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Abstract

Grey value thresholding is a segmentation technique commonly applied to tomographic

image reconstructions. Many procedures have been proposed to optimally select the grey

value thresholds based on the tomogram data only (e.g., using the image histogram). In

this paper, a Projection Distance Minimization (PDM) method is presented that uses the

tomographic projection data to determine optimal thresholds. These thresholds are computed

by minimizing the distance between the forward projection of the segmented image and the

measured projection data. An important contribution of the current paper is the efficient

implementation of the forward projection method, which makes the use of the original

projection data as a segmentation criterion feasible. Simulation experiments applied to

various phantom images show that our proposed method obtains superior results compared

to established histogram-based methods.

Both authors are Postdoctoral Fellows of the F.W.O. (Fund for Scientific Research - Flanders, Belgium)
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I. INTRODUCTION

Segmentation is a well known problem in computer vision. It refers to the classification of

image pixels into distinct classes, based on similarity with respect to some characteristic. In

this paper, we focus on segmentation based on the pixel grey levels. Amongst all segmentation

techniques, global image thresholding is the simplest, yet often most effective segmentation

method. Many algorithms have been proposed for selecting “optimal” thresholds with respect

to various optimality measures [8].

Commonly, segmentation techniques employ the image histogram as a basis for determin-

ing thresholds [9], [17]–[19]. Such algorithms can be subdivided into parametric and non-

parametric segmentation techniques. First, parametric approaches assume that the histogram

samples can be modeled by k distributions, such as Gaussian Mixture Models [20], [25],

[26]. If k is known, optimization methods such as Expectation Maximization [6] or genetic

algorithms [16] can be used to estimate the parameters of the distributions. The main problem

with this approach is that histogram modes are often not well modeled by Gaussian mixtures

[5]. In practice, the image histogram often lacks clear modes that would allow a model based

selection of threshold values. Second, non-parametric (e.g., entropy based) approaches give

up any assumption on the underlying histogram distribution [4], [14], [21], [23]. More recent

thresholding techniques are based on a minimum variance criterion [11] or employ the variance

and intensity contrast [22] or are based on maximization of measures of similarity [3].

In this work, we focus on global threshold selection for segmentation of tomographically

reconstructed images (also called tomograms). To the authors’ knowledge, segmentation of

tomograms is currently based on techniques similar to the ones described in the above

paragraph [1], [2], [10], [12], [22], [24] in that tomographic images are segmented using

information from the tomograms only, such as the image histogram. Although threshold

selection based on the image histogram can be made fully automatic, it often lacks robustness

in case clear grey value modes are absent.
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In this paper, we present a novel approach for threshold selection for tomogram seg-

mentation, which uses the information in the projection data instead of the tomogram data.

Ideally, reconstruction algorithms for tomography should be “invertible”, so that computed

projections of the reconstructed image would equal the measured projection data. For Filtered

Backprojection, the most common reconstruction algorithm used in practice, this assumption

does not hold, mainly due to various interpolation steps involved in the algorithm. Algebraic

methods, which are less commonly used, only satisfy the invertibility assumption for the case

of noiseless projection data and an infinite number of iterations. As the reconstructed image

does not correspond accurately with the measured projections, using the projection data for

the segmentation can potentially result in a segmentation that is more faithful to the original

measurements.

By minimizing the distance between the forward projection of the segmented image and the

measured projection data, optimal thresholds are computed. We will refer to this method as the

Projection Distance Minimization (PDM) method. In the search for optimal thresholds, many

computationally expensive forward projections must be performed. An important contribution

of the current paper is the efficient implementation of the forward projection method, which

makes the use of the original projection data as a segmentation criterion feasible. It is shown

that the proposed segmentation procedure is objective as well as repeatable. In our simulation

experiments, our new method clearly outperforms established histogram-based methods.

II. GREY LEVEL ESTIMATION

Without loss of generality, we will restrict ourselves to the segmentation of a 2-dimensional

image, which is represented on a rectangular grid of width w and height h. Hence, the total

number of pixels is given by n = wh. The grey-scale image x ∈ Rn that we want to

segment is a tomographic reconstruction of some physical object, of which projections were

acquired using a tomographic scanner. Our method can be used for any scanning geometry,

e.g., parallel beam, fan beam and, in 3D, cone beam. Projections are measured as sets of

detector values for various angles, rotating around the object. Let m denote the total number

of measured detector values (for all angles) and let p ∈ Rm denote the measured data. The

physical projection process in tomography can be modeled as a linear operator W that maps
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the image x (representing the object) to the vector p of measured data:

Wx = p . (1)

For parallel projection data, the operator W is a discretized version of the well-known Radon-

transform. We represent W by an m×n matrix. Note that for each projection angle, every

pixel i will only project onto a few detector pixels, so the matrix W is very sparse. Exploiting

this sparsity forms an essential part of our method. The matrix representation of the projection

operator is commonly used in algebraic reconstruction algorithms. We refer to Chapter 7 of

[13] for details.

From this point on, we assume that an image x has been computed that approximately

satisfies Eq. (1). Our approach does not depend on the reconstruction algorithm that was used

to compute x, e.g., Filtered Backprojection or ART. The image x now has to be segmented

using global thresholding of the grey levels. The main motivation of using thresholding in

general, is that pixels representing the same “material” in the scanned object should have

approximately the same grey values in the tomogram. We rely strongly on the assumption

that the scanned object consists of only a few different materials. Our segmentation approach

first assigns a real-valued grey level to each of the segmentation classes. Using these grey

levels, the projections of the segmented image are then computed. The computed forward

projections are compared to the measured projection data, which provides a measure for the

quality of the segmentation (along with the chosen grey levels). This quality measure can also

be used for other segmentation techniques than thresholding.

We first consider the problem of determining grey levels for each of the segmentation

classes of a segmented image. We can consider a segmentation of an image into ` classes as

a partition of the set of pixels, consisting of ` subsets. Let S = {S1, . . . , S`} be a partition

of {1, . . . , n}. We label each set by its index t: St. Each pixel j is contained in exactly one

set St ⊂ S , denoted by s(j) ∈ {1, . . . , `}. To each set St, a grey level ρt ∈ R is assigned,

which induces an assignment of grey levels to the pixels 1 ≤ j ≤ n, where pixel j is assigned

the grey level ρs(j). Let ρ = (ρt) ∈ R` represent the vector of gray levels of the segmented
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image and define

rS(ρ) =
(
ρs(1) . . . ρs(n)

)T
, (2)

where the symbol T denotes transposition. The vector rS(ρ) ∈ Rn contains, for each pixel

j, the corresponding grey level of that pixel.

Our goal is to determine “optimal” grey values ρ for the given partition S. The quality

of a vector ρ is determined by computing the projections of the segmented image, using the

grey levels from ρ, and comparing the computed projections to the measured projections p.

More formally, we define the problem of finding optimal grey values for a given partition as

follows:

Problem 1: Let W = (wij) ∈ Rm×n be a given projection matrix, let S = {S1, . . . , S`}

be a partition of {1, . . . , n} and let p ∈ Rm be a vector of measured projection data. Find

ρ ∈ R` such that |WrS(ρ)− p|2 is minimal, where | · |2 denotes the Euclidean norm.

The term |WrS(ρ) − p|2 is called the projection distance. We will start by deriving the

equations for solving Problem 1 for a fixed partition S. Subsequently, we describe how

the optimal set of grey values can be re-computed efficiently, each time the partition S

has been modified by moving a single pixel from one class to another class. This fast

update computation allows us to design efficient algorithms that combine the search for a

segmentation S and the corresponding grey values ρ, such that the projection distance is

minimal.

Define A = (ait) ∈ Rm×` by

ait =
∑

j: s(j)=t

wij . (3)

The value ait equals the total area of pixels from the set St that contribute to detector value

i, which is related to the partial projection data of set St (cfr. Figure 1). We denote the `× 1

row vectors of A by ai = A·t. Clearly, we have

[WrS(ρ)]i =
∑̀
t=1

aitρt . (4)

Define the projection difference d ∈ Rm by

d = WrS(ρ)− p = Aρ− p . (5)
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S1

S2

A.1

A.2

Fig. 1: Projections of the sets St, represented by the rows of A.

Furthermore, define the squared projection distance by

|d|2 = |Aρ− p|2 =
m∑

i=1

(aT
i ρ− pi)2 =

m∑
i=1

(
ρT
(
aia

T
i

)
ρ− 2pia

T
i ρ+ p2

i

)
. (6)

Denoting ci = −2piai, Qi = aia
T
i , we have:

|d|2 =
m∑

i=1

(ρTQiρ+ cT
i ρ+ p2

i ) = ρT Q̄ρ+ c̄Tρ+ |p|2 , (7)

where c̄ =
∑m

i=1 ci, Q̄ =
∑m

i=1Qi. Since neither c̄ nor Q̄ depends on ρ, the vector ρ that

minimizes the projection difference |d| can be computed by setting the derivatives of |d|2

with respect to ρ1, . . . , ρ` to 0, obtaining the system

2Q̄ρ = −c̄ , (8)

and solving for ρ.

In some practical thresholding problems, the grey level ρt for one or more of the sets St

is already known in advance. In tomography, for example, we can usually assume that the

background, surrounding the object of interest, must be 0.
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We now derive a version of Eq. (8) where one grey level is held constant. Without loss of

generality, we assume that the grey level for S1 is fixed at ρ1 = α.

Put ρ̃ =
(
ρ2 . . . ρ`

)T
, c̃ =

(
c2 . . . c`

)T
, ṽ =

(
q12 . . . q1`

)
and

Q̃ =


q22 · · · q2`

...
. . .

...

q`2 · · · q``

 . (9)

Setting ρ1 = α in Eq. (7) yields

|d|2 = ρ̃T Q̃ρ̃+ (c̃T + 2αṽT )ρ̃+ q11α
2 + c1α+ |p|2 , (10)

so that the equivalent of Eq. (8) now becomes

2Q̃ρ̃ = −c̃− 2αṽ . (11)

If more than one of the densities has a constant value, Eq. (8) can be adapted similarly.

So far, we have assumed that the partition S was fixed. Suppose that we have computed c̄

and Q̄ for the partition S. We now change S into a new partition S ′, by changing s(j) for a

single pixel j.

The only rows of A that are affected by this transition are the rows i for which wij 6= 0.

This means that the new vector c̄′ and matrix Q̄′ can be computed by the following updates:

c̄′ = c̄+
∑

i:wij 6=0

(c′i − ci) (12)

and

Q̄′ = Q̄+
∑

i:wij 6=0

(Q′i −Qi) . (13)

The fact that c̄′ and Q̄′ can be computed by applying updates for only a few of the terms ci

andQi respectively, means that the optimal grey values for the entire image can be recomputed

efficiently. This property allows us to develop algorithms for simultaneous segmentation and

grey level estimation. Any segmentation algorithm that moves pixels from one class into

another class, one at a time, can efficiently keep track of the optimal grey levels. Once the

optimal grey levels are known, the projection distance can be computed from Eq. (7). In the
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next section, we first demonstrate this approach for a simple thresholding algorithm, finding

both the optimal thresholds and grey values in a single pass. Subsequently, a PDM algorithm

is proposed that can be used if multiple threshold levels are required for segmentation.

III. THRESHOLDING WITH SIMULTANEOUS GREY LEVEL ESTIMATION

The concepts in the previous section apply to any partition S of the pixels. We will now

restrict ourselves to a specific type of partitions, that are induced by a thresholding scheme.

Our starting point is a grey level image x ∈ Rn, that has been computed by any continuous

tomographic reconstruction algorithm, e.g., Filtered Back Projection. The image x now needs

to be segmented by means of thresholding, using a fixed number of ` classes for the pixels.

Every pixel i is assigned a class according to a thresholding scheme using thresholds

τ1 < τ2 < . . . < τ`−1. Put τ = (τ1 . . . τ`−1)T . Define the threshold function by

s(i, τ ) =



1 (xi < τ1)

2 (τ1 ≤ xi < τ2)

. . .

` (τ`−1 ≤ xi)

. (14)

The threshold function induces a partition Sτ of the set {1, . . . , n}. Define

r(τ ,ρ) =
(
ρs(1,τ ) . . . ρs(n,τ )

)T
. (15)

Similar to Section II, we define the quality of a set of thresholds τ and grey values ρ as

the total squared projection distance for the corresponding segmentation. We now consider

the problem of simultaneously finding thresholds and grey values, such that the total squared

projection difference is minimal:

Problem 2: Let W ∈ Rm×n be a given projection matrix, let x ∈ Rn be a grey scale image

and let p ∈ Rm be a vector of measured projection data. Find τ ∈ R`−1 with τ1 < . . . < τ`−1

and ρ ∈ R`, such that |Wr(τ ,ρ)− p|2 is minimal.

A. Two grey levels

The simplest case of Problem 2 occurs when the image x is segmented into two classes,

using a single threshold τ . In that case, an exhaustive search over all possible thresholds can

DRAFT



9

be performed efficiently: first, a list of all pixels is computed, sorted in ascending order of

grey level in the continuous reconstruction x. The initial segmentation is formed by setting

the threshold τ at a very high value, so all pixels will be in the segmentation class S1. The

threshold τ is now gradually decreased, each time moving pixels from S1 to S2. By using the

update operation from Section II, it is possible to keep track of the optimal grey values and

the projection difference by applying only small update steps. Figure 2 shows the steps of

the segmentation algorithm. For each pixel j, the time complexity of the update computation

is O(u(j)`2), where u(j) = #{i : wij 6= 0}. Each pixel is moved from S1 to S2 only once.

Therefore, the total time complexity of the algorithm is O(U`2), where U denotes the total

number of nonzero elements in the projection matrix W . Note that for fixed `, this means

that the time complexity of finding the optimal threshold is O(U), which is the same as the

complexity of computing a single forward projection of an image x for each projection angle.

B. More than two grey levels

If there are more than two segmentation classes, computing the total squared projection

error for each possible set of candidate thresholds will take a very long computation time,

due to the vast number of candidate thresholds. However, using the update operation from

Section II, it is possible to compute a local minimum of the projection error in reasonable

time.

A simple algorithm for this case is the following: first, determine initial thresholds τ0, pos-

sibly using another automated procedure, such as fitting Gaussian functions to the histogram.

Next, compute A, Q̄ and c̄. In an iteratively loop, compute for each thresholds the effect

of a small increase and a small decrease of that threshold on the total projection distance.

Among all these possible steps, select the one that results in the largest decrease of the total

projection error. The algorithm terminates if no step can be found that decreases the total

error.

Although this approach works well in some cases, it often gets stuck in a local minimum, far

away from the global minimum. This is because the projection distance landscape, although

smooth at a coarse level, is irregular at a fine scale. Hence, if a threshold is increased or

decreased only by a small amount in each step, it may be impossible to escape from a local
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Make a list L containing all elements j ∈ {1, . . . , n}, sorted in ascending order of xj ;

τ := xL(n) + 1; S1 := {1, . . . , n}; S2 := ∅;

For i = 1, . . . ,m: ai1 :=
∑m

j=1wij ; ai2 := 0; compute ci and Qi;

Compute c̄ and Q̄;

S1 := ∅; S2 = {1, . . . , n}; k := n+ 1;

dopt := FLOAT MAX; (keeps track of the optimal projection distance found by the algorithm)

while k > 1 do

begin

k := k − 1; τ := xL(k);

while (k ≥ 1) and (xL(k) = τ) do

begin

k := k − 1; j := L(k); S1 := S1 − {j}; S2 := S2 ∪ {j};

for each i such that wij 6= 0: update ci, Qi, c̄ and Q̄;

end

Compute the minimizer ρ of |d|2 = |p|2 + c̄Tρ+ ρT Q̄ρ;

if (d < dopt) then

dopt := d; ρopt := ρ; τopt := τ ;

end

Fig. 2: basic steps of the algorithm for solving Problem 2 in the case ` = 2.

minimum in a single step, whereas this problem does not occur if larger step sizes are used

to update the thresholds.

Figure 4(a) shows a grey-scale tomogram that must be segmented using three segmentation

classes. In Figure 4(b), the projection distance is plotted as a function of the two thresholds,

τ1 and τ2. The example illustrates that the projection distance is typically a rather smooth
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function of the thresholds that has a clear global minimum. However, when we zoom in on

the surface of the graph (shown in Figure 4(c)), we see that the projection distance graph

can have many local minima, which are very close to the surface of the global graph. Figure

4(d) shows a plot of the phantom error as a function of both thresholds, i.e., the number of

misclassified pixels with respect to the original phantom image. In this example, the global

minimum of the phantom error and the projection distance nearly coincide.

A straightforward way to deal with this problem is to introduce a stochastic element in the

minimization procedure, which allows the algorithm to change a threshold while increasing

the projection distance. A disadvantage of incorporating a stochastic element is the increased

computation time.

As an alternative, we propose a multi-scale algorithm. Instead of changing one of the

thresholds by the minimum amount necessary to move one or more pixels to another set,

we change a threshold by a fixed amount (the stepsize) in each update step. Each time no

further improvement can be made using a single step, the step size is reduced. The algorithm

terminates if the stepsize has reached a certain minimum.

Note that the computation time for each step depends on the number of pixels that are

moved from one class to another class. Therefore, a large step of stepsize 10 takes the same

amount of computation time as 10 small steps of stepsize 1.

Figure 3 shows the basic steps of our proposed algorithm for cases with more than two

segmentation classes. The algorithm can also be used if there are only two classes, but there

is no guarantee that a global minimum of the projection distance will be found, which is

guaranteed for the algorithm from Section III-A.

Although our proposed algorithm is still vulnerable to local minima of the projection

distance, it performs well in our simulation experiments, as described in the next section.

IV. RESULTS AND DISCUSSION

To validate our proposed threshold selection method, simulation experiments were set up.

For this purpose, four phantom images were constructed: a synthetic 512× 512 binary vessel

image representing a vessel tree, a 564× 564 binary femur image, a 554× 554 grey valued

mouse leg image, and a 512 × 512 grey valued foam image (see Figure 5a-d). The femur,
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τ := τ0; For i = 1, . . . ,m: Si := {1 ≤ j ≤ n : τi−1 < xj ≤ τi};

For i = 1, . . . ,m: compute ai, ci and Qi;

Compute c̄ and Q̄;

stepsize := initial stepsize;

while stepsize > min stepsize do

begin

begin

For all thresholds i = 1, . . . , `− 1, compute the minimal projection distance that can be
obtained if τi is either increased or decreased by stepsize, considering only cases
where τ1 < . . . < τ`−1;

if (an improved projection distance was found w.r.t. the current thresholds τ ) then

begin

update the threshold τi for which the minimal projection distance was obtained by
adding (or subtracting) stepsize;

Update the variables ai, ci and Qi accordingly, for all affected i = 1, . . . , n;

end

else

stepsize := stepsize×F ;

end

end

Fig. 3: Basic steps of the algorithm for solving Problem 2 in the case ` ≥ 2. The constant

F , where 0 < F < 1, refers to the factor by which the stepsize is reduced if no further

improvement is found for the current stepsize.

mouse leg and foam images are based on tomograms computed from micro-CT data. These

data sets were acquired with a SkyScan 1072 cone-beam micro-CT scanner. The pixel size

was 4.52 micron, 6.85 micron, and 35.36 micron for the femur, mouse leg and foam images,
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respectively. The object to source distance was 41.6 mm, 50.2 mm, and 121.1 mm, and the

camera to source distance 216.1 mm, 202.3 mm, 161.2 mm for the femur, mouse leg, and

foam image, respectively. The camera pixel size was 11.73 micron. We remark that we used

a parallel beam geometry for the simulation experiments reported in this paper, but that the

approach can be extended in a straightforward manner to the cone-beam geometry.

From the phantom images, CT projections were simulated as follows. First, the Radon

transform of the images was computed, resulting in a sinogram for which each data point

represents the line integral of attenuation coefficients. The width of a detector cell is the

same as the pixel size of the phantoms. Then, (noiseless) CT projection data were generated

where a mono-energetic X-ray beam was assumed1. The projections were then polluted with

Poisson distributed noise where the number of counts per detector element I0 (flat field)

was varied from 5× 103 − 6× 104. Next, the noisy sinogram of the attenuation coefficients

was obtained by dividing the CT projection data by the maximum intensity and computing

the negative logarithm. In this way, simulated projection images were obtained for varying

signal-to-noise ratios. Finally, the simulated, noisy CT images were reconstructed using both

the Filtered Backprojection (FBP) algorithm from the Image Processing Toolbox of Matlab R©

and an SART algorithm. All reconstructions were rescaled to an intensity range of [0− 255].

As an example, a SART reconstruction of each phantom image from 90 projections is shown

in Figure 5e-h.

Our proposed PDM algorithm from Subsection III-A was used to compute thresholds for

each of the reconstructions of the vessel and femur phantoms. For all reconstructions of

foam and the mouse leg phantom, the PDM algorithm of Subsection III-B was used. The

initial stepsize was set to 10.0, the factor F to 0.5, and the algorithm was terminated when

the stepsize reached 0.01. For all PDM experiments, we have used k-means clustering to

initialize the threshold values.

The proposed PDM thresholding technique was then compared to commonly applied thresh-

1More advanced CT simulation experiments, for example, taking into account scatter and beam-hardening, could

as well have been performed, but would, to our view, unnecessarily complicate the discussion of the experimental

results.
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olding techniques [7]. First, a parametric optimal thresholding technique was implemented

where the image histogram was fitted to a Gaussian Mixture Model (GMM) from which an

optimal threshold was derived [26]. Next, the commonly used iterative threshold selection

scheme of Otsu was implemented [15], [20]. This is also the default thresholding method

used in Matlab. As a final method, k-means clustering was applied to the image histogram.

The results of the GMM, Otsu, and k-means thresholding were compared to the proposed

PDM method.

For each method, as well as for FBP and SART reconstruction, the number of misclassified

pixels K with respect to the original phantom image was computed. The results of the

simulation experiments for the binary vessel and femur image are shown in Figure 6, where

K is plotted as a function of the number of counts per detector element. Each data point

denotes the average of 25 independent experiments along with its error bar. In order not to

overload the figures, the results from the GMM fitting to the histogram are not shown since

the GMM results were observed to be significantly worse than those of the conventional

Otsu and k-means thresholding methods, especially for SART reconstructions and high SNR

FBP reconstructions. This can be easily understood from the image histograms shown in

Figure 7. Figure 7(b), 7(c), and 7(d) clearly show that a GMM is not suited for fitting to the

histogram modes. Experimental results indeed confirmed that GMM fitting leads to thresholds

for which the number of misclassified pixels K is significantly larger than for k-means or

Otsu thresholding. Only for FBP reconstructions with low SNR, the gaussian mixture model

yielded reasonable thresholding results (that is, comparable to those of Otsu and k-means

thresholding), as may also be expected from visual inspection of Figure 7(a). However, for

each case, the number of misclassified pixels K for the GMM thresholding method was always

larger than that of Otsu or k-means thresholding.

From Figure 6, it is clear that the segmentation results from Otsu and k-means thresh-

olding are very similar (Otsu thresholding leads to a slightly larger number of misclassified

pixels compared to k-means clustering). Furthermore, Figure 6 reveals that the proposed

PDM method leads to significantly better segmentation results in terms of the number of

misclassified pixels.
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As an additional accuracy measure for the vessel and femur phantoms, the number of

misclassified pixels K was compared to the number of misclassified pixels Kmin of the

‘optimally thresholded image’. The latter image can be found by an exhaustive search over

all possible threshold values and comparing the thresholded image to the original, noiseless

image 2. From those numbers, a simple error measure E was computed for each segmentation

method as follows:

E = K −Kmin . (16)

For each method, E is evaluated as a function of I0, the flat field number of counts per detector

element employed during simulation of the CT sinograms. The results of the simulation

experiments for the vessel and femur image are shown in Figure 8, where E is plotted as a

function of the number of counts per detector element.

The segmentation results of the mouse leg and foam images are shown in Figure 9. Since

these images are gray valued, the PDM method could only be compared to the GMM and the

k-means thresholding method. Also for these two phantoms, the segmentation of the PDM

method was observed to yield significantly better segmentation results compared to the GMM

and the k-means thresholding method. During the experiments with the vessel, femur and

mouse leg phantoms, we noticed that the FBP reconstruction was consistently more accurate

than the SART reconstruction. An important parameter in SART is the number of iterations.

For the foam phantom, we increased this parameter from 10 to 40, yielding more accurate

SART reconstructions. Even though the characteristics of the SART reconstruction (and its

histogram) changed significantly, PDM still consistently yields more accurate segmentation

results than histogram-based methods.

From Figures 6-8, it is clear that for the SART as well as the FBP reconstructions, the PDM

method outperforms conventional thresholding techniques with respect to the error measure

given in Eq. (16). For 180 and 360 projections with the binary vessel and femur images, the

PDM threshold error virtually equals the minimum possible threshold error. Recall that the

2Note that, in practice, this optimally thresholded image cannot be found since the original, noiseless image is

not available.
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latter can only be found by an exhaustive search over all threshold values and provided the

ground truth is known.

We remark that the comparison between the PDM method and alternative segmentation

algorithms presented here is limited to the class of global threshold algorithms. Global

thresholding is by far the most popular segmentation method because of its simplicity, and

is often used as a preprocessing step for further analysis and quantification. Comparing our

approach with alternative global threshold methods, as opposed to more advanced algorithms

such as watershed segmentation, provides a fair comparison within this important class of

segmentation methods. Nevertheless, we also believe that PDM can be used as an effective

segmentation criterion for more advanced segmentation methods. We intend to explore this

direction in future research.

V. CONCLUSIONS

Global grey value thresholding is a conceptually trivial, yet often used segmentation tech-

nique in tomography. However, finding the optimal grey level thresholds is far from trivial.

Many procedures have been proposed to select the thresholds based on the image histogram.

Although such methods can be made fully automatic, they often lack robustness in case

clear grey value modes are absent. Ideally, the grey level image computed by a tomographic

reconstruction algorithm should conform perfectly to the measured projection data. However,

this assumption is typically not satisfied in practice.

In our paper, we have presented an innovative approach, called PDM (Projection Distance

Minimization), to find the optimal threshold grey levels by exploiting the available projection

data. Reprojection of the segmented image and subsequent comparison with the measured

projection data, yields an objective criterion for the quality of a segmentation. Our approach

aims at minimizing the projection distance. Even though the quality of the grey level recon-

struction used for segmentation still imposes a limit on the quality of the segmentation, PDM

can potentially find thresholds that result in more accurate segmentation than histogram-based

methods.

Computing the projection distance for a single segmentation is already a computationally

expensive operation. Computing the projection distance for many different threshold combi-
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nations is computationally infeasible. We have described how efficient update operations can

be used to keep track of the projection distance, while changing the segmentation slightly.

For binary images, this leads to an algorithm for finding the optimal global threshold, that

has the same time complexity as a single projection distance computation. For images that

contains more than two grey levels, we proposed an efficient algorithm for finding optimal

thresholds that has guaranteed convergence, but not necessarily to a global minimum of the

projection distance.

The experimental results show that if the original object consists of only a few different

materials, PDM results in a small difference between the original object and the reconstruction.

Simulation experiments were performed for both FBP and SART reconstructions of three

phantom images, at varying noise levels. In nearly all test cases, PDM clearly results in

significantly better reconstructions than classical thresholding algorithms (Gaussian Mixture

Model fitting, Otsu thresholding, K-means clustering, etc). Moreover, using only the available

projection data, PDM is capable of finding thresholds for which the difference between the

segmented reconstruction and the original object is nearly the same as the best possible

difference (computed using knowledge of the phantom).

Although we only applied PDM to global thresholding, the approach can also be used in

conjunction with more advanced segmentation algorithms. In particular, the update operation

that keeps track of the projection difference can be used within any segmentation algorithm

that iteratively moves a few pixels from one class to another class. In future work, we will

explore the use of PDM with several alternative segmentation algorithms.
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(a) SART reconstruction (b) Projection distance landscape

(c) Projection distance landscape (detail) (d) Phantom error landscape

Fig. 4: Phantom and projection error landscapes for the mouse leg image as a function of the

threshold values τ1 and τ2.
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(a) Vessel (b) Femur (c) Mouse leg (d) Foam

(e) Vessel (f) Femur (g) Mouse leg (h) Foam

Fig. 5: (a-c) Phantom images ; (d-f) Simulated SART reconstructions from 90 projections.
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(c) Vessel (Na = 180)
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(d) Femur (Na = 180)
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(e) Vessel (Na = 360)
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(f) Femur (Na = 360)

Fig. 6: Best pixel errors for the ’vessel’ and ’femur’ image. For each subfigure, the number of

misclassified pixels K is shown as a function of the number of flat field counts per detector

element.
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(a) FBP (Na = 90) (b) FBP (Na = 360)

(c) SART (Na = 90) (d) SART (Na = 360)

Fig. 7: Histograms of FBP and SART ’vessel’ reconstructions from 90 and 360 projections.
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(b) Femur (Na = 90)
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(d) Femur (Na = 180)
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(e) Vessel (Na = 360)
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(f) Femur (Na = 360)

Fig. 8: Segmentation results for the ’vessel’ and ’femur’ image. For each subfigure, the error

measure E is shown as a function of the number of flat field counts per detector element.
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(c) Foam (Na = 180)
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(e) Foam (Na = 360)
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Fig. 9: Segmentation results for the ’foam’ and the ‘mouse leg’ image. For each subfigure,

the number of misclassified pixels K is shown as a function of the number of flat field counts

per detector element.
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