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Abstract

In previous works an upper bound on the stability number �(G) of a graph G based on
convex quadratic programming was introduced and several of its properties were established.
The aim of this investigation is to relate theoretically this bound (usually represented by �(G))
with the well known Lovász #(G) number. To begin with, a new set of convex quadratic bounds
on �(G) that generalize and improve the bound �(G) is proposed. Then it is proved that #(G)
is never worse than any bound belonging to this set of new bounds. The main result of this note
states that one of these new bounds equals #(G), a fact that leads to a new characterization of
the Lovász theta number.

Keywords : Combinatorial Optimization, Graph Theory, Maximum Stable Set, Quadratic Pro-
gramming.

1 Introduction

Let G = (V;E) be a simple undirected graph where V = f1; : : : ; ng denotes the vertex set and E is
the edge set. It will be supposed that G has at least one edge, i.e., E is not empty. We will write
ij 2 E to denote the edge linking nodes i and j of V: The adjacency matrix AG = [aij ] of G is
de�ned by

aij =

�
1 if ij 2 E
0 if ij =2 E :

A stable set (independent set) of G is a subset of nodes of V whose elements are pairwise
nonadjacent. The stability number (or independence number) of G is de�ned as the cardinality of a
largest stable set and is usually denoted by �(G): A maximum stable set of G is a stable set with
�(G) nodes. The problem of �nding �(G) is NP-hard and thus it is suspected that it cannot be
solved in polynomial time. Even, there exists � > 0 such that to approximate �(G) within a ratio
of n�� is NP-hard (see [1]). However, several ways of approaching �(G) have been proposed in the
literature (see for example [2, 6, 9, 16] and [3] for a survey).
For any graph G with at least one edge, it can easily be proved (see proposition 2.1 below)

that �(G) � �(G); where �(G) is the optimal value of the following convex quadratic programming
problem,

(PG) �(G) = maxf2eTx� xT (H + I)x : x � 0g:

Here and hereinafter e is the n� 1 all ones vector, T stands for the transposition operation, I is the
identity matrix of order n and

H =
1

��min(AG)
AG;
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where AG is the adjacency matrix of G and �min(AG) is its smallest eigenvalue. As the trace of AG
is zero and G has at least one edge, AG is inde�nite (see [5] for details). Thus �min(H) = �1 and
this guarantees the convexity of PG because H + I is positive semide�nite.
Having in mind the nice properties of �(G) (see [14, 15]), the initial aim of this investigation

was to relate theoretically �(G) with the well known Lovász #(G) number introduced in [12] and
discussed in many publications [8, 9, 10, 11, 13]. As a consequence of this e¤ort, a new set of convex
quadratic bounds on �(G) that generalize and improve the �(G) bound is now introduced. Also, it
is shown that #(G) is never worse than any bound belonging to this set of new bounds. The main
result herein proved states that #(G) is equal to the best bound in this set. In consequence, it leads
to a characterization of #(G) by convex quadratic programming.
This note is organized as follows. In section 2 the new family of upper bounds on �(G) is

introduced and some of its properties are presented. In section 3, some di¤erent #(G) formulations
are recalled and the results relating the new introduced bounds with #(G) are established in section
4.

2 Generalizing the �(G) bound

In order to improve the upper bound �(G) we de�ne the following family of quadratic problems
which are based on a perturbation in the Hessian of the convex quadratic programming problem PG:

(PG(C)) �(G;C) = maxf2eTx� xT (HC + I)x : x � 0g;

where C = [cij ] is a non null real symmetric matrix such that cij = 0 if i = j or ij =2 E and

HC =
C

��min(C)
;

denoting �min(C) the smallest eigenvalue of C. Any matrix satisfying the conditions imposed to
matrix C will be called a weighted adjacency matrix of G. Note that as well as the adjacency
matrix AG; the matrix C is inde�nite taking into account that its trace is null and not all entries
cij are null. Consequently, since �min(HC) = �1; all problems PG(C) are convex. Note also that
�(G;AG) = �(G) and thus PG is included in the introduced family of quadratic problems.
Some basic facts about the PG(C) family of problems are given below.

Proposition 2.1 For any weighted adjacency matrix C of a graph G, the number �(G;C) is the
optimal value of a convex quadratic problem and veri�es �(G) � �(G;C); i.e., �(G;C) is an upper
bound on �(G):

Proof. As �min(HC) = �1, the problem PG(C) is convex quadratic as stated. To see that �(G;C)
is an upper bound on �(G) for all matrices C; let x be a characteristic vector of any maximum
independent set S of G (de�ned by xi = 1 if i 2 S and xi = 0 otherwise). Since the vector x is a
feasible solution of PG(C) and veri�es xTHC x = 0 (note that xixj = 0 if ij 2 E); we have

�(G;C) � 2eTx� xTx� xTHC x = 2�(G)� �(G) = �(G);

i.e., �(G) � �(G;C); for all weighted adjacency matrices C of G:
A clique of the graph G = (V;E) is any subset of V such that the induced subgraph is complete.

A minimum clique cover of G is a set of cliques of G that cover V with the least cardinality. This
minimum number of cliques can be denoted by ��(G) and, like the stability number, it is NP-hard to
compute ��(G): The partial graph associated with a minimum clique cover of G is a graph with the
same set of vertices as that of G; and whose edges are those of the complete subgraphs induced by
the cliques forming the clique cover.
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Proposition 2.2 Let G be a graph with at least one edge. IfM is the adjacency matrix of the partial
graph associated with a minimum clique cover of G, then �(G;M) � ��(G):

Proof. Suppose that ��(G) = k and denote by Gi, i = 1; : : : ; k; the complete subgraphs induced by
the cliques forming a minimum clique cover of G: Let x be an optimal solution of PG(M), where M
is the adjacency matrix of the partial graph associated with this minimum clique cover. Note that
�min(M) = �1 since M + I is formed by k all ones blocks on the diagonal (say J1; : : : ; Jk), these
blocks are positive semide�nite and any Ji-block of size at least two has a zero eigenvalue. Thus

�(G;M) = 2eTx� xT (M + I)x =
kX
i=1

2eTi xi � xTi Jixi;

where, for each i; ei and xi are respectively the subvectors of e and x whose components correspond
to the vertices of Gi. As Ji = eieTi and

�
eTi xi � 1

�2 � 0; we have 2eTi xi� xTi Jixi � 1 for all i; hence
�(G;M) � k; as required.

Note that for any graph G with at least one edge that satis�es �(G) = ��(G) (in particular for
perfect graphs), the propositions 2.1 and 2.2 allow to de�ne �(G) as follows:

�(G) = min
C
�(G;C);

where C is a weighted adjacency matrix of G:

3 The Lovász #(G) number

The Lovász #(G) number was introduced in [12] and has been subsequently studied in several publi-
cations. It is generally considered the most famous upper bound on �(G), for which various di¤erent
formulations were established in the literature (see [9, 11]). Some of these formulations are now
recalled.
An orthonormal representation of a graph G = (V;E) with V = f1; 2; : : : ; ng is a set of unit

vectors u1; u2; : : : ; un in a Euclidean space, which are orthogonal (i.e., uTi uj = 0) whenever ij =2 E.
Note that the vectors dimension is not �xed and that any graph has an orthonormal representation,
considering for example a set of pairwise orthonormal vectors.
Lovász de�ned his theta number as follows:

#(G) = min
c;u1;u2;:::;un
c unitary

max
i2V

1

(cTui)
2 ; (1)

where the minimum is taken over all vectors c with jjcjj = 1 and all orthonormal representations
u1; u2; : : : ; un of G.
As mentioned before, the inequality �(G) � ��(G) holds true for any graph G: Both of these

numbers are NP-hard to compute but they �sandwich�the number #(G) which can be computed in
polynomial time as proved by Grötschel, Lovász and Schrijver [7]. That is,

�(G) � #(G) � ��(G);

a fact known as the Lovász�s sandwich theorem (see [11]).
The paper [12] gives several characterizations of #(G): One of them is the following:

#(G) = min
A
�max(A)
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where �max(A) denotes the largest eigenvalue of A; and the minimum is taken over the set of all
symmetric matrices A = [aij ] 2 Rn�n such that aij = 1 if i = j or ij =2 E. Since we are assuming
that G has at least one edge, we can eliminate the matrix eeT from this set. In fact, if #(G) =
�max(ee

T ) = n; then ��(G) = n (recall the �sandwich�theorem) and thus G would have no edge.
Let A be one of the above symmetric matrices. As A 6= eeT we have that Q = A � eeT 6= 0 is

a weighted adjacency matrix of G: Consequently, setting A = eeT + Q; #(G) can be formulated as
follows:

#(G) = min
Q
�max(ee

T +Q); (2)

where Q is a weighted adjacency matrix of G:
Another characterization of # which is dual of (2) is the following (see [12]):

#(G) = max
B
eTBe; (3)

where B = [bij ] 2 Rn�n ranges over all positive semide�nite symmetric matrices such that bij = 0
for ij 2 E and Tr(B) = 1: (Tr(B) denotes the trace of B:)

4 Relating #(G) and �(G;C)

In this section we relate #(G) with the convex quadratic upper bounds �(G;C).

Theorem 4.1 Let G be a graph with at least one edge. Then for any weighted adjacency matrix C
of graph G; we have #(G) � �(G;C):

Proof. Let C = [cij ] be a weighted adjacency matrix of G = (V;E) and suppose that PG(C) is not
unbounded for otherwise the theorem is true.
Let x be an optimal solution of PG(C): The Karush-Kuhn-Tucker conditions applied to this

problem guarantee that the following conditions are true:

x � 0; (HC + I)x � e and xT (HC + I)x = e
Tx = �(G;C): (4)

As HC + I is positive semide�nite we can write HC + I = UTU: Thus the columns of U can be
thought of as an orthonormal representation of G:
De�ne c = ��1=2Ux where � abbreviates �(G;C): Then by (4), cT c = ��1xT (HC + I)x = 1 and

UT c = ��1=2UTUx � ��1=2e:

This inequality implies
1�

uTi c
�2 � �; for each i,

where ui denotes the column i of U . Recalling (1) we have #(G) � �(G;C) as desired.

This theorem asserts that #(G) is not worse that any �(G;C) bound. So, in particular, the
inequality #(G) � �(G) is always true. However there are many graphs for which the value of �(G)
equals #(G). In fact, it was proved in [4] that there is an in�nite number of graphs that verify
�(G) = �(G) and hence #(G) = �(G). These graphs constitute the so called class of graphs with
convex-QP stability number (one member of this class can be constructed by considering L(L(G)),
where L(G) is the line graph of a connected graph G with an even number of edges).
We state now the main result of this note which gives the announced characterization of #(G)

by convex quadratic programming.
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Theorem 4.2 Let G be a graph with at least one edge. If Q attains the optimum in (2) then
#(G) = �(G;C); where C = �Q:
Consequently, the following characterization of #(G) is valid:

#(G) = min
C
�(G;C) = min

C
max
x�0

�
2eTx� xT (HC + I)x

	
; (5)

where C is a weighted adjacency matrix of G:

Proof. Let Q be a weighted adjacency matrix of G attaining the optimum in (2) and let C = �Q:
As #(G) = �max(ee

T + Q) � �max(Q), we will divide the proof of the equality #(G) = �(G;C) in
two cases. (To simplify the notation we will sometimes use # instead of #(G).)

Case 1: #(G) = �max(Q):

Let x attain the optimum in PG(C). Then, using the positive semide�niteness of I�#�1(eeT+Q),
we have

�(G;C) = 2eTx� xT (HC + I)x = 2eTx� xT
�

�Q
��min(�Q)

+ I

�
x

= 2eTx� xT
�

�Q
�max(Q)

+ I

�
x

= 2eTx� xT
�
I � #�1Q+ #�1eeT

�
x� #�1

�
eTx

�2
= 2eTx� xT

�
I � #�1

�
eeT +Q

��
x� #�1

�
eTx

�2
� 2eTx� #�1

�
eTx

�2 � #;
since

�
#1=2 � #�1=2eTx

�2 � 0: So by theorem 4.1, we have #(G) = �(G;C) for this case.

Case 2: #(G) > �max(Q):

Let B attain the optimum in (3). Since #I � eeT �Q and B are positive semide�nite, we have

0 � Tr
�
B(#I � eeT �Q)

�
= #Tr(B)� Tr(BeeT )� Tr(BQ) = #� #� 0 = 0:

So Tr
�
B(#I � eeT �Q)

�
= 0 and then B(eeT+Q�#I) = 0; i.e., the column space of B is orthogonal

to the column space of #I � eeT � Q. (In fact, if M and N are positive semide�nite matrices and
Tr(MN) = 0, then MN = 0: To see this, let M = UTU and N = WTW . Then 0 = Tr(MN) =
Tr(UTUWTW ) = Tr(WUTUWT ). SinceWUTUWT is positive semide�nite, it implies that UWT =
0, hence MN = 0.)
The inequality #(G) > �max(Q) implies that �min(#I�Q) > 0 and hence rank(#I�Q) = n: Then

rank(#I � eeT � Q) � n � 1 and by the column spaces orthogonality, rank(B) � 1: As TrB = 1;
rank(B) = 1; and then B = #�1xxT for some vector x whose support is a stable set S: Since
eTBe = # and TrB = 1; we can choose x � 0 and thus we have eTx = xTx = #. Additionally, x is a
characteristic vector of S: (To see this, let y be the characteristic vector of S: Then yTx = eTx = #
and, by the Cauchy-Schwarz inequality, (yTx)2 � (xTx)(yT y): So # � jSj and by the maximality
of #, we have yT y = #. Hence, the Cauchy-Schwarz inequality is satis�ed with equality and this
implies x = y.)
Using once more the orthogonality of the column spaces of B and #I�eeT �Q; we conclude that�

eeT +Q
�
x = #x; and hence �Qx = #(e� x): Then x satis�es the Karush-Kuhn-Tucker conditions

associated to PG(C) (recall (4)) as:

� x � 0;
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� (HC + I)x =
�

�Q
�max(Q)

+ I
�
x = �Qx

�max(Q)
+ x = #

�max(Q)
(e� x) + x � e; since # � �max(Q); and

� xT (HC + I)x = xTx = eTx = #; since x is a characteristic vector of a stable set.

Consequently, by the positive semide�niteness of HC + I; #(G) = �(G;C) is also true for case 2.
Finally, the proved equality and the de�nition of Q imply the characterization (5).
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