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I will give two proofs of the Erdős-Szemerédi Sunflower conjecture: a proof that uses the cap-set problem
from Alon et al. [1] and a proof from Naslund and Sawin [5] that uses the slice-rank method. I will also show
how Naslund and Sawin [5] apply the same ideas in an attempt towards the (stronger, unproved) Erdős-Rado
Sunflower conjecture. A brief note on the connection to algorithms for fast matrix multiplication is included
at the end.

1 Recap: the cap-set problem and slice rank

A k-tensor is a function f : Xk → F for F a field and X a finite set. A tensor f has slice rank one if it can
be written as a product gh where g, h depend on disjoint, non-empty subsets of the variables. For example,
we might have f(x, y, z) = g(x)h(y, z) for k = 3. The slice rank of a tensor f is the minimum number m
so that f =

∑m
i=1 fi with f1, . . . , fm of slice rank one. The lemma below is a simplification of a lemma of

Tao [6].

Lemma 1.1 (Slice rank of diagonal tensors). If F : Xk → F has the property that F (x1, . . . , xk) 6= 0 if and
only if x1 = · · · = xk, then F has slice rank |X|.

Definition 1.2. A cap set is a subset A ⊆ Fn3 that does not contain any line (three-term arithmetic progres-
sion)

{x, x+ r, x+ 2r} for x ∈ Fn3 , r ∈ Fn3 \ {0n}. N

Note that
x+ y + z = 0n ⇐⇒ x = y = z or {x, y, z} forms a line,

if lines are defined as above. Hence if A is a cap set, then x+ y + z = 0n ⇐⇒ x = y = z.

Theorem 1.3 (Croot-Lev-Pach-Ellenberg-Gijswijt cap-set bound). If A ⊆ FD3 is a cap set, then |A| ≤ 3CD

where C ≤ 2.76 is a constant.

Proof sketch. Note that in F3 we have 1− x2 6= 0 ⇐⇒ x = 0. Hence

F : A×A×A→ F3 : (x, y, z)→
D∏
i=1

(1− (xi + yi + zi)
2)

is non-zero if and only if x + y + z = 0, which is equivalent to x = y = z (as we saw above). This means
F has slice rank |A| by Lemma 1.1. On the other hand, F expands as∑
I,J,K∈{0,1,2}D
|I|+|J |+|K|≤2D

cIJKx
IyJzK =

∑
I∈{0,1,2}D
|I|≤2D/3

xIfI(y, z) +
∑

J∈{0,1,2}D
|J |≤2D/3

yJgJ(x, z) +
∑

K∈{0,1,2}D
|K|≤2D/3

zKhK(x, y).

This expresses F in terms of tensors of slice rank one, hence this gives an upper bound on |A|. See e.g. De
Zeeuw [4] for the calculations.
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2 Slice rank applied to sunflower conjectures

Definition 2.1. A k-sunflower or ∆-system is a set of subsets S so that |S| = k and

A ∩B =
⋂
C∈S

C ∀A,B ∈ S : A 6= B. N

A set of subsets A is called k-sunflower free if no k members form a sunflower. We omit k in the case
k = 3.

Conjecture 2.2 (Erdős-Szemerédi Sunflower conjecture). Let k ≥ 3. Then there exists a constant ck < 2 so
that for each k-sunflower free set A of subsets of {1, . . . , n} we have |A| ≤ cnk .

The cap-set bound gives ck ≤ 1.938 (see [5, Theorem 8]). Naslund and Sawin [5] apply the slice rank
method directly to the Erdős-Szemerédi Sunflower conjecture.

Theorem 2.3. If A ⊆ P([n]) is sunflower-free, then |A| ≤ 3(n+ 1)Cn for C = 3/22/3 ≤ 1.89.

Proof. Identify P([n]) with {0, 1}n. Since A is sunflower-free, any three distinct vectors x, y, z ∈ A have
xi + yi + zi = 2 for some i ∈ [n]. Fix m ∈ {0, . . . , n}. Let Am = {x ∈ A |

∑
i xi = m}. The function

F : A3
m → Q : (x, y, z) 7→

n∏
i=1

(2− (xi + yi + zi))

takes a non-zero value if and only if x = y = z. (If e.g. x = y 6= z, then there must be an i for which
xi = 1 = yi 6= zi, since all vectors have the same size.) By Lemma 1.1, the slice rank of F is |Am|.

On the other hand, there exist coefficients cI,J,K so that

n∏
i=1

(2− (xi + yi + zi)) =
∑

I,J,K∈{0,1}n
|I|+|J |+|K|≤n

cIJKx
IyJzK .

By the pigeonhole principle, |I| + |J | + |K| ≤ n implies that one of the summands has to be at most n/3,
which means that we can find functions fI , gJ , hK so that∑

I∈{0,1}n
|I|≤n/3

xIfI(y, z) +
∑

J∈{0,1}n
|J |≤n/3

yJgJ(x, z) +
∑

K∈{0,1}n
|K|≤n/3

zKhK(x, y).

This expresses F as a sum of ≤ 3
∑

k≤n/3
(
n
k

)
tensors of slice rank one. We conclude

|A| =
n∑

m=0

|Am| ≤ (n+ 1)3

n/3∑
k=0

(
n

k

)
.

To find the precise bound, note that for any 0 < x < 1 (by the binomial theorem)

x−n/3(1 + x)n =
n∑
k=0

(
n

k

)
xk−n/3 >

n/3∑
k=0

(
n

k

)
xk−n/3 >

n/3∑
k=0

(
n

k

)

The function x−1/3(1 + x) achieves it maximum at x = 1/2 with value 3/22/3.
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Conjecture 2.4 (Erdős-Rado Sunflower conjecture). Let k ≥ 3. Then there exists a constant Ck > 0 so that
any m-uniform, k-sunflower free family A has at most Cmk elements.

The Erdős-Rado Sunflower conjecture implies the Erdős-Szemerédi Sunflower conjecture. Alon et al.
[1, Theorem 2.6] prove that the Erdős-Rado Sunflower conjecture is equivalent to the conjecture below; their
proof works in particular for the case k = 3.

Conjecture 2.5. For every k ≥ 3, there exists a constant bk so that for all D ≥ k and A ⊆ (Z/DZ)n

k-sunflower-free we have |A| ≤ bnk .

A k-sunflower in (Z/DZ)n is a set of k elements so that for each coordinate, all k either take the same
value or all k take a different value. Naslund and Sawin [5] apply the slice rank method to the conjecture
above for the case k = 3 and find a better dependence on D then what follows from the cap-set bound.

Theorem 2.6. Let D ≥ 3 and A ⊆ (Z/DZ)n sunflower-fee. Then |A| ≤ ( 3
22/3

(D − 1)2/3)n.

Proof. There are D characters χ : Z/DZ → Cx, since we have χ(0) = 1 and hence χ(1)D = χ(D) = 1.
Because

1

|D|
∑
χ

χ(a− b) =

{
1 a = b

0 a 6= b
,

we find

1

|D|
∑
χ

χ(a− b) + χ(b− c) + χ(a− c) =


0 a, b, c distinct,
1 exactly two of a, b, c equal
3 a = b = c.

This means that

T : A×A×A→ C : (x, y, z) 7→
n∏
j=1

(
1

|D|
∑
χ

χ(xi)χ(yi) + χ(yi)χ(zi) + χ(xi)χ(zi)− 1

)

is non-zero if and only if x, y, z form a sunflower (which is impossible) or are equal. This shows |A| equals
the slice rank of T (by Lemma 1.1). Again, we can express T as a linear combination of terms∏

i

χi(xi)
∏
j

ψj(yj)
∏
k

ξk(zk).

Since within each product at most 2n charactersterms are non-trivial (i.e. not equal to the always one char-
acter), the pigeonhole principle gives

|A| ≤ 3
∑

k≤2n/3

(
n

k

)
(D − 1)k.

(The 3 is from the pigeonhole principle and D− 1 is the number of non-trivial characters.) Calculations and
an amplification argument now give the claimed bound.

3 Cap-set bound implies weak sunflower conjecture

Recall that distinct x, y, z ∈ Fn3 form a 3-sunflower if for all i ∈ [n], either xi = yi = zi or xi, yi, zi are
distinct, that is, xi + yi + zi = 0 + 1 + 2 = 0. This gives the following observation.
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Observation 3.1. A set of vectors A in Fn3 is sunflower-free if and only if it is a cap set.

The cap-set bound hence proves the conjecture below.

Conjecture 3.2 (Cap-set conjecture). There is an ε > 0 and n0 ∈ N so that for n > n0 any set of at least
3(1−ε)n vectors in Fn3 contains a 3-sunflower.

We will use the following theorem as a black box.

Theorem 3.3 (Theorem 2.4 in [1]). If the Erdős-Szemerédi Sunflower conjecture does not hold for k = 3,
then for every ε > 0, there exist infinitely many n so that for all 2 ≤ c < 1√

ε
there exist sunflower-free

families Ac of n-subsets of [cn] with |Ac| ≥
(
cn
n

)1−ε.
Alon et al. [1] use this theorem in their proof that the conjecture below implies the case k = 3 of the

Erdős-Szemerédi Sunflower conjecture.

Conjecture 3.4 (Auxiliary conjecture). There is an ε0 > 0 so that for D > D0 and n > n0 any set of at
least D(1−ε0)n vectors in [D]n contains a 3-sunflower.

Theorem 3.5. The Cap-set conjecture implies the case k = 3 of the Erdős-Szemerédi Sunflower conjecture.

Proof. We first show that the Cap-set conjecture implies the Auxiliary conjecture. Suppose the cap set
conjecture holds true for ε > 0 and n0 ∈ N. Let D0 = 3, ε0 = ε and let D > D0 and n > n0 be given.

Construct an injective map
f : [D]→ Fd3

for d = log3(D) by mapping each element of [D] to its ternary representation. For each A ⊆ [D]n, we
can construct a set A′ ⊆ f([D])n ⊆ Fdn3 by mapping v = (v1, . . . , vn) to v′ = (f(v1), . . . , f(vn)). Note
that if v′, u′, w′ ∈ A′ form a sunflower for given v, u, w ∈ A, then f(vi), f(ui), f(wi) ∈ f([D]) are
either all the same or all distinct. Since f is injective, we find that vi, ui, wi are either all the same or all
distinct (for all i ∈ [n]). Hence v, u, w ∈ A form a sunflower as well. Now note that |A′| = |A|, so that
|A| ≥ D(1−ε)n = 3(1−ε)dn implies that A′ has sunflower by assumption (since dn ≥ n > n0). This proves
the Auxiliary conjecture.

Suppose we have shown the Auxiliary conjecture for ε0, D0 and n0. Suppose Conjecture 2.2 is false.
By Theorem 3.3, we can choose ε < min(ε0/2, 1/D

2
0) so that for infinitely many n, for each 2 ≤ c ≤ D0

there exists a sunflower-free family Ac of at least
(
cn
n

)1−ε subsets of [cn] of size n. We will now give a

family of vectorsA in [D0]
D0n of size at least D(1−ε0)D0n

0 . This will then have a sunflower by our Auxiliary
conjecture, which will correspond to a sunflower in one of the Ac, which we chose sunflower-free

The vectors in A have entries in FD0 and have D0n coordinates. The family AD0 consists of subsets of
[D0n] of size n; for each A0 ∈ AD0 , we have a vector v ∈ A so that {i ∈ [D0n] : vi = 0} = A0. In fact, for
each A0 ∈ AD0 , A1 ∈ A(D0−1), . . . , A(D0−2) ∈ A2 we have a vector v = vA0,...,AD0−2

∈ A for which

{i ∈ [D0n] : vi = 0} = A0,

and for which similarly, after specifying (j− 1)n coordinates using A1, . . . , Aj−1, the set {i ∈ [D0n] : vi =
j} is determined by the coordinates of Aj . After using each Aj to fill in n coordinates, the remaining n
coordinates of each vector are set to D0 − 1. This defines a family A of size

|AD0 | · · · |A2| ≥
((

D0n

n

)(
(D0 − 1)n

n

)
· · ·
(

2n

n

))1−ε
=

(
D0n

n, n . . . , n

)1−ε
≥ DD0n(1−on(1))(1−ε0/2)

0

using Stirlings approximation formula. This means that for n sufficiently large, we can find such a family A
of size at least D(1−ε0)D0n

0 as desired.
Finally, suppose u, v, w ∈ A form a sunflower. Since AD0 is sunflower-free, they must have the same

set of zeros. Inductively (from D0 to 2), Aj being sunflower-free implies that u, v, w take the value D0 − j
on the same coordinates. This implies u = v = w, a contradiction.
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4 Matrix multiplication

Definition 4.1. An Abelian group G with at least two elements and a subset S of G satsify the no three
disjoint equivoluminous subsets property if no three non-empty disjoint subsets T1, T2, T3 ⊆ S have the
same sum in G. N

Coppersmith and Winograd show that if there exists a sequence of pairs (Gn, Sn) with the no three
disjoint equivoluminous subset property so that log(|Gn|)

|Sn| → 0, that then fast matrix multiplication is possible
(that is, for each ε > 0, there is an O(n2+ε) time algorithm).

Theorem 4.2. If the Erdős-Szemerédi Sunflower conjecture holds for k = 3 and ε0, then log(G)
|S| ≥ ε0 for all

(G,S) with the no three disjoint equivoluminous subset property.

Proof. Given S, consider all its 2|S| subsets. For each T ⊆ S, denote σ(T ) =
∑

g∈T g. By the pigeonhole

principle, there exists a g ∈ G so that |{T : σ(T ) = g}| ≥ 2|S|

|G| . If log(G)
|S| < ε0, then |G| < 2|S|ε0 =

2|S|2−|S|+ε0|S|, so that 2|S|/|G| > 2(1−ε0)|S|. Hence we can find a sunflower T ′1, T
′
2, T

′
3 so that σ(T ′i ) = g

for i ∈ {1, 2, 3}. The sets Ti := T ′i \ (T ′1 ∩ T ′2 ∩ T ′3) are disjoint and also have the same sum. This violates
the no three disjoint equivoluminous subsets property.

They moreover give a “multicolored version” of the Cap-set conjecture and prove that this implies nega-
tive results for techniques of Cohn et al. [3].

Conjecture 4.3 (Multicolored sunflower conjecture). There exists an ε > 0 so that for n > n0 every
A ⊆ Fn3 × Fn3 × Fn3 of at least 3(1−ε)n ordered sunflowers (i.e. triples (x, y, z) so that {x, y, z} forms a
sunflower in Fn3 ) contains a multicolored sunflower (triples (xi, yi, zi) for i = 1, 2, 3 so that x1, y2, z3 form
a sunflower).

Blasiak et al. [2] check that the proof of Ellenberg and Gijswijt works in the multicolored case, disproving
the strong USP conjecture. This implies that the method of Cohn et al. [3] cannot work in Abelian groups
such as Fp (although it might still work for e.g. non-Abelian groups).
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