
Optimal threshold selection for tomogram

segmentation by reprojection of the

reconstructed image

K.J. Batenburg1 and J. Sijbers1

University of Antwerp, Vision Lab, Universiteitsplein 1, B-2610 Wilrijk, Belgium

Abstract. Grey value thresholding is a segmentation technique com-
monly applied to tomographic image reconstructions. Many procedures
have been proposed to optimally select the grey value thresholds based on
the image histogram. In this paper, a new method is presented that uses
the tomographic projection data to determine optimal thresholds. The
experimental results for phantom images show that our method obtains
superior results compared to established histogram-based methods.

1 Introduction

Segmentation of tomographically reconstructed images (also called tomograms)
is a well known problem in computer vision. It refers to the classification of image
pixels into distinct classes that are characterized by a discrete set of grey values.
Amongst all segmentation techniques, image thresholding is the simplest, yet
often most effective segmentation method. Many algorithms have been proposed
for selecting “optimal” thresholds with respect to various optimality measures
[1]. Thresholds are typically selected from the histogram of the tomogram, such
that the distance between the tomogram and the segmented image is minimized.

To the authors’ knowledge, current segmentation techniques for tomographic
images are applied to tomograms only and do not exploit the available projec-
tion data but are rather based on the image histogram [2–4]. Specifically, the
tomogram histogram is often used as a basis for determining global thresholds
by, for example, fitting multiple gaussian distributions to the histogram [5] or
applying a k-means clustering algorithm to it [6]. More recent thresholding tech-
niques are based on a minimum variance criterion [7] or employ the variance and
intensity contrast [8]. In practice however, the image histogram often lacks clear
modes that would allow an intuitive selection of threshold values. Indeed, tomo-
grams may be polluted by artifacts that tend to smear out the image histogram.
Typical artifacts are streaking artifacts caused by highly absorbing object parts,
blurring caused by object motion during scanning (or equivalently caused by
small shifts of the detector during acquisition), bias fields, or artifacts caused
by a limited field of view and/or a missing wedge. Hence, although threshold
selection based on the image histogram can be made fully automatic, it lacks
robustness in case clear grey value modes are absent.
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This paper presents a new approach to segmentation, which uses the infor-
mation in the projection data instead of the histogram. Forward projections of
the tomogram are computed and compared to the measured projection data.
In the search for optimal thresholds, many computationally expensive forward
projections must be performed. An important contribution of the current paper
is the efficient implementation of the forward projection method, which makes
using the original projection data as a segmentation criterion feasible. The pro-
posed method does not suffer from subjectiveness of the user. Our simulation
experiments demonstrate that our method is robust and clearly outperforms
established histogram-based methods.

2 Grey level estimation

We restrict ourselves to the segmentation of a 2-dimensional image, which is
represented on a rectangular grid of width w and height h. Hence, the total
number of pixels is given by n = wh. The grey-scale image x ∈ R

n that we
want to segment is a tomographic reconstruction of some physical object, of
which projections were acquired using a tomographic scanner. Our method can
be used for any scanning geometry, e.g., parallel beam, fan beam and, in 3D,
cone beam. Projections are measured as sets of detector values for various angles,
rotating around the object. Let m denote the total number of measured detector
values (for all angles) and let p ∈ R

m denote the measured data. The physical
projection process in tomography can be modeled as a linear operator W that
maps the image x (representing the object) to the vector p of measured data:

Wx = p. (1)

For parallel projection data, the operator W is a discretized version of the well-
known Radon-transform. We represent W by an m×n matrix (wij). Note that for
each projection angle, every pixel i will only project onto a few detector pixels, so
the matrix W is very sparse. Exploiting this sparsity forms an essential part of
our method. The matrix representation of the projection operator is commonly
used in algebraic reconstruction algorithms. We refer to Chapter 7 of [9] for
details.

From this point on, we assume that an image x has been computed that
approximately satisfies Eq. (1). Our approach does not depend on the recon-
struction algorithm that was used to compute x, e.g., Filtered Backprojection
or ART. The image x now has to be segmented using global thresholding of
the grey levels. The main motivation of using thresholding in general, is that
pixels representing the same “material” in the scanned object should have ap-
proximately the same grey values in the tomogram. We rely strongly on the
assumption that the scanned object consists of only a few different materials,
which is true for all segmentation methods based on thresholding. Our segmen-
tation approach first assigns a real-valued grey level to each of the segmentation
classes. Using these grey levels, the projections of the segmented image are then
computed. The computed forward projections are compared to the measured
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projection data, which provides a measure for the quality of the segmentation
(along with the chosen grey levels). This quality measure can also be used for
other segmentation techniques than thresholding.

We first consider the problem of determining grey levels for each of the seg-
mentation classes of a segmented image. We can consider a segmentation of an
image into ℓ classes as a partition of the set of pixels, consisting of ℓ subsets. Let
S = {S1, . . . , Sℓ} be a partition of {1, . . . , n}. We label each set by its index t: St.
Each pixel j is contained in exactly one set St ⊂ S, denoted by s(j) ∈ {1, . . . , ℓ}.
To each set St, a grey level ρt ∈ R is assigned, which induces an assignment of
grey levels to the pixels 1 ≤ j ≤ n, where pixel j is assigned the grey level ρs(j).

Define rS(ρ) =
(

ρs(1) . . . ρs(n)

)T
. The vector rS(ρ) contains, for each pixel j,

the corresponding grey level of that pixel.
Our goal is to determine “optimal” grey values ρ for the given partition S.

The quality of a vector ρ is determined by computing the projections of the
segmented image, using the grey levels from ρ, and comparing the computed
projections to the measured projections p. More formally, we define the problem
of finding optimal grey values for a given partition as follows:

Problem 1. Let W ∈ R
m×n be a given projection matrix, let S = {S1, . . . , Sℓ}

be a partition of {1, . . . , n} and let p ∈ R
m be a vector of measured projection

data. Find ρ ∈ R
ℓ such that |WrS(ρ) − p|2 is minimal.

We will start by deriving the equations for solving Problem 1 for a fixed
partition S. Subsequently, we describe how the optimal set of grey values can be
re-computed efficiently, each time the partition S has been modified by moving a
single pixel from one class to another class. This fast update computation allows
us to design efficient algorithms that combine the search for a segmentation
S and the corresponding grey values ρ, such that the projection distance is
minimal.

Define A = (ait) ∈ R
m×ℓ by

ait =
∑

j: s(j)=t

wij . (2)

The value ait equals the total area of pixels from the set St that contribute to
detector value i. We denote the row vectors of A by ai = A·t. Clearly, we have

[WrS(ρ)]i =

ℓ
∑

t=1

aitρt. (3)

Define the projection difference d ∈ R
m by d = WrS(ρ) − p = Aρ − p. Put

ci = −2piai, Qi = aiai
T . Define the squared total projection difference by

|d|2 = |Aρ − p|2 =

m
∑

i=1

(ai
T ρ − pi)

2 =

m
∑

i=1

(ci
T ρ + ρT Qiρ + p2

i ). (4)
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Define c̄ =
∑m

i=1 ci, Q̄ =
∑m

i=1 Qi. Thus |d|2 = |p|2 + c̄T ρ + ρT Q̄ρ.
Note that each of the terms ci and Qi only depend on ai and pi, not on ρ.

A vector ρ that minimizes the projection difference |d| can now be computed
by setting the derivatives of |d|2 with respect to ρ1, . . . , ρℓ to 0, obtaining the
system 2Q̄ρ = −c̄, and solving for ρ.

So far, we have assumed that the partition S was fixed. Suppose that we have
computed c̄ and Q̄ for the partition S. We now change S into a new partition
S′, by changing s(j) for a single pixel j.

The only rows of A that are affected by this transition are the rows i for which
wij 6= 0. This means that the new vector c̄′ and matrix Q̄′ can be computed by
the following updates:

c̄′ = c̄ +
∑

i:wij 6=0

(ci
′ − ci) (5)

and
Q̄′ = Q̄ +

∑

i:wij 6=0

(Q′
i − Qi). (6)

The fact that c̄′ and Q̄′ can be computed by applying updates for only a
few of the terms ci and Qi respectively, means that the optimal grey values
for the entire image can be recomputed efficiently. This property allows us to
develop algorithms for simultaneous segmentation and grey level estimation. Any
segmentation algorithm that moves pixels from one class into another class, one
at a time, can efficiently keep track of the optimal grey levels. In the next section
we demonstrate this approach for a simple thresholding algorithm, finding both
the optimal thresholds and grey values in a single pass.

3 Thresholding with simultaneous grey level estimation

The concepts in the previous section apply to any partition S of the pixels. We
will now restrict ourselves to a specific type of partitions, that are induced by a
thresholding scheme. Our starting point is a grey level image x ∈ R

n, that has
been computed by any continuous tomographic reconstruction algorithm, e.g.,
Filtered Back Projection. The image x now needs to be segmented by means of
thresholding, using a fixed number of ℓ classes for the pixels.

Every pixel i is assigned a class according to a thresholding scheme using
thresholds τ1 < τ2 < . . . < τℓ−1. Put τ = (τ1 . . . τℓ−1)

T . Define the threshold

function by

s(i, τ ) =















1 (xi < τ1)
2 (τ1 ≤ xi < τ2)
. . .
ℓ (τℓ−1 ≤ xi)

. (7)

The threshold function induces a partition Sτ of the set {1, . . . , n}. Define

r(τ , ρ) =
(

ρs(1,τ ) . . . ρs(n,τ)

)T
.
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Similar to Section 2, we define the quality of a set of thresholds τ and grey
values ρ as the total squared projection distance for the corresponding segmen-
tation. We now consider the problem of simultaneously finding thresholds and
grey values, such that the total squared projection difference is minimal:

Problem 2. Let W ∈ R
m×n be a given projection matrix, let x ∈ R

n be a
grey scale image and let p ∈ R

m be a vector of measured projection data. Find
τ ∈ R

ℓ−1 with τ1 < . . . < τℓ−1 and ρ ∈ R
ℓ, such that |Wr(τ , ρ)−p|2 is minimal.

The simplest case of Problem 2 occurs when the image x is segmented into
two classes, using a single threshold τ . In that case, an exhaustive search over all
possible thresholds can be performed efficiently: first, a list of all pixels is com-
puted, sorted in ascending order of grey level in the continuous reconstruction
x. The start segmentation is formed by setting the threshold τ at infinity, so
all pixels will be in the segmentation class S1. The threshold τ is now gradually
decreased, each time moving pixels from S1 to S2. By using the update operation
from Section 2, it is possible to keep track of the optimal grey values and the
projection difference by applying only small update steps. Figure 1 shows the
steps of the segmentation algorithm. For each pixel j, the time complexity of
the update computation is O(u(j)ℓ2), where u(j) = #{i : wij 6= 0}. Each pixel
is moved from S1 to S2 only once. Therefore, the total time complexity of the
algorithm is O(Uℓ2), where U denotes the total number of nonzero elements in
the projection matrix W .

Make a list L containing all elements j ∈ {1, . . . , n}, sorted in ascending order of xj ;

τ := ∞; S1 := {1, . . . , n}; S2 := ∅;

For i = 1, . . . , m: ai1 :=
Pm

j=1 wij ; ai2 := 0; compute ci and Qi ;

Compute c̄ and Q̄;

S1 := ∅; S2 = {1, . . . , n}; k := n + 1;

while k > 1 do

begin

k := k − 1; τ := xL(k);
while (k ≥ 1) and (xL(k) = τ ) do

begin

k := k − 1; j := L(k); S1 := S1 − {j}; S2 := S2 ∪ {j};
for each i such that wij 6= 0: update ci , Qi , c̄ and Q̄;

end

Compute the minimizer ρ of |d|2 = |p|2 + c̄T ρ + ρT Q̄ρ;

if (d < dopt) then

dopt := d; ρopt := ρ; τopt := τ ;

end

Fig. 1. basic steps of the algorithm for solving Problem 2 in the case ℓ = 2.
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3.1 More than two grey levels

If there are more than two segmentation classes, it is usually not possible to
compute the total squared projection error for each possible set of candidate
thresholds, due to the vast number of candidates. However, using the update
operation from Section 2, it is possible to compute a local minimum of the
projection error in reasonable time. A simple algorithm for this case is the fol-
lowing: first, determine initial thresholds τ , possibly using another automated
procedure, such as fitting Gaussian functions to the histogram. Next, compute
A, Q̄ and c̄. In an iteratively loop, compute for each threshold the effect of a
small increase and a small decrease of that threshold on the total projection
error. Among all these possible steps, select the one that results in the largest
decrease of the total projection error. The algorithm terminates if no step can
be found that decreases the total error. The initial estimate τ 0 can be computed
using another automated procedure, such as fitting Gaussian functions to the
histogram.

4 Results and discussion

In order to validate our proposed threshold selection method, simulation exper-
iments were set up. For this purpose, three phantom images of size 512×512
were constructed: a binary vessel image representing a vessel tree, a binary fe-

mur image, and a grey valued mouse leg image (see Fig 2). From these images,
CT projections were simulated as follows. First, the Radon transform of the im-
ages was computed, resulting in a sinogram for which each data point represents
the line integral of attenuation coefficients. Then, (noiseless) CT projection data
were generated where a mono-energetic X-ray beam was assumed. The projec-
tions were then polluted with Poisson distributed noise where the number of
photons per detector element was varied from 5× 102 − 5× 104. Next, the noisy
sinogram of the attenuation coefficients was obtained by dividing the CT pro-
jection data by the maximum intensity and computing the negative logarithm.
Finally, the simulated, noisy CT reconstructions were obtained by applying a
SIRT algorithm. For each case, 10 independent noisy sinograms were generated.
We refer to [9] for further details on image formation in CT and on the SIRT
algorithm.

The proposed tomogram thresholding technique was then compared to com-
monly applied thresholding methods [10]. First, a parametric optimal thresh-
olding technique was implemented where the image histogram was fitted to a
mixture probability density function (two gaussian functions) from which an
optimal threshold was derived [5]. Next, the commonly used iterative threshold
selection scheme of Otsu was implemented [6]. This is also the default threshold-
ing method used in Matlab. As a final method, k-means clustering was applied
to the image histogram.

For each simulated reconstruction, global thresholds were computed. Then,
the number of misclassified pixels for each method, referred to as Nm, was com-
pared to the number of misclassified pixels Nopt of the ‘optimally thresholded
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(a) Vessel (b) Femur (c) Mouse leg

(d) Vessel (e) Femur (f) Mouse leg

Fig. 2. (a-c) Phantom images ; (d-f) Simulated CT reconstructions from 90 projections.

image’. The latter image can be found by an exhaustive search over all possible
threshold values and comparing the thresholded image to the original, noiseless
image. From those numbers, a measure for the number of correctly classified pix-
els for each method is given by: R = 100 ∗ Nm/Noptwhich will be referred to as
the classification performance ratio. For each method, R is evaluated as a func-
tion of the number of photons per detector element employed during simulation
of the CT sinograms.

Typical results of the simulation experiments are shown in Fig. 3. Since
the classification performance ratio is based on Nopt, this number is denoted
above the figure for each data point. The error bars around each point indicate
the range of the results for the 10 independent experiments. From the figure,
it is clear that the proposed projection based method outperforms conventional
thresholding techniques with respect to the classification performance ratio. Sim-
ilar results were obtained for the vessel and mouse-leg images. For the vessel im-
age, the classification performance ratio of our proposed method was above 92%
in all tests, whereas the best performing alternative method, k-means clustering,
dropped to 80% in the test with the highest count per detector element. For all
tests, the running time was around 10s on a standard desktop PC.

5 Conclusions

Global grey value thresholding is a trivial, yet often used segmentation technique.
The search for the optimal grey level threshold is, however, far from trivial. Many
procedures have been proposed to select the grey value threshold based on the
image histogram. In our paper, we have presented an innovative approach to find
the optimal threshold grey levels by exploiting the available projection data. The
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Fig. 3. Thresholding results of two commonly applied thresholding methods and the
proposed method for the femur image (cfr Fig. 2(b)). The numbers at the top of the
figure indicate the least possible number of misclassified pixels for each case

results on simulated CT-reconstructions show that our proposed method obtains
superior results compared to established histogram-based methods.
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