
A Discrete Tomography Approach to

Japanese Puzzles

K.J. Batenburg a W.A. Kosters b

a Mathematical Institute, Universiteit Leiden, The Netherlands

and CWI, Amsterdam, The Netherlands, kbatenbu@cwi.nl
b Leiden Institute of Advanced Computer Science,

Universiteit Leiden, The Netherlands, kosters@liacs.nl

Abstract

Discrete Tomography (DT) is concerned with the reconstruction of binary
images from their horizontal and vertical projections. In this paper we con-
sider an evolutionary algorithm for computing such reconstructions. We show
that the famous Japanese puzzles are a special case of a more general DT
problem and successfully apply our algorithm to such puzzles.

1 Introduction

Discrete Tomography (DT) is concerned with the reconstruction of a discrete image
from its projections. One of the key problems is the reconstruction of a binary
(black-and-white) image from only two projections, horizontal and vertical (see
Figure 1): for every row and column the number of black pixels is known. In
1957 Ryser [4] presented a polynomial time algorithm for finding a reconstruction
— in fact, he characterized even all of them. However, the problem is usually

2 3 2 3 4 6 4 1

2

3

4

6

5

4

1

Figure 1: A binary image with its horizontal and vertical projections.

highly underdetermined and a large number of solutions may exist. In order to
compute meaningful reconstructions, all available a priori information about the
image (besides the projections, that can be considered as hard constraints) has to
be taken into account. Suppose that we are able to define an evaluation function,
which assigns a value to each of the solutions, reflecting how good a particular
solution is in our context. An algorithm that maximizes the evaluation over the



set of all solutions will then yield the most desirable solution. The first author has
described such an algorithm in [1] and demonstrated that it works well for several
types of evaluation functions.
Japanese puzzles, also known as nonograms, are a form of logic drawing : the puzzler
gradually makes a drawing on a grid, by means of logical reasoning. This task
can be mimicked by using techniques from Artificial Intelligence. The solution is
usually unique. Japanese puzzles are very popular in the Netherlands nowadays
and are sold at every newspaper-stand.

12

1 21 1 1 1

2 1 1 1 1 1

2 1 1 1 1

1 1 1 1 2

1 1

3 2

1 2 1

3

1 2 3

3 2 3

3 2 3

3 2

3 4

6

8

12

4

3

5

1

1

3

4

1

2

1

1

2

1

1

1

1

3

2

1

2

4

1

1

1

9

2

1

1

8

1

1

1

1

4

2

1

2

3

1

1

2

2

2

2

1

3

4

1 5 4

12

1 21 1 1 1

2 1 1 1 1 1

2 1 1 1 1

1 1 1 1 2

1 1

3 2

1 2 1

3

1 2 3

3 2 3

3 2 3

3 2

3 4

6

8

12

4

3

5

1

1

3

4

1

2

1

1

2

1

1

1

1

3

2

1

2

4

1

1

1

9

2

1

1

8

1

1

1

1

4

2

1

2

3

1

1

2

2

2

2

1

3

4

1 5 4

Figure 2: Left: an image and its line descriptions. Right: the corresponding
Japanese puzzle.

Similar to the two-projection DT problem, the puzzler is provided with information
about the horizontal and vertical arrangement of the black pixels along every line.
Figure 2 shows an image and its corresponding horizontal and vertical description.
For each line, the description indicates the sizes of the segments of consecutive
black pixels, in the order in which they appear on the line. Summation of these sizes
brings us back to the original DT problem. The problem of solving Japanese puzzles
is NP-complete; several complexity results concerning Japanese puzzles, e.g., on
uniqueness, were derived in [5]. Surprisingly, by choosing a suitable evaluation
function, the evolutionary algorithm for discrete tomography can also be used to
solve Japanese puzzles.
In the next section we will give a short description of the evolutionary algorithm.
We refer to the original paper for further details. Subsequently, we show how this
algorithm can be applied to Japanese puzzles.

2 Algorithm overview

We have designed a problem-specific evolutionary algorithm (cf. [3]) for solving DT
problems when an evaluation function is given. The algorithm optimizes exclusively
over the set of all images that satisfy the prescribed projections. At the end of
each generation all candidate solutions have the prescribed horizontal and vertical
projections. This requires a suitable crossover operator, that is not only capable of
mixing features from both parents, but also of ensuring that the produced children



generate initial population P0 of size λ, consisting of matrices in A(R, S);

perform a hillclimb operation on each image in P0;

t := 0;

while (stop criterion is not met) do

begin

P ′

t = ∅;

for i := 1 to µ do

begin

generate a child image C, by crossover or mutation;

perform a hillclimb operation on C;

P ′

t := P ′

t ∪ {C};

end;

select new population Pt+1 from Pt ∪ P ′

t ;

t := t + 1;

end

output the best individual found;

Figure 3: Outline of the evolutionary algorithm.

adhere to the prescribed projections. Similar requirements apply to the mutation
operator.
Our algorithm is a memetic algorithm (see [2] for another view on this approach):
after every crossover or mutation operation a stochastic hillclimb is performed
until the solution has reached a local optimum. In this way, individuals always
represent local optima in the search space.
Let m,n be the image height and width and R,S be vectors that contain the
prescribed row and column projections. We denote the class of all images that have
these projections by A(R,S). Figure 3 summarizes our algorithm. The parameters
λ and µ are the population size and the number of children that are created in
each generation, respectively.
An important operation often used in our algorithm is the computation of an image
X = (xij) ∈ A(R,S), given R and S: the hard constraints have to be satisfied. We
use a network flow approach for computing these matrices. First, we construct a
directed graph N . The set V of nodes consists of a source node T1, a sink node
T2, one layer V1, . . . , Vm of nodes that correspond to the image rows (row nodes)
and one layer W1, . . . ,Wn of nodes that correspond to the image columns (column

nodes). Figure 4 shows the topology of the graph in case of a simple example. We
refer to the top layer of arcs as row arcs and to the bottom layer as column arcs.
Every arc in the middle layer corresponds to an entry (cell) of X, so we refer to
these arcs as cell arcs. We assign a capacity to each of the arcs: every row arc is
assigned the corresponding row projection, every column arc the corresponding
column projection and every cell arc is assigned a capacity of 1. It is not difficult
to see that a maximum integral flow from T1 to T2 in N corresponds directly to
a solution of the tomography problem: set xij = 1 if arc (Vi,Wj) carries a flow
of 1 and set it to 0 otherwise. Moreover, by assigning an additional set of costs



1 1 0

0 1 0

1 0 1

2

1

2

2 2 1

1 1 1 1 1 11 1 1

2 1 2

2 2 1

V3V2V1

W1 W2 W3

row arcs

row nodes

column nodes

cell arcs

column arcs

T2

1T

Figure 4: A 3 × 3 image instance and its corresponding network flow

to the cell arcs, and solving a min-cost max-flow problem in N , it is possible to
express a preference among the solutions of the max-flow problem. In particular,
for a given image M , we can compute in this way the matrix X ∈ A(R,S) which
has the same value as M in as many cells as possible. We refer to [1] for the details
of this procedure.
The crossover operator is one of the main parts of our algorithm. The input of
the operator consists of two parent images. The output is a child image, which
has certain features from both parents. Because all matrices in the population are
members of A(R,S), the resulting image should have the prescribed projections.
First, a crossover mask Y = (yij) ∈ {0, 1}m×n is computed, which determines for
each pixel from which parent image it is copied. The value 0 means that the child
image inherits from the first parent, 1 means that the second parent is used. The
mask generation procedure is designed so that it assigns around half the pixels to
each parent and so that it assigns large connected areas to each parent. In this
way, local features in the parent images are often inherited as a whole by the child
image.
From the crossover mask and both parent matrices P = (pij) and Q = (qij), a
model image M = (mij) is computed, as follows:

mij =

{

pij if xij = 0
qij if xij = 1

Subsequently, we again use the weighted network flow model to construct a child
image C, which has the same value as M in as many entries as possible. This will
result in a child image that is in A(R,S), resembles the first parent in a certain
part and resembles the other parent in the rest of the image. Figure 5 shows two
parent matrices (having the same projections), a crossover mask, the corresponding
model image and the resulting child image. In this example, we use the number of
neighbouring pairs of black pixels as the evaluation function. Although the child
image resembles both parents in their corresponding parts, it is clear that the
child image is far from a local optimum with respect to the evaluation function.



To ensure that the child image has sufficient quality, we apply a local hillclimb
operator after the crossover operation. Figure 6 show the basic principle of the
hillclimb operator. Pairs of black and white entries are swapped as long as it is
possible to improve the evaluation function in this way.
The mutation operator uses similar principles. First, a mutation mask is generated
which determines a small part of the image that will be distorted. By using the
network flow method and subsequent hillclimbing a child image is generated that
adheres to the prescribed projections.

a. first parent b. second parent

second parent

first parent

c. crossover mask

d. model image e. child image f. after hillclimb

Figure 5: The crossover operator combines two parent matrices into a child image.

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
������������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Figure 6: Swapping pairs of black and white pixels in the indicated way does not
change the projections.

3 Solving Japanese puzzles

We now turn to the problem of solving Japanese puzzles. As summation of the
segment sizes of a line yields the total number of black pixels on that line, Japanese
puzzles can be considered to be a special form of the DT problem, in which extra
a priori information is available.
We will construct an evaluation function which encapsulates all this extra infor-
mation. The evaluation function should reflect the deviation of a given image from
the horizontal and vertical descriptions. We consider this deviation separately for



each (horizontal or vertical) line. We can then obtain an evaluation function for the
whole image by summation of the deviations of all lines. The minimal deviation
possible, 0, should of course correspond to a solution of the puzzle.
We refer to the evaluation of a pixel line ` which has description s by ds(`). Ideally,
the function ds should make full use of all information available: the value of the
pixels on ` and the prescribed description s of `. Let (`1, `2, . . . , `k) be the pixel
values of ` (where k = n if ` is horizontal, k = m if ` is vertical). We call the
operation of changing the value of one pixel of ` a bitflip operation. We now define
ds(`) to be the minimal number of bitflip operations required to make ` conform
to s.
This definition of ds has several advantages. Firstly, it is a very intuitive way of
defining the “distance” between a given line of pixels and its prescribed description
and it uses all available information. If a line ` adheres to its description s, we have
ds(`) = 0, as desired. Secondly, ds has the property that performing a single bitflip
operation on `, yielding a line `′, can change the value of ds by no more than 1.
In a discrete sense, ds can be regarded as a fluent function of `.
Surprisingly, ds(`) can be computed quite efficiently by means of dynamic pro-

gramming. This is of course necessary since the algorithm requires many of these
computations. Suppose that the prescribed description s of ` consists of h seg-
ments of black pixels, (s1, . . . , sh). Without loss of generality, we may assume that
` starts and ends with a white pixel: adding white pixels at the beginning or end
of a line does not change its description.
We define a line segmentation ˆ̀= (ˆ̀1, . . . , ˆ̀

2h+1), corresponding to the number h

of black segments in s:

ˆ̀
i =

{

0 (white) if i is odd
1 (black) if i is even

1 3 4 1

Figure 7: A line description (top), the corresponding line segmentation (middle),
and an actual line that adheres to the description (bottom). The arrows indicate
the links between the line and the segmentation.

The entries of the line segmentation correspond to the alternating black and white
segments in the description (where we consider the white segments to be implicitly
present). Figure 7 shows a line description s, its corresponding line segmentation
ˆ̀ and a realisation of s, which is a line ` that adheres to s. The arrows indicate for
each pixel of ` to which entry of ˆ̀ it corresponds. If pixel i corresponds to entry j



of ˆ̀, we say that pixel i is linked to entry j of the line segmentation. We call the
corresponding mapping a link mapping.
If ` does not correspond to s, we can also link every pixel i consecutively to an
entry j of ˆ̀. In that case, however, there are pixels in ` that do not match the
colour of the entries of ˆ̀ to which they are linked. Some bitflip operation will have
to be applied to these pixels in order to make ` conform to ˆ̀, with the given links.
Valid link mappings must satisfy several requirements: consecutive pixels should
be linked either to the same entry of ˆ̀ or to consecutive entries of ˆ̀. The number
of pixels linked to each black entry ˆ̀

j must be sj/2. There must be at least one

pixel linked to each white entry of ˆ̀.
A valid partial link mapping from (`1, . . . , `i) to (ˆ̀1, . . . , ˆ̀

j) satisfies the same re-
quirements as a total valid link mapping. In addition, if pixel i is linked to a black
entry ˆ̀

j , the pixels (`i−sj/2+1, . . . , `i−1) should also be linked to entry j.
We now introduce δ(i, j) (for 1 ≤ i ≤ k, 1 ≤ j ≤ 2h + 1), the minimal num-
ber of bitflip operations, over all valid partial link mappings from (`1, . . . , `i) to

(ˆ̀1, . . . , ˆ̀
j), that has to be applied to ` in order to make it conform to the partial

link mapping (so that all pixels have the same colours as the entries to which they
are linked). We remark that δ(k, 2h+1) is the minimal number of bitflip operations
that is required to transform ` into a line that adheres to s. We can directly use it
as the evaluation function for our algorithm. Fortunately, δ(i, j) can be computed
efficiently by means of dynamic programming. For both the case that j is odd
and the case that j is even, it is possible to construct a recurrence relation which
computes δ(i, j) from other values δ(i′, j′) where always i′ < i. By using a nested
loop, which iterates over all pairs of (i, j) in the right order, each value δ(i, j) can
be computed from table-values that are already known.

Figure 8: Test images for the Japanese puzzle variant of the algorithm.

4 Results and Conclusions

We implemented the evaluation function and performed several test runs. We used
λ = 1000, µ = 500 for the experiments. Figure 8 shows the test images that we
used. The first two examples, of size 25 × 25, are from the Dutch “Puzzelsport”
series and are known to have a unique solution. We performed one test run for each



Figure 9: Reconstruction result for the second test image.

image. The first image was reconstructed perfectly on a Pentium IV at 2.4 GHz in
80 minutes after 15 generations of the algorithm. The second image proved to be
much harder: the algorithm converged to a local optimum. The resulting (incorrect)
reconstruction is shown in Figure 9. Note that the reconstruction is quite different
from the original image, yet it adheres to nearly all line descriptions.
Surprisingly, the third test image, a random 30×30 image (50% black), was recon-
structed perfectly in about 12 hours. Although the reconstruction process took a
long time to complete, this is still a very positive result, since random images are
very hard to reconstruct using only logic reasoning. Branching seems inevitable
for that type of image.
Future research includes a detailed analysis of the performance on puzzles of dif-
ferent difficulty levels and different types (e.g., more than two colours).
The fact that the evolutionary algorithm from [1] can also be used to solve Japanese
puzzles, which it was not specifically designed for, clearly demonstrates its versa-
tility.

References

[1] K.J. Batenburg. An evolutionary algorithm for discrete tomography. Discrete

Applied Mathematics (to appear), 2004.

[2] K.J. Batenburg and W.J. Palenstijn. A new exam timetabling algorithm. In
T. Heskes, P. Lucas, L. Vuurpijl, and W. Wiegerinck, editors, Proceedings of

BNAIC 2003, the Fifteenth Belgium-Netherlands Artificial Intelligence Con-

ference, Nijmegen, The Netherlands, pages 19–26, 2003.

[3] Z. Michalewicz. Genetic Programs + Data Structures = Evolution Programs.
Springer-Verlag, third edition, 1996.

[4] H.J. Ryser. Combinatorial properties of matrices of zeros and ones. Canadian

Journal of Mathematics, 9:371–377, 1957.

[5] N. Ueda and T. Nagao. NP-completeness results for nonogram via parsimo-
nious reductions. Technical Report TR96-0008, Department of Computer Sci-
ence, Tokyo Institute of Technology, 1996.


