Erdős-Szemerédi Sunflower conjecture

June 2017
I will give two proofs of the Erdős-Szemerédi Sunflower conjecture: a proof that uses the cap-set problem from Alon et al. [1] and a proof from Naslund and Sawin [5] that uses the slice-rank method. I will also show how Naslund and Sawin [5] apply the same ideas in an attempt towards the (stronger, unproved) Erdős-Rado Sunflower conjecture. A brief note on the connection to algorithms for fast matrix multiplication is included at the end.

1 Recap: the cap-set problem and slice rank

A k-tensor is a function $f: X^{k} \rightarrow \mathbb{F}$ for \mathbb{F} a field and X a finite set. A tensor f has slice rank one if it can be written as a product $g h$ where g, h depend on disjoint, non-empty subsets of the variables. For example, we might have $f(x, y, z)=g(x) h(y, z)$ for $k=3$. The slice rank of a tensor f is the minimum number m so that $f=\sum_{i=1}^{m} f_{i}$ with f_{1}, \ldots, f_{m} of slice rank one. The lemma below is a simplification of a lemma of Tao [6].

Lemma 1.1 (Slice rank of diagonal tensors). If $F: X^{k} \rightarrow \mathbb{F}$ has the property that $F\left(x_{1}, \ldots, x_{k}\right) \neq 0$ if and only if $x_{1}=\cdots=x_{k}$, then F has slice rank $|X|$.

Definition 1.2. A cap set is a subset $A \subseteq \mathbb{F}_{3}^{n}$ that does not contain any line (three-term arithmetic progression)

$$
\{x, x+r, x+2 r\} \text { for } x \in \mathbb{F}_{3}^{n}, r \in \mathbb{F}_{3}^{n} \backslash\left\{0^{n}\right\} .
$$

Note that

$$
x+y+z=0^{n} \Longleftrightarrow x=y=z \text { or }\{x, y, z\} \text { forms a line, }
$$

if lines are defined as above. Hence if A is a cap set, then $x+y+z=0^{n} \Longleftrightarrow x=y=z$.
Theorem 1.3 (Croot-Lev-Pach-Ellenberg-Gijswijt cap-set bound). If $A \subseteq \mathbb{F}_{3}^{D}$ is a cap set, then $|A| \leq 3 C^{D}$ where $C \leq 2.76$ is a constant.

Proof sketch. Note that in \mathbb{F}_{3} we have $1-x^{2} \neq 0 \Longleftrightarrow x=0$. Hence

$$
F: A \times A \times A \rightarrow \mathbb{F}_{3}:(x, y, z) \rightarrow \prod_{i=1}^{D}\left(1-\left(x_{i}+y_{i}+z_{i}\right)^{2}\right)
$$

is non-zero if and only if $x+y+z=0$, which is equivalent to $x=y=z$ (as we saw above). This means F has slice rank $|A|$ by Lemma 1.1. On the other hand, F expands as

$$
\sum_{\substack{I, J, K \in\{0,1,2\}^{D} \\|I|+|J J+|K| \leq 2 D}} c_{I J K} x^{I} y^{J} z^{K}=\sum_{\substack{I \in\{0,1,2\}^{D} \\|I| \leq 2 D / 3}} x^{I} f_{I}(y, z)+\sum_{\substack{J \in\{0,1,2\}^{D} \\|J| \leq 2 D / 3}} y^{J} g_{J}(x, z)+\sum_{\substack{K \in\{0,1,2\}^{D} \\|K| \leq 2 D / 3}} z^{K} h_{K}(x, y) .
$$

This expresses F in terms of tensors of slice rank one, hence this gives an upper bound on $|A|$. See e.g. De Zeeuw [4] for the calculations.

2 Slice rank applied to sunflower conjectures

Definition 2.1. A k-sunflower or Δ-system is a set of subsets \mathcal{S} so that $|\mathcal{S}|=k$ and

$$
A \cap B=\bigcap_{C \in \mathcal{S}} C \quad \forall A, B \in \mathcal{S}: A \neq B
$$

A set of subsets \mathcal{A} is called k-sunflower free if no k members form a sunflower. We omit k in the case $k=3$.

Conjecture 2.2 (Erdős-Szemerédi Sunflower conjecture). Let $k \geq 3$. Then there exists a constant $c_{k}<2$ so that for each k-sunflower free set \mathcal{A} of subsets of $\{1, \ldots, n\}$ we have $|\mathcal{A}| \leq c_{k}^{n}$.

The cap-set bound gives $c_{k} \leq 1.938$ (see [5, Theorem 8]). Naslund and Sawin [5] apply the slice rank method directly to the Erdős-Szemerédi Sunflower conjecture.

Theorem 2.3. If $\mathcal{A} \subseteq \mathcal{P}([n])$ is sunflower-free, then $|\mathcal{A}| \leq 3(n+1) C^{n}$ for $C=3 / 2^{2 / 3} \leq 1.89$.
Proof. Identify $\mathcal{P}([n])$ with $\{0,1\}^{n}$. Since \mathcal{A} is sunflower-free, any three distinct vectors $x, y, z \in \mathcal{A}$ have $x_{i}+y_{i}+z_{i}=2$ for some $i \in[n]$. Fix $m \in\{0, \ldots, n\}$. Let $\mathcal{A}_{m}=\left\{x \in A \mid \sum_{i} x_{i}=m\right\}$. The function

$$
F: \mathcal{A}_{m}^{3} \rightarrow \mathbb{Q}:(x, y, z) \mapsto \prod_{i=1}^{n}\left(2-\left(x_{i}+y_{i}+z_{i}\right)\right)
$$

takes a non-zero value if and only if $x=y=z$. (If e.g. $x=y \neq z$, then there must be an i for which $x_{i}=1=y_{i} \neq z_{i}$, since all vectors have the same size.) By Lemma 1.1, the slice rank of F is $\left|\mathcal{A}_{m}\right|$.

On the other hand, there exist coefficients $c_{I, J, K}$ so that

$$
\prod_{i=1}^{n}\left(2-\left(x_{i}+y_{i}+z_{i}\right)\right)=\sum_{\substack{I, J, K \in\{0,1\}^{n} \\|I|+|J|+|K| \leq n}} c_{I J K} x^{I} y^{J} z^{K}
$$

By the pigeonhole principle, $|I|+|J|+|K| \leq n$ implies that one of the summands has to be at most $n / 3$, which means that we can find functions f_{I}, g_{J}, h_{K} so that

$$
\sum_{\substack{I \in\{0,1\}^{n} \\|I| \leq n / 3}} x^{I} f_{I}(y, z)+\sum_{\substack{J \in\{0,1\}^{n} \\|J| \leq n / 3}} y^{J} g_{J}(x, z)+\sum_{\substack{K \in\{0,1\}^{n} \\|K| \leq n / 3}} z^{K} h_{K}(x, y)
$$

This expresses F as a sum of $\leq 3 \sum_{k \leq n / 3}\binom{n}{k}$ tensors of slice rank one. We conclude

$$
|\mathcal{A}|=\sum_{m=0}^{n}\left|\mathcal{A}_{m}\right| \leq(n+1) 3 \sum_{k=0}^{n / 3}\binom{n}{k}
$$

To find the precise bound, note that for any $0<x<1$ (by the binomial theorem)

$$
x^{-n / 3}(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k-n / 3}>\sum_{k=0}^{n / 3}\binom{n}{k} x^{k-n / 3}>\sum_{k=0}^{n / 3}\binom{n}{k}
$$

The function $x^{-1 / 3}(1+x)$ achieves it maximum at $x=1 / 2$ with value $3 / 2^{2 / 3}$.

Conjecture 2.4 (Erdős-Rado Sunflower conjecture). Let $k \geq 3$. Then there exists a constant $C_{k}>0$ so that any m-uniform, k-sunflower free family \mathcal{A} has at most C_{k}^{m} elements.

The Erdős-Rado Sunflower conjecture implies the Erdős-Szemerédi Sunflower conjecture. Alon et al. [1, Theorem 2.6] prove that the Erdős-Rado Sunflower conjecture is equivalent to the conjecture below; their proof works in particular for the case $k=3$.

Conjecture 2.5. For every $k \geq 3$, there exists a constant b_{k} so that for all $D \geq k$ and $A \subseteq(\mathbb{Z} / D \mathbb{Z})^{n}$ k-sunflower-free we have $|A| \leq b_{k}^{n}$.

A k-sunflower in $(\mathbb{Z} / D \mathbb{Z})^{n}$ is a set of k elements so that for each coordinate, all k either take the same value or all k take a different value. Naslund and Sawin [5] apply the slice rank method to the conjecture above for the case $k=3$ and find a better dependence on D then what follows from the cap-set bound.

Theorem 2.6. Let $D \geq 3$ and $A \subseteq(\mathbb{Z} / D \mathbb{Z})^{n}$ sunflower-fee. Then $|A| \leq\left(\frac{3}{2^{2 / 3}}(D-1)^{2 / 3}\right)^{n}$.
Proof. There are D characters $\chi: \mathbb{Z} / D \mathbb{Z} \rightarrow \mathbb{C}^{x}$, since we have $\chi(0)=1$ and hence $\chi(1)^{D}=\chi(D)=1$. Because

$$
\frac{1}{|D|} \sum_{\chi} \chi(a-b)=\left\{\begin{array}{ll}
1 & a=b \\
0 & a \neq b
\end{array},\right.
$$

we find

$$
\frac{1}{|D|} \sum_{\chi} \chi(a-b)+\chi(b-c)+\chi(a-c)= \begin{cases}0 & a, b, c \text { distinct } \\ 1 & \text { exactly two of } a, b, c \text { equal } \\ 3 & a=b=c\end{cases}
$$

This means that

$$
T: A \times A \times A \rightarrow \mathbb{C}:(x, y, z) \mapsto \prod_{j=1}^{n}\left(\frac{1}{|D|} \sum_{\chi} \chi\left(x_{i}\right) \overline{\chi\left(y_{i}\right)}+\chi\left(y_{i}\right) \overline{\chi\left(z_{i}\right)}+\chi\left(x_{i}\right) \overline{\chi\left(z_{i}\right)}-1\right)
$$

is non-zero if and only if x, y, z form a sunflower (which is impossible) or are equal. This shows $|A|$ equals the slice rank of T (by Lemma 1.1). Again, we can express T as a linear combination of terms

$$
\prod_{i} \chi_{i}\left(x_{i}\right) \prod_{j} \psi_{j}\left(y_{j}\right) \prod_{k} \xi_{k}\left(z_{k}\right) .
$$

Since within each product at most $2 n$ charactersterms are non-trivial (i.e. not equal to the always one character), the pigeonhole principle gives

$$
|A| \leq 3 \sum_{k \leq 2 n / 3}\binom{n}{k}(D-1)^{k} .
$$

(The 3 is from the pigeonhole principle and $D-1$ is the number of non-trivial characters.) Calculations and an amplification argument now give the claimed bound.

3 Cap-set bound implies weak sunflower conjecture

Recall that distinct $x, y, z \in \mathbb{F}_{3}^{n}$ form a 3-sunflower if for all $i \in[n]$, either $x_{i}=y_{i}=z_{i}$ or x_{i}, y_{i}, z_{i} are distinct, that is, $x_{i}+y_{i}+z_{i}=0+1+2=0$. This gives the following observation.

Observation 3.1. A set of vectors \mathcal{A} in \mathbb{F}_{3}^{n} is sunflower-free if and only if it is a cap set.
The cap-set bound hence proves the conjecture below.
Conjecture 3.2 (Cap-set conjecture). There is an $\epsilon>0$ and $n_{0} \in \mathbb{N}$ so that for $n>n_{0}$ any set of at least $3^{(1-\epsilon) n}$ vectors in \mathbb{F}_{3}^{n} contains a 3 -sunflower.

We will use the following theorem as a black box.
Theorem 3.3 (Theorem 2.4 in [1]). If the Erdös-Szemerédi Sunflower conjecture does not hold for $k=3$, then for every $\epsilon>0$, there exist infinitely many n so that for all $2 \leq c<\frac{1}{\sqrt{\epsilon}}$ there exist sunflower-free families \mathcal{A}_{c} of n-subsets of $[c n]$ with $\left|\mathcal{A}_{c}\right| \geq\binom{ c n}{n}^{1-\epsilon}$.

Alon et al. [1] use this theorem in their proof that the conjecture below implies the case $k=3$ of the Erdős-Szemerédi Sunflower conjecture.
Conjecture 3.4 (Auxiliary conjecture). There is an $\epsilon_{0}>0$ so that for $D>D_{0}$ and $n>n_{0}$ any set of at least $D^{\left(1-\epsilon_{0}\right) n}$ vectors in $[D]^{n}$ contains a 3-sunflower.
Theorem 3.5. The Cap-set conjecture implies the case $k=3$ of the Erdös-Szemerédi Sunflower conjecture.
Proof. We first show that the Cap-set conjecture implies the Auxiliary conjecture. Suppose the cap set conjecture holds true for $\epsilon>0$ and $n_{0} \in \mathbb{N}$. Let $D_{0}=3, \epsilon_{0}=\epsilon$ and let $D>D_{0}$ and $n>n_{0}$ be given.

Construct an injective map

$$
f:[D] \rightarrow \mathbb{F}_{3}^{d}
$$

for $d=\log _{3}(D)$ by mapping each element of $[D]$ to its ternary representation. For each $\mathcal{A} \subseteq[D]^{n}$, we can construct a set $\mathcal{A}^{\prime} \subseteq f([D])^{n} \subseteq \mathbb{F}_{3}^{d n}$ by mapping $v=\left(v_{1}, \ldots, v_{n}\right)$ to $v^{\prime}=\left(f\left(v_{1}\right), \ldots, f\left(v_{n}\right)\right)$. Note that if $v^{\prime}, u^{\prime}, w^{\prime} \in \mathcal{A}^{\prime}$ form a sunflower for given $v, u, w \in \mathcal{A}$, then $f\left(v_{i}\right), f\left(u_{i}\right), f\left(w_{i}\right) \in f([D])$ are either all the same or all distinct. Since f is injective, we find that v_{i}, u_{i}, w_{i} are either all the same or all distinct (for all $i \in[n]$). Hence $v, u, w \in \mathcal{A}$ form a sunflower as well. Now note that $\left|\mathcal{A}^{\prime}\right|=|\mathcal{A}|$, so that $|\mathcal{A}| \geq D^{(1-\epsilon) n}=3^{(1-\epsilon) d n}$ implies that \mathcal{A}^{\prime} has sunflower by assumption (since $d n \geq n>n_{0}$). This proves the Auxiliary conjecture.

Suppose we have shown the Auxiliary conjecture for ϵ_{0}, D_{0} and n_{0}. Suppose Conjecture 2.2 is false. By Theorem 3.3, we can choose $\epsilon<\min \left(\epsilon_{0} / 2,1 / D_{0}^{2}\right)$ so that for infinitely many n, for each $2 \leq c \leq D_{0}$ there exists a sunflower-free family \mathcal{A}_{c} of at least $\binom{c n}{n}^{1-\epsilon}$ subsets of $[c n]$ of size n. We will now give a family of vectors \mathcal{A} in $\left[D_{0}\right]^{D_{0} n}$ of size at least $D_{0}^{\left(1-\epsilon_{0}\right) D_{0} n}$. This will then have a sunflower by our Auxiliary conjecture, which will correspond to a sunflower in one of the \mathcal{A}_{c}, which we chose sunflower-free

The vectors in \mathcal{A} have entries in $\mathbb{F}_{D_{0}}$ and have $D_{0} n$ coordinates. The family $\mathcal{A}_{D_{0}}$ consists of subsets of [$\left.D_{0} n\right]$ of size n; for each $A_{0} \in \mathcal{A}_{D_{0}}$, we have a vector $v \in \mathcal{A}$ so that $\left\{i \in\left[D_{0} n\right]: v_{i}=0\right\}=A_{0}$. In fact, for each $A_{0} \in \mathcal{A}_{D_{0}}, A_{1} \in \mathcal{A}_{\left(D_{0}-1\right)}, \ldots, A_{\left(D_{0}-2\right)} \in \mathcal{A}_{2}$ we have a vector $v=v_{A_{0}, \ldots, A_{D_{0}-2}} \in \mathcal{A}$ for which

$$
\left\{i \in\left[D_{0} n\right]: v_{i}=0\right\}=A_{0}
$$

and for which similarly, after specifying $(j-1) n$ coordinates using A_{1}, \ldots, A_{j-1}, the set $\left\{i \in\left[D_{0} n\right]: v_{i}=\right.$ $j\}$ is determined by the coordinates of A_{j}. After using each A_{j} to fill in n coordinates, the remaining n coordinates of each vector are set to $D_{0}-1$. This defines a family \mathcal{A} of size

$$
\left|\mathcal{A}_{D_{0}}\right| \cdots\left|\mathcal{A}_{2}\right| \geq\left(\binom{D_{0} n}{n}\binom{\left(D_{0}-1\right) n}{n} \cdots\binom{2 n}{n}\right)^{1-\epsilon}=\binom{D_{0} n}{n, n \ldots, n}^{1-\epsilon} \geq D_{0}^{D_{0} n\left(1-o_{n}(1)\right)\left(1-\epsilon_{0} / 2\right)}
$$

using Stirlings approximation formula. This means that for n sufficiently large, we can find such a family \mathcal{A} of size at least $D_{0}^{\left(1-\epsilon_{0}\right) D_{0} n}$ as desired.

Finally, suppose $u, v, w \in \mathcal{A}$ form a sunflower. Since $\mathcal{A}_{D_{0}}$ is sunflower-free, they must have the same set of zeros. Inductively (from D_{0} to 2), \mathcal{A}_{j} being sunflower-free implies that u, v, w take the value $D_{0}-j$ on the same coordinates. This implies $u=v=w$, a contradiction.

4 Matrix multiplication

Definition 4.1. An Abelian group G with at least two elements and a subset S of G satsify the no three disjoint equivoluminous subsets property if no three non-empty disjoint subsets $T_{1}, T_{2}, T_{3} \subseteq S$ have the same sum in G.

Coppersmith and Winograd show that if there exists a sequence of pairs $\left(G_{n}, S_{n}\right)$ with the no three disjoint equivoluminous subset property so that $\frac{\log \left(\left|G_{n}\right|\right)}{\left|S_{n}\right|} \rightarrow 0$, that then fast matrix multiplication is possible (that is, for each $\epsilon>0$, there is an $O\left(n^{2+\epsilon}\right)$ time algorithm).

Theorem 4.2. If the Erdös-Szemerédi Sunflower conjecture holds for $k=3$ and ϵ_{0}, then $\frac{\log (G)}{|S|} \geq \epsilon_{0}$ for all (G, S) with the no three disjoint equivoluminous subset property.

Proof. Given S, consider all its $2^{|S|}$ subsets. For each $T \subseteq S$, denote $\sigma(T)=\sum_{g \in T} g$. By the pigeonhole principle, there exists a $g \in G$ so that $|\{T: \sigma(T)=g\}| \geq \frac{2^{|S|}}{|G|}$. If $\frac{\log (G)}{|S|}<\epsilon_{0}$, then $|G|<2^{|S| \epsilon_{0}}=$ $2^{|S|} 2^{-|S|+\epsilon_{0}|S|}$, so that $2^{|S|} /|G|>2^{\left(1-\epsilon_{0}\right)|S|}$. Hence we can find a sunflower $T_{1}^{\prime}, T_{2}^{\prime}, T_{3}^{\prime}$ so that $\sigma\left(T_{i}^{\prime}\right)=g$ for $i \in\{1,2,3\}$. The sets $T_{i}:=T_{i}^{\prime} \backslash\left(T_{1}^{\prime} \cap T_{2}^{\prime} \cap T_{3}^{\prime}\right)$ are disjoint and also have the same sum. This violates the no three disjoint equivoluminous subsets property.

They moreover give a "multicolored version" of the Cap-set conjecture and prove that this implies negative results for techniques of Cohn et al. [3].

Conjecture 4.3 (Multicolored sunflower conjecture). There exists an $\epsilon>0$ so that for $n>n_{0}$ every $\mathcal{A} \subseteq \mathbb{F}_{3}^{n} \times \mathbb{F}_{3}^{n} \times \mathbb{F}_{3}^{n}$ of at least $3^{(1-\epsilon) n}$ ordered sunflowers (i.e. triples (x, y, z) so that $\{x, y, z\}$ forms a sunflower in \mathbb{F}_{3}^{n}) contains a multicolored sunflower (triples (x_{i}, y_{i}, z_{i}) for $i=1,2,3$ so that x_{1}, y_{2}, z_{3} form a sunflower).

Blasiak et al. [2] check that the proof of Ellenberg and Gijswijt works in the multicolored case, disproving the strong USP conjecture. This implies that the method of Cohn et al. [3] cannot work in Abelian groups such as \mathbb{F}_{p} (although it might still work for e.g. non-Abelian groups).

References

[1] N. Alon, A. Shpilka, and C. Umans. On sunflowers and matrix multiplication. In IEEE 27th Conference on Computational Complexity, pages 214-223, 2012.
[2] J. Blasiak, T. Church, H. Cohn, J. A. Grochow, and C. Umans. On cap sets and the group-theoretic approach to matrix multiplication. CoRR, 2016.
[3] H. Cohn, R. D. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic Algorithms for Matrix Multiplication. In Proceedings of the 46th Annual FOCS, 2005.
[4] F. de Zeeuw. A course in arithmetic Ramsey theory, 2017.
[5] E. Naslund and W. F. Sawin. Upper bounds for sunflower-free sets. ArXiv e-prints, 2016.
[6] T. Tao. A symmetric formulation of the Croot-Lev-Pach-Ellenberg-Gijswijt capset-bound. Blog: terrytao.wordpress.com, 2016.

