so-called action models on a static initial model, to gen-
erate an updated static model. The epistemic relations in the initial
static model and in the action models are not generated uniformly
as in IS. It is customary to start out from a static situation of uni-
versal ignorance, where the ignorance is supposed to be common
knowledge2.

Much has been said already about the comparison of the two
frameworks (see e.g. [17, 9]), but at a purely theoretical level. In
this paper, we will demonstrate the benefits of combining the two
approaches by presenting a framework where the temporal develop-
ment of the system is generated by executing DEL-style actions and
where epistemic relations are generated by matching local states
and history of observations as in ISs.

Related Work and Contributions.
An early proposal to extend DEL with explicit communication

channels is in [15]. Communication channels in an IS framework
made their appearance in [13]. Recent work [11, 2] addresses the
information passing on so-called communication graphs or interac-
tion structures, where “messages” are either atomic propositions
or Boolean combinations of atomic propositions. In [22] a PDL-
style DEL language is developed that allows explicit specification
of protocols. The present paper attempts to blend the DEL and IS
approaches to communication along channels. More specifically,
the contributions of this paper are:

• Combining insights from Dynamic Epistemic Logics and In-
terpreted Systems, we propose a logic LImpc to specify and

2In a situation with n atomic propositions, this gives an initial
model consisting of 2n worlds, with universal accessibility rela-
tions for all agents.

reason about the information flow over underlying commu-
nication channels. Unlike in previous work [11, 2, 15], we
can specify the communication protocols in our language and
deal with information flow in terms of both the messages and
propositions.
• The semantics of LImpc is given on single-state models with

respect to different observational equivalence relations gen-
erated in IS-style, which are also studied and compared in
this paper.
• The DEL-style actions in LImpc allow us to model various

communication actions such as message passing and group
announcements. In particular we define an external inform-
ing action, which essentially announces the protocol that agents
are supposed to follow, thus making it common knowledge
that the future behavior of agents is constrained. It turns to
make a crucial difference whether epistemic protocols such
as those discussed in [19, 20, 21] are assumed to be common
knowledge among the agents carrying out the protocol or not
(see also [22]).
• Taking advantage of the concise nature of our semantics, we

also propose a generic method of epistemic modeling where
the initial model is simply the real world and all the initial
assumptions are specified explicitly by means of formulas of
LImpc. This significantly simplifies the modeling procedure.
According to the semantics, the relevant possible states can
be automatically constructed on-the-fly while evaluating the
formulas. In particular, there is no need to specify the whole
state space at the beginning.
• When the exact values of the messages are irrelevant, we can

specify the protocol and the initial requirements in an intu-
itive and neat way, as demonstrated by the study of telephone
communications among agents. We show that it is impossi-
ble to obtain new common knowledge by telephone calls or
voice mails but that we can get arbitrarily close to common
knowledge if we can not only send messages but also make
statements like “I just called a and I know he got m”.

The paper is organized as follows. We introduce our logic LImpc
in Section 2. Section 3 relates our logic to the standard DEL and
IS approaches. Section 4 introduces a modeling method and illus-
trates this method by a study of variations on the puzzle that was
mentioned at the start of the paper. The final section concludes and
lists future work.

2. LOGIC LImpc
2.1 Language

Let I be a finite set of agents, M be a finite set of message terms
andA be a finite set of basic actions. A network net is a hypergraph
of agents in I , namely a set of subsets of I as in [2]. For example if
net = {{1, 2}, {1, 2, 3}} then there is a private channel {1, 2} of
agents 1, 2 and there is a public channel of all the three agents.

The set PropI,A,M of basic propositions is defined by

p ::= hasim | com(G) | past(ᾱ) | future(α)

with i ∈ I , m ∈ M , G ⊆ I , ᾱ = α0;α1; . . . ;αk ∈ A∗ and
α ∈ A.

hasim is intended to mean that i possesses the message m3;
while com(G) expresses that group G forms a channel in the net-
work; past(ᾱ) says that the sequence of actions ᾱ just happened
3has is a commonly used predicate in the logic of security protocols
to model declarative knowledge about messages c.f., e.g., [14].

and future(α) means that α can be executed as a next step in
the current protocol. The formulas of LImpc are built from the set
PropI,A,M as follows:

φ ::= > | p | ¬φ | φ1 ∧ φ2 | 〈π〉φ | CGφ
π ::= α | π1;π2 | π1 ∪ π2 | π∗

with p ∈ PropI,A,M , G ⊆ I and α ∈ A. Let ΠA′ be the set of all
protocols π based on basic actions in A′ ⊆ A. Let Π = ΠA and
Form(LImpc) be the set of all the LImpc formulas. Each α ∈ A is
a tuple:

〈G,φ,M0 . . .M|I|, x〉 ∈ P(I)×Form(LImpc)×(P(M))|I|×(Π∪{#})

The intended meaning of the formulas is mostly as usual as in
dynamic epistemic logics: CGφ expresses “the agents in G com-
monly know φ”, 〈π〉φ expresses “the protocol π can be executed,
and at least one execution of π yields a state where φ holds”. Here
π is a regular expression built from the basic actions.

For every atomic actionα = 〈G,φ,M0 . . .M|I|, x〉, let obs(α) =
G be the set of agents that can observe α; let Pre(α) = φ be the
precondition forα to be executed and let Pos(α) = 〈M0 . . .M|I|, ρ〉
(with ρ ∈ Π ∪ {#}) be the postcondition of execution of α. The
postcondition 〈M0 . . .M|I|, ρ〉 lists for each agent i the set of mes-
sages Mi that get delivered to i by action α and the protocol ρ that
the agents are going to follow from now on. If ρ equals #, this
expresses that the agents keep following the current protocol, if ρ
equals π ∈ Π this expresses that they change their protocol to π. In
this paper we assume that the agents can always observe the actions
which deliver some messages to him, namely if β hasMj 6= ∅ then
j ∈ obs(β).

As usual, we define ⊥, φ ∨ ψ, φ → ψ, 〈CG〉φ and [π]φ as the
abbreviations of ¬>, ¬(¬φ∧¬ψ), ¬φ∨ψ, ¬CG¬φ and ¬〈π〉¬φ
respectively. Moreover, we use the following abbreviations:

Kjφ:=C{j}φ
hasiM

′:=
V
m∈M′ hasim

dhasGM
′:=
V
m∈M′

W
j∈G hasjm

com(net):=
V
G∈net com(G) ∧

V
G6∈net ¬com(G)

πn:=π;π; . . . ;π| {z }
n

ΣΠ′:=
S
π∈Π′ π where Π′ ⊂ Π is finite.

〈〉≤nφ:=〈
S
k≤n(ΣA)k〉φ

〈〉min(n)φ:=〈〉≤nφ ∧ ¬〈〉≤n−1φ
Knowi∃hasjm:=Kihasjm ∧ ¬hasim
∃Knowihasjm:=Kihasjm ∧ hasim

where: Kjφ means that agent j knows φ; dhasGM
′ says M ′ are

distributed among agents in G; com(net) specifies the communi-
cation channels in the network; 〈〉≤nφ should be read as “φ can be
realized with a sequential protocol within n steps” and 〈〉min(n)φ
says “φ can be realized in n steps and needs at least n steps”. Note
that the usual temporal operator 3 (sometimes called F) of IS ap-
proaches (e.g. [11]) can be defined by 〈(ΣA)∗〉 while 〈〉≤n serves
as a generalization of the arbitrary announcement that is added to
DEL in [1].

By having both has and K in the language we can make a
distinction between knowing a message and knowing its content.
Knowi∃hasjm and ∃Knowihasjm express the de dicto and de
re reading of knowing a message: Knowi∃hasjm says that agent i
knows that agent j has certain messagem, but he doesn’t know the
content ofm himself. ∃Knowihasjm expresses that agent i knows
that agent j has certain message m and he also possesses the mes-
sage m himself thus knows the content. For example, let m be the

hidding place of Bin Laden and suppose it is commonly known that
Al-Qaeda knows the place secretly, then Knowi∃hasAl-Qaedam
should intuitively hold but not ∃KnowihasAl-Qaedam for i 6= Al-Qaeda.

2.2 Semantics
In order to interpret basic propositions PropI,A,M , we let the

finer structure of the basic propositions correspond with a finer
structure in the states (replacing the traditional valuation in Kripke
structures):

DEFINITION 1. A state for LImpc s is a tuple:

〈net,M0, . . . ,M|I|, ᾱ,M
′
0, . . . ,M

′
|I|, π〉 ∈ Net×F × (A)∗×F ×Π.

where Net = P(P(I)) and F = (P(M))|I|. Let IS(s, i) = M ′i
be i’s current set of messages (information set), AM (s) = ᾱ be
the action history, CC (s) = net be the available communication
channels and Prot(s) = π be the protocol the agents need to fol-
low from this state. Let AM k(s) = αk in ᾱ. The initialization of s
is another state:

Init(s) = 〈net,M0, . . . ,M|I|, ε,M0, . . . ,M|I|, (ΣA)∗〉.

The length of s is l(s) = |AM (s)|.

Intuitively, each state represents a possible development of the sys-
tem with the constraint for the future. Note that past is linear (it
consists of a single sequence), but the future can be branching (it
may consist of several sequences). As for Init(s), we do not record
any actions thus AM (Init(s)) = ε and Prot(Init(s)) = (ΣA)∗

simply says every protocol is possible in the future.
hasim, com(G) and past(ᾱ) can be interpreted in a straight-

forward way at state s according to IS(s, i),AM (s) and CC (s)
respectively. To give the semantics for future(α) at a state s, we
need to check whetherα complys with the current protocolProt(s)
and compute the remaining protocol after the execution of α when
we define the postcondition for α later on. For this, we define a
“division” operation \α on regular expressions with the auxiliary
constants ε (empty sequence) and δ (deadlock) as follows:

ε\α = δ δ\α = δ
α\α = ε β\α = δ
(π;π′)\α = (π\α);π′ (π ∪ π′)\α = π\α ∪ π′\α
(π)∗\α = π\α; (π)∗

where π;π′, π + π′ and π∗ above have to be in a normal form by
applying the absorbing rules below first:

ε;π = π δ;π = δ
δ ∪ π = π

For example: (α∪ (β; γ))∗\β = (α\β∪ (β; γ)\β); (α∪β; γ)∗ =
(δ ∪ (ε; γ)); (α ∪ β; γ)∗ = γ; (α ∪ (β; γ))∗. Note that in general
we do not have β; (π\β) = π.

Let L(π) be the language of the regular expressions defined by
the following:

L(δ) = ∅ L(ε) = {ε} L(α) = {α}
L(π;π′) = {ᾱ; β̄ | ᾱ ∈ L(π), β̄ ∈ L(π′)}
L(π ∪ π′) = L(π) ∪ L(π′)
L(π∗) = {ᾱ1; . . . ; ᾱn | ᾱ1, . . . , ᾱn ∈ L(π)}

It is easy to see that the operation we defined can compute the re-
maining of the protocol after executing basic action α:

PROPOSITION 1. L(π\α) = {β̄ | α; β̄ ∈ L(π)}.

Similar to [5, 2], we give the truth value of complex LImpc for-
mula on single states but not pointed Kripke models, while the pos-
sible states to interpret epistemic formulas are generated in a uni-
form way by ∼xi defined later.

Let s = 〈net,M0, . . . ,M|I|, β̄,M
′
0, . . . ,M

′
|I|, π〉, we have:

s � hasi(m) ⇔ m ∈ IS(s, i)
s � com(G) ⇔ G ∈ CC (s)
s � past(ᾱ) ⇔ ᾱ is a suffix of AM (s)

s � future(α) ⇔ Prot(s)\α 6= δ
s � ¬φ ⇔ s 2 φ

s � φ ∧ ψ ⇔ s � φ and s � ψ
s � CGφ ⇔ for all v, if s ∼xG t then t � φ
s � 〈π〉φ ⇔ ∃s′ : sJπKs′ and s′ � φ

where ∼xG is the reflexive transitive closure of {∼xi | i ∈ G} and π
are protocols functioning as state changers:

sJαKs′ ⇔ s � Pre(α) and s′ = s|Pos(α)

sJπ1;π2Ks′ ⇔ sJπ1K ◦ Jπ2Ks′
sJπ1 ∪ π2Ks′ ⇔ sJπ1K ∪ Jπ2Ks′
sJ(π1)∗Ks′ ⇔ sJπ1K∗s′

where ◦,∪ and ∗ at right-hand side express the usual composition,
union and reflexive transitive closure on relations respectively. If
Pos(α) = 〈N0, . . . , N|I|, ρ〉 then

s|Pos(α) = 〈net,M0, . . . ,M|I|, β̄;α,M ′0∪N0, . . . ,M
′
|I|∪N|I|, f(ρ)〉

where f(ρ) =

π\α if ρ = #
π′ if ρ = π′

.

Now we define∼xi among states. A state s is said to be consistent
if Init(s)JAM (s)Ks. For the special case that AM (s) = ε we let
sJεKs′ ⇔ s = s′. It is then easy to see that for any s, Init(s) is
always consistent4.

We say t ∼xi t′ iff the following conditions are met:

consistency t and t′ are consistent.

local initialization IS(Init(t), i) = IS(Init(t′), i)

local history AM (t) ≈xi AM (t′) where x is the type of the ob-
servational power defined below.

Let AM (t) ≈xi AM (t′) ⇔ AM (t)|xi = AM (t′)|xi . Then we can
have several reasonable definitions of AM (t)|xi to capture different
observation powers of agents:

1. AM (t)|seti = {α | i ∈ obs(α)} as in [2].

2. AM (t)|1sti is the subsequence that only keeps the first occur-
rence of each α ∈ AM (t)|seti as in [4].

3. AM (t)|asyni is the subsequence that only keepsα ∈ AM (t)|seti .

4. AM (t)|τi is the sequence that replaces each occurrence of
α 6∈ AM (t)|seti by τ .

where x ∈ Sem = {set, asyn, 1st, τ}, we then have:

PROPOSITION 2. ≈τi⊆≈asyni ⊆≈1st
i ⊆≈seti .

We then call the semantics defined by ∼xi the x-semantics, and
denote the corresponding satisfaction relation as �x.

Recall that we require that the agents can always observe the
actions that change his information set. We then have:
4Note that we can actually omit the current information sets
IS(s, i) in the definition of a state, but compute it by applying
the actions in AM(s), thus only generate consistent states. We
keep the current information sets there to simplify notations and
make it more efficient to evaluate basic propositions according to
the semantics.

PROPOSITION 3. For any consistent state t: t ∼xi t′ implies
IS(t, i) = IS(t′, i) where x ∈ Sem.

PROOF. Note that our actions can only add messages to the in-
formation sets of agents but never delete any messages. According
to this monotonicity, we only need to check the above claim for
∼seti and it is straightfoward since agent can always observe the
action that changes his information set.

2.3 Communication Actions
In the following we define a few very useful basic actions. Let

s = 〈net,M0, . . . ,M|I|, ᾱ,M
′
0, . . . ,M

′
|I|, π〉. Postconditions of

basic action β are in the form Pos(β) = 〈N0, . . . , N|I|, ρ〉 where
Nj = ∅ for j 6∈ obs(β) and ρ ∈ Π∪{#}. We list the basic actions
in the table below (where j ∈ obs(β)):

β (communication obs Pre common part is: Pos common part. is:
resp. channels) com(obs(β)) ∧ future(β) ρ = #
sendiG(M′) G ∪ {i} hasiM Nj = M′

shareG(M′) G dhasGM
′ Nj = M′

sendalliG(M′) G ∪ {i} hasiM
′ ∧

V
m6∈M′ ¬hasim Nj = M′

shareallG(M′) G dhasGM
′ ∧

V
m6∈M′ ¬dhasim Nj = M′

informiG(φ) G ∪ {i} Kiφ Nj = ∅
β (external info) obs Pre common part is: future(β) Pos no common part
exinfo(φ) I φ ρ = #
exprot(π′) I 〈π′〉> ρ = π′

The first group of actions are communication actions that respect
the channels. send iG(M ′) is the action that i sends the set of mes-
sagesM ′ to the groupGwith precondition com(obs(send iG(M ′)))∧
future(send iG(M ′)) ∧ hasiM meaning that there is a channel to
perform this action and it is allowed by the current protocol and
i should possess all the messages in M . Pos(send iG(M ′)) =
〈N0, . . . , N|I|,#〉 where Nj = M ′ for j ∈ obs(send iG(M ′)).
shareG(M ′) shares the messages distributed among the members
of group G. sendall iG(M ′) differs from send iG(M ′) in the extra
precondition that M ′ should be all the messages that i has. Similar
for shareallG(M ′). informi

G(φ) is the group announcement of φ
within G ∪ {i}.

The second group of actions are public announcements that do
not respect the channels. They model the external information
which is given to the agents. For example, after executing exinfo(φ),
the states agents consider possible will all satisfy φ due to the defi-
nition of ∼xG and the fact that all the agents can observe this ac-
tion. exprot(π′) announces the protocol π′ that the agents are
supposed to follow in the future. Note that it is different from
the action exinfo([π′]>). Actually exprot(π′) can never be de-
fined by exinfo(φ) since exprot(π′) shapes the future by changing
Prot(s).

We can define more complex actions based on the above basic
actions. For example:

mail iG(M ′) =
[

M′′⊆M′
sendall iG(M ′′)

models the voice mail from i for the group G, in which i shares all
the messages that he possesses withinM ′5. Similarly call iG(M ′) =S
M′′⊆M′ shareall i(G)M ′′ models the conference call which shares

all the messages that the group have in M ′.
Similarly, new operator 〈〉≤nA′ := 〈exprot((Σα∈A′α)∗)〉; 〈〉≤n

can be defined to obtain a restricted version of bounded future op-
erator such that 〈〉≤nA′ φ expresses that “there is a sequential protocol
using only actions in A′ to achieve φ in less or equal than n steps”.

5Here M ′ encodes the relevant context e.g. messages that are
“about work”.

3. COMPARISON WITH IS AND DEL
The results in this section relate our logic to IS and DEL ap-

proaches. Theorem 1 shows that by the semantics of LImpc, an in-
terpreted system is generated implicitly from a single state. Propo-
sition 4 and Theorem 1 demonstrate that our approach is powerful
and concise in modelling actions, comparing to DEL.

Let us compare our approach to IS first. Note that in the follow-
ing we only consider consistent states.

Let the history of s be a sequence: hist(s) = s0s1 . . . sl(s) where
s0 = Init(s), sl(s) = s and skJαkKsk+1 for any k such that
αk = AM k(s). It is easy to see that if hist(s) = s0s1 . . . sl(s) then
s0s1 . . . sk = hist(sk) for any k ≤ l(s). Let ExpT x be the In-
terpreted System with actions labels with respect to x−semantics:
{H,→α, {Ri | i ∈ I}, V } where:

• H = {hist(s′) | s′ is consistent.}
• 〈s0 . . . sn〉 →α 〈s0 . . . snsn+1〉 ⇔ snJαKsn+1.
• 〈s0 . . . sn〉Ri〈s′0 . . . s′m〉 iff sn ∼xi s′m.
• V (〈s0 . . . sn〉)(p) = > ⇔ sn �x p where p ∈ PropI,A,M .

It is clear that the language of LImpc can be seen as a fragment
of the Propositional Dynamic Logic (PDL): LIpdl with basic action
set A ∪ I such that CG can be seen as (ΣG)∗. Let PDL denote
the usual semantics of LIpdl then it is not hard to see:

THEOREM 1. For any formula φ ∈ LImpc and for each consis-
tent LImpc-state s:

s �x φ⇔ ExpT x, hist(s) PDL φ.

This result shows that if we abstract away the inner structure of
basic propositions and actions, then our logic can be looked as a
PDL language interpreted on ISs that are generated in a particular
way w.r.t the some constraints. Note that this result does not implies
the decidability of LImpc since although PDL language is decidable
on general Kripke structures, we do not know yet whether it is de-
cidable on the restricted class of the generated models ExpT x.

Now consider the DEL language LIdel :

φ ::= > | p | ¬φ | φ1 ∧ φ2 | 〈A, e〉φ | CGφ

where p is in a set of basic propositions Prop, G ⊆ I and A is
an action model with e as a designated action. Action models are
tuples in the form of (E, {�i}i∈I ,Pre,Pos) where �i models
agents i’s observational power on events inE (e.g. e1 �i e2 means
i is not sure which one of e1 and e2 happened); the precondition
function Pre : E → LIdel describes when an event can happen
and the postcondition Pos : E → (Prop→ LIdel) makes (finitely
many) basic propositions p change their truth values, after execut-
ing the events, to the truth values of Pos(e)(p) in the static Kripke
model, thus model the factual changes caused by the event [18].

The semantics for epistemic formulas is usual and

M, s DEL 〈A, e〉φ⇔ M⊗ A, (s, e) � φ

where the operation ⊗ is defined below:
Given a static Kripke model M = (W, {Ri}i∈I , V) and an

action model A = (E, {�i}i∈I ,Pre,Pos), the updated model
M⊗ A = (W ′, {R′i}i∈I , V ′) is defined:

W ′ = {〈w, e〉 | M, w � Pre(e)}
R′i = {(〈w, e〉, 〈v, e′〉) | wRiv and e �i e′}

V ′(〈w, e〉) = V (w)(Pos(e)(p))

To facilitate the comparison, let us consider LImpc−∗, the star-free
fragment ofLImpc6. LetExpKx(s) be the Kripke model {W, {Ri |
6∗ should not appear in the preconditions of actions.

i ∈ I}, V } obtained by the expansion of the state s according to
x−semantics:
• W = {s′ | s ∼xI s

′} where∼xI is the reflexive transitive closure of
{∼xi | i ∈ I}.

• Ri =∼xi |W×W .
• V (s)(p) = > ⇔ s �x p where p ∈ PropI,A,M .

Note that although I, A,M are assumed to be finite,W inExpKx(s)
can still be infinite due to the fact that we record the past explicitly
in the states. For x ∈ {set, 1st, asyn} which correspond to asyn-
chronized semantics and an sequence of actions α, {β̄ | ᾱ ≈xi β̄}
is infinite thus W can be infinite in ExpKx(s).

Based on ExpKx(s), it seems plausible to obtain a similar cor-
respondence result as Theorem 1 for LImpc−∗and LIdel, since the
basic actions in LImpc−∗ look like special cases of pointed action
models in DEL. However, it is not the case in general. To see this,
we first recall a fact from [17]: If we look 〈A, e〉 as a basic action
modality when considering PDL semantics, then for any formula
φ ∈ LIdel :

M, s DEL φ⇔ Forest(M,A), (s) PDL φ (?)

where Forest(M,A) is the IS generated by executing all the pos-
sible sequences of action models in A on M, s7. We now show the
effects of actions in LImpc can not be simulated by action models.

PROPOSITION 4. There is no translation T : A→ A such that
for all consistent LImpc-state s:

T (ExpT x), hist(s)↔ Forest(ExpKx(s),A), s

where x ∈ {set, 1st, asyn}, T (ExpT x) is the IS obtained from
ExpT x by replacing each label of α ∈ A by T (α) ∈ A and↔ is
the bisimulation for transitions labled by I ∪ A.

PROOF. [17] shows that Forest(ExpKx(s)) must satisfy the
property of Perfect Recall meaning that if the agents can not dis-
tinguish two sequences of action ᾱ;α and β̄;β then they can not
distinguish ᾱ and β̄. However, ExpT x clearly does not satisfy
this property for x ∈ {set, 1st, asyn} in general. For example,
send ij(M); γ ≈xj γ; send ij(M) where x ∈ {set, 1st, asyn} and
γ is some action j can not observe, however send ij(M) 6≈xj γ.

If we consider τ−semantics, then a correspondence result can be
obtained. First let TDEL : LImpc−∗ → LIdel be defined as follows:

TDEL(>) = >
TDEL(p) = p
TDEL(¬φ) = ¬TDEL(φ)

TDEL(φ1 ∧ φ2) = TDEL(φ1) ∧ TDEL(φ2)
TDEL([α]φ) = [ExpAx(α)]TDEL(φ)

TDEL([π1 ∪ π2]φ) = TDEL([π1]φ) ∧ TDEL([π2]φ)
TDEL([π1;π2]φ) = TDEL([π1][π2]φ)

where ExpAτ (α) is the pointed action model {E, {Ri | i ∈
I}, V, eα} obtained by the saturation of the action α according to
x−semantics:

• E = {eβ | β ∈ A}
• eβRieβ′ ⇔ β = β′ or i 6∈ obs(β) ∪ obs(β′).
• Pre(eβ) = TDEL(Pre(β)).
• If Pos(β) = 〈M0, . . . ,MI , x〉 then:

Pos(eβ)(hasim) =

> if m ∈Mi

hasim if otherwise
Pos(eβ)(com(G)) = com(G)

Pos(eβ)(past(γ̄; γ)) =

past(γ̄) if γ = β
⊥ if otherwise

7Due to the limit of space, readers are refered to [17] for details.

Note that we have not defined Pos(eβ)(future(γ)) yet. Un-
fortunately it is undefinable by postcondition in DEL framework,
namely, by a function assigning each future(γ) a DEL formula.
To see this, first note that the truth value of future(γ) depends on
the protocol that agents are going to follow and it is not expressible
so far in our language. Moreover, even if we introduce protocol(π)
in the langauge to denote it, we still need infinite disjunctions:
Pos(eβ)(future(γ)) =

W
{protocol(π) | π\(β; γ) 6= δ}.

To go around this, we can restrict ourselves to the actions that
do not change the protocol, namely those α such that Pos(α) =
〈M0, . . . ,MI ,#〉. Clearly this will exclude exprot(π) defined
earlier. And then we can set Pos(eβ)(future(γ)) = > and ob-
tain the following result:

THEOREM 2. If A does not contain any “protocol changer”,
then for any φ ∈ LImpc−∗ for any consistent LImpc-state s:

s �τ φ⇔ ExpKτ (s), s DEL TDEL(φ).

4. APPLICATIONS

4.1 Common Knowledge
Before the case study of the telephone communication scenario

mentioned in the introduction, we first prove some general results
concerning common knowledge. As an appetizer, we show that
common knowledge cannot be reached if there is no channel con-
taining all agents (i.e. agents cannot communicate publicly).

We first prove that if the agents can perform any non-public ac-
tion and have not agreed on a special protocol, then there is al-
ways some “dummy” action that does not change anything about
the knowledge of the agents:

LEMMA 1. For any group of agents G, there is an action αGd
such that obs(αGd) = G and for any set of basic actions A con-
taining αGd , any state s such that G ∈ CC(s), and any formula ϕ
that does not contain any instances of past(ᾱ):

s �τ 〈exinfo(com(CC(s))); exprot((
[
α∈A

α)∗)〉(ϕ↔ 〈αGd 〉ϕ)

PROOF. Let π = exinfo(com(CC(s))); exprot((
S
α∈A α)∗)

and αGd = informi
G(>) for some i ∈ G. Let sJπKs′. We need to

show s′ �τ ϕ↔ 〈αGd 〉ϕ. The proof goes with induction on ϕ. The
nontrivial cases are:

• ϕ = future(α). Since the protocol is unchanged and clearly
(
S
α∈A α)∗\αGd = (

S
α∈A α)∗, the valuation of ϕ is un-

changed.
• ϕ = CG′ψ. Clearly, CG′ψ → 〈αGd 〉CG′ψ holds. For the

other direction: suppose s′ �τ ¬CG′ψ we need to show
s′ �τ ¬〈αGd 〉CGψ. Clearly there is some G′∗-path to a
state t where ¬ψ holds. Then since this connection exists
and the protocol and communication channel are common
knowledge, Prot(t′) = Prot(s′) and CC(t′) = CC(s′)
for any t′ on the path and also for t′ = t. Then by induction
hypothesis, t �τ 〈αGd 〉¬ψ. For every t′ on the path there is
a unique state ut′ such that t′JαGd Kut′ because the precon-
ditions of αGd hold. The links on the path from s′ and t are
preserved in a path from us′ to ut, because we performed the
same action at all worlds in the path. Since t �τ 〈αGd 〉¬ψ,
ut �τ ¬ψ. So then since there is a path from us′ to ut,
us′ �τ ¬CGψ and s′ �τ ¬〈αGd 〉CGψ.

THEOREM 3. For any n ∈ N, any formula ϕ containing no
instances of past(ᾱ), any state s such that I 6∈ CC(s) and any set

of basic actions A containing only communications respecting the
channels such that for every group G ∈ CC(s) there is a dummy
action αGd ∈ A,

s �τ 〈exinfo(com(CC(s))); exprot((
[
α∈A

α)∗)〉(¬CIϕ→ ¬〈〉≤nCIϕ)

PROOF. Suppose there was a minimal n such that the property
would hold. Then there is a sequence of actions ᾱ of length n such
that after executing ᾱ, ϕ is common knowledge. Let ᾱ = β̄;α
and G = obs(α) and j 6∈ G some outsider. Such j always exists
because I 6∈ CC(s). Since n was minimal, after execution of
β̄ there is no common knowledge of ϕ. Suppose we would after
execution of β̄, instead of α, execute αGd . By the previous lemma
after this there would be no common knowledge of ϕ. Agent j
observes a τ when α is executed, but he would also observe a τ if
αGd was executed. So agent j can never know whether α or αGd was
executed and he can never know whether common knowledge was
established. So there can never be common knowledge of ϕ.

Note that although we may have dummy actions, we cannot re-
duce τ -semantics to asyn-semantics, with past(ᾱ) in the language
e.g s �τ 〈αGd 〉Ki¬past(α;β) but s �asyn 〈αGd 〉¬Ki¬past(α;β)
where i 6∈ G∪obs(α)∪obs(β). In fact, if we use asyn-semantics,
we can prove a more general result:

THEOREM 4. For any n ∈ N, for any state s with I 6∈ CC(s),
any protocol π containing only communications that respect the
channel and any ϕ ∈ LImpc:

s �asyn 〈exinfo(com(CC(s))); exprot(π)〉(¬CIϕ→ ¬〈〉≤nCIϕ)

PROOF. Suppose the opposite. Let n be the minimal such num-
ber. Then there is some sequence ᾱ of length n such that after
the execution of ᾱ, ϕ is common knowledge. Define α and β̄ as
ᾱ = β̄;α. Let G = obs(α) and j 6∈ G some outsider. Since n was
minimal, common knowledge of ϕ does not hold before αwas exe-
cuted. But j gets no information on the moment αwas executed, so
j can never know whether α was executed and common knowledge
was reached. So common knowledge can never be reached.

So if the communication is asynchronous in the sense that agents
who do not participate in the communication are unaware that any
communication is going on, then even if the agents can publicly
agree on a protocol beforehand they still cannot reach common
knowledge. On the other hand, in the synchronous case (τ -semantics),
if we publicly announce the protocol then agents may know what
is going on and moreover whether a star-free protocol is finished
by counting the steps. In that case common knowledge may be
achieved.

4.2 Telephone Calls
Let us recall the scenario: a group of people each know a secret

and they can make telephone calls between every two people in or-
der to communicate all their secrets. We want to know the minimal
number of telephone calls needed to make sure everyone knows all
secrets. Before modeling this particular situation, we first propose
a general modeling method based on our semantics and actions we
defined in Section 2.3:

1. Select a set of suitable actions A to model the communica-
tions in the scenario.

2. Build a single state as the real world to model the initial set-
ting. i.e. s = 〈net, M̄i, ε, M̄i, (ΣA)∗〉 where net is the
network, M̄i models “who has what” and (ΣA)∗ restricts
the actions agents can use.

3. Translate the informal assumptions of the scenario into for-
mulas or protocols in LImpc.

4. Use exinfo(φ) exprot(π) to make the above assumptions
common knowledge.

Now we are ready to model the telephone call scenario. We al-
ready defined call iG(MI) and mail iG(MI) in Section 2.3 as a con-
ference call or mail to a group G, sharing all messages the group
has. Here the call between two people is just a special case, thus
we complete the first step. Let MI = {m0, . . .m|I|}, network
nettelI = {{i, j} | i 6= j ∈ I}. Here mi is the secret of agent i.
Then the initial state is:

stelI = 〈nettelI , {m0} . . . {m|I|}, ε, {m0} . . . {m|I|}, π〉

where π := (
S
G∈nettel A)∗ is the protocol the agents follow and

expresses that the agents can only make one on one telephone calls,
sharing all their messages. As we can see, in the initial situation
each agent only knows his own secret. We use some abbreviations
for facts we need to express:

OneSecEachI :=
V
i∈I(hasimi ∧

V
j 6=i ¬hasjmi)

HasAllI :=
V
i∈I hasiMI

TP:=exinfo(com(nettelI) ∧ OneSecEachI)
TPA:=TP; exprot((

S
α∈A α)∗)

OneSecEachI translates the assumption that “all agents know
one secret not known to the other agents”. HasAllI expresses
that all agents know all secrets, as the goal we want to achieve. It
is easy to see that:

stelI �x 〈exinfo(OneSecEachI)〉CI
^

i6=j∈I

Knowi∃hasjmj

so after a public announcement that each agent has one secret, it is
common knowledge that every agent knows that every other agent
j has a secret mj , and also that the agents except j do not have this
secret. However,

stelI 2x 〈exinfo(OneSecEachI)〉
_

i6=j∈I

∃Knowihasjmj

so after this same public announcement there is not one agent who
knows the secret of another agent. These results hold for any x ∈
Sem. In our framework, we use public announcements to set the
communication channel and protocol. TP summarizes the announce-
ments needed for the starting situation of the telephone puzzle with-
out the protocol and TPA adds the information that the agents can
use the actions from A. We use call,mail,inform to denote the sets
of actions with the corresponding types.

Then the following result states that we need exactly 2|I| − 4
calls to make sure every agent knows all secrets:

PROPOSITION 5. For any x ∈ Sem:

stelI �x 〈TPcall〉〈〉min(2|I|−4)HasAllI

A proof of this proposition is given in [10]. The protocol given
there is the following: pick a group of four agents 1 ... 4 and let
4 be their informant. Let all other agents call agent 4, then let the
four agents communicate all their secrets within their group and let
all other agents call agent 4 again. In our framework we can express
this as follows: call45(MI); ...; call

4
|I|(MI); call

1
2(MI); call

3
4(MI);

call13(MI); call
2
4(MI); call

4
5(MI); ...; call

4
|I|(MI)

Now assume the agents cannot make direct telephone calls, but
they can only leave voicemail messages. This means that any agent
can tell the secrets he knows to another agent, but he cannot in the

same call also learn the secrets the other agent knows. How many
voicemail messages would we need in this case?

Intuitively we can use mail ij(MI); mail ji (MI) to mimic each
call ij(MI), thus we have:

stelI �x 〈TPmail〉〈〉≤4|I|−4HasAllI .

However, we can do much better:

PROPOSITION 6. For any x ∈ Sem:

stelI �x 〈TPmail〉〈〉min(2|I|−2)HasAllI

PROOF. Consider the following protocol: mail12(MI);

mail23(MI); ...; mail
|I|−1

|I| (MI); mail
|I|
1 (MI); mail

|I|
2 (MI); ...;

mail
|I|
|I|−1(MI). Clearly, this results in all agents knowing all se-

crets. The length of this protocol is 2|I| − 2. This protocol is min-
imal. To see why this holds, first observe that there has to be one
agent who is the first to learn all secrets. For this agent to exist all
other agents will first have to make at least one call to reveal their
secret to someone else. This is already |I| − 1 calls. The moment
that agent learns all secrets, since he is the first, all other agents do
not know all secrets. So each of them has to receive at least one
more call in order to learn all secrets. This also takes |I| − 1 calls
which brings the total number of calls to 2|I| − 2.

Note that to obtain the above results, we did not use the full
power of our framework, since the agents can only communicate
the content of their messages and not about higher-order knowl-
edge. In the following, we will study whether we can reach com-
mon knowledge of HasAllI under τ−semantics. We give the
agents more power by allowing them to communicate not only mes-
sages but arbitrary formulas of the language in one-on-one calls by
doing an inform action. Even in this case, we can never reach
common knowledge of all messages:

PROPOSITION 7. For any n ∈ N, if |I| > 2 then:

sI 2τ 〈TPcall,inform〉〈〉≤nCIHasAllI
PROOF. Follows from Theorem 3.

However, we can approach common knowledge arbitrarily close.
For any finite sequence of agents w = ij...k define:

Kwϕ := KiKj ...Kkϕ

PROPOSITION 8. For any finite sequence w of agents from I ,
there exists some n ∈ N such that:

sI �τ 〈TPcall,inform〉〈〉≤nKwHasAllI

PROOF. We will give a protocol that results in the desired prop-
erty. First we execute the protocol given in the proof of Propo-
sition 6. Note that after executing this protocol, agent |I| knows
that everyone knows all secrets. Let w = a1...an. We execute
inform |I|an(HasAllI); inform |I|an−1

(KanHasAllI);

...; inform |I|a1 (K2...KanHasAllI) and clearly, after these actions
the desired property will hold.

Surprisingly, if we do not give the agents the extra power of com-
municating arbitrary formulas then in the case that |I| = 3 we can
reach common knowledge. In our τ -semantics, when two agents
call each other the third one will know something happened be-
cause he observes a τ action. This is a bit like trying to use a
telephone line and getting a busy tone: you know some communi-
cation is going on, but you don’t know between which agents it is.

If there are only three agents and it is common knowledge that the
only possible communicative action is calling, then the third agent
knows the other two are calling each other. This gives the following
result:

PROPOSITION 9. If |I| ≤ 3 then for some n ∈ N:

sI �τ 〈TPcall〉〈〉≤nCIHasAllI
PROOF. For |I| < 3 the proof is trivial. Suppose |I| = 3, say

I = {1, 2, 3}. A protocol that results in the desired property is
as follows. First, execute call12(MI), call23(MI) and call21(MI).
Now all agents know all secrets, and agent 2 knows this. Also, since
agent 1 learned the secret of agent 3 from agent 2, he knows that
agent 2 and 3 must have communicated after the last time he spoke
to agent 2, so agent 3 must know the secret of agent 1. Regarding
agent 3, he knows agent 2 has all secrets the moment he communi-
cated with agent 2, and he observed a τ when agent 2 called agent
1 after that. Since there are only three agents agent 3 can deduce
that agent 1 and 2 communicated so he knows agent 1 knows all
secrets. Since all agents can reason about each others knowledge it
is common knowledge that all agents have all secrets.

Now imagine a situation where the agents are allowed to pub-
licly announce a protocol they are going to follow, which is more
complex than just the set of actions they can choose from. Then, in
our τ -semantics, it is possible to reach common knowledge:

PROPOSITION 10. There is a protocol π of call actions such
that

sI �τ 〈TP; exprot(π)〉〈〉≤nCIHasAllI
PROOF. Let π be the protocol given in the proof of proposition

5. Let the agents agree to execute π with an exprot(π) action and
then execute π. Since each agent receives a τ at every commu-
nicative actions, they can all count the number of communicative
actions that have been executed and they all know when the pro-
tocol has been executed. So at that moment, it will be common
knowledge that everyone has all secrets.

This shows the use of the ability to communicate about the future
protocol and not only about the past and present. There are many
more situations where announcing the protocol is very important,
for example the puzzle of 100 prisoners and a light bulb [6] or many
situations in distributed computing.

However, when we use asyn-semantics, the agents cannot count
the number of communicative actions happening and so they can
never know when the protocol has been executed. Because of this
they can never reach common knowledge:

PROPOSITION 11. There is no protocol π of call and inform
actions such that

sI �asyn 〈TP; exprot(π)〉〈〉≤ncall,informCIHasAllI

PROOF. Follows from Theorem 4.

These results show the way we can use our framework to model
a lot of different situations, often with surprising outcomes.

5. CONCLUSIONS AND FUTURE WORK
We developed an expressive dynamic epistemic logic tailored to

specify and reason about the information flow over communica-
tion channels, and we proposed an intuitive lightweight modeling
method for multi-agent communications scenarios. The logic and
the modeling method were put to use in the telephone call example.

Our framework is very flexible in modeling different observa-
tional power of agents and various communication actions. For
example, we can define the communication action in [11] : “i gets
j’s information without j noticing that” as α = download ij(M)
with obs(α) = i, Pre(α) = com({i, j}) ∧ hasjM and a suitable
postcondition adding messages to i’s information set8. Therefore
our framework can facilitate the comparison among different ap-
proaches with different assumptions. The table below summarizes
the setting of our framework comparing to others:

Ref Actions Information flow Obs. Power
[15] inform propositions ≡τ
[11] download Boolean atomic propositions ≡τ
[2] inform positive atomic propositions ≡set
Our work by design messages or propositions by design

We end with a list of further issues to be explored:

Theoretical Issues Many theoretical issues are left for future
work e.g. the model checking and satisfiability problem of (the
fragments of) LImpc w.r.t different x-semantics; the expressivity of
LImpc comparing to various fixed point logics. Another interest-
ing issue is the logical characterization of the observational equiv-
alences defined in our work.

Network In this work, we take as networks the hyper graphs
of [2], thus assuming the communication channels to be symmetric.
More constrained network definitions with asymmetric channels
are also possible. Moreover, different social networks/organizations
may have different properties, e.g. the network of a group of gos-
siping girls is usually connected and transtive9 while the network
for a secret society is usually not transitive due to the hierarchy and
secrecy. Thus leaking a secret to your closest girl friend may cause
it to be a shared knowledge among all the girls on the next day, but
gossiping about your boss with the juniors under your supervision
might be safe in a secret society.

Actions There are other useful actions that we did not cover in
the paper. For example, we have assumed that message passing
actions are always monotonic but there are cases when deleting
messages from memory or buffer is natrual. Another assumption is
that the agents either clearly observe an action or observe nothing
at all. This excludes the modeling of actions which may give some
agents partial observations e.g. BCC in email. [15] also mentioned
the possibility of changing the channels, e.g. deleting people from
your Christmas card sending list if they did not a reply card last
year. Such actions could be handled within our framework with
little adaption.

Protocol We use regular expressions without tests to specify se-
quential protocols. We leave out tests since the observation of a test
is not clear, unless grouped with follow-up actions. It seems that
this is expressive enough for many useful applications. In the more
general setting, we would like to have parallel composition in the
protocol language and model the protocol by composing local pro-
tocols for each agent. We may also link our work to [17, 9], where
the “protocol” is considered as a set of sequences explicitly.

Knowledge Transfer Our framework paves a way to discuss
message passing and knowledge transfer over communication chan-
nels at the same time, thus maybe applicable to a security setting
where information flows should be controlled strictly complying
certain knowledge requirements. The distinction of de dicto and de
re reading of knowledge may help us to formalize zero knowledge
proofs.
8[11] phrases such download action with propositions but not
messages.
9In the sense that if girl A can call girl B and girl B can call girl C
then A is in touch with C.

6. REFERENCES
[1] T. Agotnes, P. Balbiani, H. van Ditmarsch, and P. Seban. Group

announcement logic. To appear in Journal of Applied Logic.
[2] K. R. Apt, A. Witzel, and J. A. Zvesper. Common knowledge in

interaction structures. In A. Heifetz, editor, TARK, pages 4–13, 2009.
[3] A. Baltag, L. S. Moss, and S. Solecki. The logic of public

announcements, common knowledge, and private suspicions.
Technical Report SEN-R9922, CWI, Amsterdam, 1999.

[4] A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-based
modelling of voting protocols. In TARK ’07: Proceedings of the 11th
conference on Theoretical aspects of rationality and knowledge,
pages 62–71, New York, NY, USA, 2007. ACM.

[5] M. Cohen and M. Dam. A complete axiomatization of knowledge
and cryptography. In LICS, pages 77–88. IEEE Computer Society,
2007.

[6] P. O. Dehaye, D. Ford, and H. Segerman. One hundred prisoners and
a light bulb. Mathematical Intelligencer, 24(4):53–61, 2003.

[7] R. Fagin, J. Y. Halpern, M. Y. Vardi, and Y. Moses. Reasoning about
knowledge. MIT Press, Cambridge, MA, USA, 1995.

[8] J. Gerbrandy and W. Groeneveld. Reasoning about information
change. Journal of Logic, Language and Information, 6(2):147–169,
April 1997.

[9] T. Hoshi and A. Yap. Dynamic epistemic logic with branching
temporal structures. Synthese, 169(2):259–281, July 2009.

[10] C. A. J. Hurkens. Spreading gossip efficiently. Nieuw Archief voor
Wiskunde, 5/1(2):208–210, 2000.

[11] E. Pacuit and R. Parikh. Reasoning about communication graphs. In
J. van Benthem, D. Gabbay, and B. Löwe, editors, Interactive Logic
— Proceedings of the 7th Augustus de Morgan Workshop, Texts in
Logic and Games, pages 135–157, Amsterdam, 2007.

[12] R. Parikh and R. Ramanujam. Distributed processes and the logic of
knowledge. In Proceedings of the Conference on Logic of Programs,
pages 256–268, London, UK, 1985. Springer-Verlag.

[13] R. Parikh and R. Ramanujam. A knowledge based semantics of
messages. Journal of Logic, Language and Information, 12(4), 2003.

[14] R. Ramanujam and S. P. Suresh. Deciding knowledge properties of
security protocols. In Proc. Theoretical Aspects of Rationality and
Knowledge, pages 219–235. Morgan Kaufmann, 2005.

[15] F. Roelofsen. Exploring logical perspectives on dis- tributed
information and its dynamics. Master’s thesis, University of
Amsterdam, 2005.

[16] J. van Benthem. ‘one is a lonely number’: on the logic of
communication. In Z. Chatzidakis, P. Koepke, and W. Pohlers,
editors, Logic Colloquium ’02, pages 96–129, Wellesley MA, 2002.
ASL & A.K. Peters.

[17] J. van Benthem, J. Gerbrandy, and E. Pacuit. Merging frameworks
for interaction: Del and etl. In TARK ’07: Proceedings of the 11th
conference on Theoretical aspects of rationality and knowledge,
pages 72–81, New York, NY, USA, 2007. ACM.

[18] J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication
and change. Information and Computation, 204(11):1620–1662,
November 2006.

[19] H. van Ditmarsch. The russian cards problem. Studia Logica, pages
31–62, October 2003.

[20] H. van Ditmarsch and B. Kooi. Semantic results for ontic and
epistemic change. In G. Bonanno, W. van der Hoek, and
M. Wooldridge, editors, Logic and the Foundations of Game and
Decision Theory (LOFT 7), pages 87–117, October 2008.

[21] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic
Logic. (Synthese Library). Springer, 1st edition, November 2007.

[22] Y. Wang, L. Kuppusamy, and J. van Eijck. Verifying epistemic
protocols under common knowledge. In TARK ’09: Proceedings of
the 12th Conference on Theoretical Aspects of Rationality and
Knowledge, pages 257–266, New York, NY, USA, 2009. ACM.

