On the Shannon capacity of sums and products of graphs
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Abstract Let ©(G) denote the Shannon capacity of a graph G. We give an elementary proof
of the equivalence, for any graphs G and H, of the inequalities ©(G U H) > O(G) + O(H) and
O(GX H) > 6(G)O(H). This was shown independently by Wigderson and Zuiddam [2022] using
Kadison-Dubois duality and the Axiom of choice.
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1. Introduction

Let G be a graph. (All graphs in this paper are undirected and simple.) A stable set in
G is a set of pairwise nonadjacent vertices. The stable set number o(G) is the maximum
cardinality of a stable set in G.

The sum G + H of graphs G and H is the disjoint union of G and H. Trivially,

(1) a(G+ H) =a(G) + a(H).

The strong product GH of G and H is the graph with vertex set V(G) x V(H) where
distinct (u,v) and (u/,v") in V(G) x V(H) are adjacent if and only if (i) v and u’ are equal
or adjacent in G and (ii) v and v’ are equal or adjacent in H.

Since sum and strong product are associative, commutative, and distributive (up to
isomorphism), this makes the set of graphs to a commutative semiring, with unit the one-
vertex graph K. Sum and strong product are often denoted by G LI H and GX H, but the
semiring notation G + H and GH is more efficient here.

As the cartesian product of stable sets in G and H is a stable set in GH we have

(2) a(GH) = a(G)a(H),

but strict inequality may occur, even if G = H (for instance for G = H = (5, the five-cycle).
This made Shannon [1956] define what is now called the Shannon capacity ©(G) of a graph
G:

(3) O(G) := supa(GF)V*F = lim a(GF)V/*.
keN k—oo
The second equality in (3) follows from (2) and Fekete’s lemma [1923]. (In fact, Shannon
introduced log ©(G) as the ‘zero-error capacity’ of the ‘channel’ G.)
Inequality (2) implies

(4) O(GH) > 6(G)O(H).

Haemers [1979] (disproving a conjecture of Shannon [1956]) gave examples of graphs G, H
with strict inequality in (4). In fact, Haemers showed that the ‘Schléfli graph’ G satisfies
0(@)O(G) < [V(G)] < a(GG) < ©(GG). Here G is the graph complementary to G.
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On the other hand, for each graph G and n € N:
(5) e(G") = e(G)",

as follows directly from definition (3).

The value of ©(C5) was for a long time an open question, until Lovész [1979] introduced
the upper bound 9(G) on O(G) yielding ©(Cs) = /5. Since, as Lovasz proved, 9(GH) =
Y(G)Y(H) for all G, H, the Haemers examples imply that O(G) < J(G) may occur.

As for the sum, Shannon showed that for all graphs G and H one has

(6) O(G+H)>06(G)+ O(H).

(For completeness, we give a proof in Section 2 below.) Shannon conjectured that for all
G, H equality holds in (6). This was disproved by Alon [1998], by displaying graphs G' and
H with ©(G + H) > O(G) + ©(H). In fact, strict inequality holds for any G and H that
satisfy ©(GH) > O(G)O(H), as follows (using (5) and (6)) from

(7) O(G+H)?=0((G+H)?
O(G)? +20(GH) +O(H)?

= O(G*+2GH+H?) > O(G*)+20(GH)+0O(H?) =
> 0(G)?+20(G)O(H) +O(H)* = (6(G) + O(H))>.

So Haemers’ counterexamples G, H for products also work for sums.
In this paper we give an elementary proof of the fact that for all G, H:

(8) O(GH) > O(G)O(H) <+« O(G+H)>0(G)+O(H).

(see Section 3). This was proved (independently) by Wigderson and Zuiddam [2022], using
Strassen’s theory of asymptotic spectra (based on Kadison-Dubois duality) and the Axiom
of choice.

More strongly, consider any n € N and graphs G1,...,G,. Then for any polynomial
p € N[z1,...,z,] one has

(9) O(p(G1,...,Gn)) = p(O(G1),...,0(G,)).

(This follows from (6) and (4).) Now if equality holds in (9) for one polynomial p in which
each of the variables z1, ..., z, occurs, then equality holds in (9) for all polynomials p. For
this result of Wigderson and Zuiddam [2022] we also give an elementary proof in Section 4.
2. Shannon’s inequality

For self-containedness of this paper, we give a proof of Shannon’s inequality:

Theorem 1 (Shannon [1956]). ©(G + H) > O(G) + O(H).

Proof. For all n,t > 1, using (1) and (2):

(100 a((@+H)") =ad ()G H") =3 (UG H) =
k=0 k=0
; (Z)a(Gk)a(H”_k) > - (Z)Q(Gt)Lk/tJa(Ht)L(n—k)/tJ >
k=0 k=0



n

Z Gt k/t Gt) (Ht)(n—k)/ta(Ht)—l _
k=0
(Oé(Gt)l/t+Q(Ht)l/t)na(Gt)_lOé(Ht)_l

So for each ¢t > 1:

(11) O(G + H) = supa((G + H)")'/" >
neN
sup(a(Gt)l/t + a(Ht)Ut)a(Gt)_l/na(Ht)_l/n _ a(Gt)l/t —i—Ot(Ht)l/t.
neN
So letting t — oo gives the theorem. |

(Note that this proof also applies if « is replaced by any superadditive and supermulti-
plicative graph function.)

3. Equivalence of ©(GH) > O(G)O(H) and O(G + H) >
O(G) + 6(H)

Theorem 2. ©(GH) > O(G)O(H) if and only if ©(G + H) > O(G) + ©O(H).

Proof. Necessity follows from (7). To see sufficiency, assume O(GH) < ©(G)O(H). Then
for all 4, j € N, using (4) and (5):

(12) O(G'H)O(G)O(H)! = O(G'HO(G)O(HY) < O((GH)™) = ©(GH)™ <
O(G)e(H) ™.

So O(G'H’) < ©(G)'O(H)’. Hence for each n, using (1):

n n

(13) a(G+H)") =a)_ (DG"H" ) =) (Na(G*H" ) <
k=0 k=0
Z (Me(GrH"*) < Z (Me(G)ke(H)" ™" = (8(G) + O(H))".
k=0 k=0
Taking n-th roots and letting n — oo gives O(G + H) < O(G) + O(H). |

4. Extension to polynomials

We also give an elementary proof of the following extension of Theorem 2, that was shown
by Wigderson and Zuiddam [2022] using Kadison-Dubois duality and the Axiom of choice.
For given graphs Gy, ..., Gy, define

(14) P={peNzy,...,z,] | O(p(G1,...,Gn)) = p(O(G1),...,0(Gp))}.

Theorem 3. Let Gy,...,G, be graphs with at least one vertex. Then P = N[z1,...,xy,] if
and only if P contains a polynomial in which all variables x1, ..., xy, occur.



Proof. Necessity being trivial, we prove sufficiency. Let G := (G1,...,Gy) and O(G) =
(O(G1),...,0(Gyr)). So p(O(G)) < O(p(G)) for any polynomial p € N[zy, ..., z,].
We first show that for p,q € N[zq,...,z,]:

(15) ifp+qeP, thenpeP.
Indeed,
(16) O((r+a)(G)) = (p+ 9)(6(G)) =p(O(G)) + 4(6(G)) < O(P(G)) + O(¢(G)) <

O(p(GQ) +q(G)) = 6((p + ¢)(G)).

Hence we have equality throughout, implying O(p(G)) = p(O(G)). This proves (15).
Similarly,

(17) if pg € P and ¢ # 0, then p € P.
Indeed,

(18) O((pe)(GQ)) = (p9)(B(Q)) = p(B(G))9(0(G)) < O(p(G))O(¢(G)) <
O(p(G)e(G)) = 6((pe)(G))-

Hence we have equality throughout, implying O(p(G)) = p(O(G)). This proves (17).
Moreover, for p € N[z1,...,z,] and k € N,

(19) if p € P then p* € P.
Indeed, if p € P, then
(20) 0(p"(@)) = 8(p(G)*) = (B((@))* = (n(B(Q))" = (*(8(G))),

proving (19).

Now let p € P with each x,...,xz, occurring in p. Then for some k € N, p* contains
as term a monomial ¢ in which each variable occurs at least once. As p* € P by (19), we
know by (15) that ¢ € P. Now for each monomial p in N[zq,...,z,] there exists a large
enough N such that p is a divisor of ¢V. So by (14), each monomial belongs to P.

Now consider any polynomial » = ¢; + --- + ¢ in N[z1,...,2,], where each ¢; is a

monomial. Then for each i1,...,i; € N, pu:= H§:1 q;-j is a monomial, implying

t t

(21) (][ (@) = (@) = ne(@) = [[ueE
j=1

(22)  ar(@NH=a(F @ =a Y 1) [[e@") =

Jj=1 D] eens it EN j=1
i1t tig=k
t t
k i k
> Gldedla@ns > G L)e]la@") =
8] yeees i €N ‘771 ‘il AAAAA in €N Jfl
i1+ Fig=k i1+ Fig=k
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Taking k-th roots and letting k — oo we obtain ©(r(G)) < r(6(G)). Sor € P. |
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