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Abstract Let Θ(G) denote the Shannon capacity of a graph G. We give an elementary proof

of the equivalence, for any graphs G and H, of the inequalities Θ(G t H) > Θ(G) + Θ(H) and

Θ(G �H) > Θ(G)Θ(H). This was shown independently by Wigderson and Zuiddam [2022] using

Kadison-Dubois duality and the Axiom of choice.
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1. Introduction

Let G be a graph. (All graphs in this paper are undirected and simple.) A stable set in
G is a set of pairwise nonadjacent vertices. The stable set number α(G) is the maximum
cardinality of a stable set in G.

The sum G+H of graphs G and H is the disjoint union of G and H. Trivially,

α(G+H) = α(G) + α(H).(1)

The strong product GH of G and H is the graph with vertex set V (G) × V (H) where
distinct (u, v) and (u′, v′) in V (G)× V (H) are adjacent if and only if (i) u and u′ are equal
or adjacent in G and (ii) v and v′ are equal or adjacent in H.

Since sum and strong product are associative, commutative, and distributive (up to
isomorphism), this makes the set of graphs to a commutative semiring, with unit the one-
vertex graph K1. Sum and strong product are often denoted by GtH and G�H, but the
semiring notation G+H and GH is more efficient here.

As the cartesian product of stable sets in G and H is a stable set in GH we have

α(GH) ≥ α(G)α(H),(2)

but strict inequality may occur, even if G = H (for instance for G = H = C5, the five-cycle).
This made Shannon [1956] define what is now called the Shannon capacity Θ(G) of a graph
G:

Θ(G) := sup
k∈N

α(Gk)1/k = lim
k→∞

α(Gk)1/k.(3)

The second equality in (3) follows from (2) and Fekete’s lemma [1923]. (In fact, Shannon
introduced log Θ(G) as the ‘zero-error capacity’ of the ‘channel’ G.)

Inequality (2) implies

Θ(GH) ≥ Θ(G)Θ(H).(4)

Haemers [1979] (disproving a conjecture of Shannon [1956]) gave examples of graphs G,H
with strict inequality in (4). In fact, Haemers showed that the ‘Schläfli graph’ G satisfies
Θ(G)Θ(G) < |V (G)| ≤ α(GG) ≤ Θ(GG). Here G is the graph complementary to G.
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On the other hand, for each graph G and n ∈ N:

Θ(Gn) = Θ(G)n,(5)

as follows directly from definition (3).
The value of Θ(C5) was for a long time an open question, until Lovász [1979] introduced

the upper bound ϑ(G) on Θ(G) yielding Θ(C5) =
√

5. Since, as Lovász proved, ϑ(GH) =
ϑ(G)ϑ(H) for all G,H, the Haemers examples imply that Θ(G) < ϑ(G) may occur.

As for the sum, Shannon showed that for all graphs G and H one has

Θ(G+H) ≥ Θ(G) + Θ(H).(6)

(For completeness, we give a proof in Section 2 below.) Shannon conjectured that for all
G,H equality holds in (6). This was disproved by Alon [1998], by displaying graphs G and
H with Θ(G + H) > Θ(G) + Θ(H). In fact, strict inequality holds for any G and H that
satisfy Θ(GH) > Θ(G)Θ(H), as follows (using (5) and (6)) from

(7) Θ(G+H)2 = Θ((G+H)2) = Θ(G2+2GH+H2) ≥ Θ(G2)+2Θ(GH)+Θ(H2) =
Θ(G)2 + 2Θ(GH) + Θ(H)2 > Θ(G)2 + 2Θ(G)Θ(H) + Θ(H)2 = (Θ(G) + Θ(H))2.

So Haemers’ counterexamples G,H for products also work for sums.
In this paper we give an elementary proof of the fact that for all G,H:

(8) Θ(GH) > Θ(G)Θ(H) ⇐⇒ Θ(G+H) > Θ(G) + Θ(H).

(see Section 3). This was proved (independently) by Wigderson and Zuiddam [2022], using
Strassen’s theory of asymptotic spectra (based on Kadison-Dubois duality) and the Axiom
of choice.

More strongly, consider any n ∈ N and graphs G1, . . . , Gn. Then for any polynomial
p ∈ N[x1, . . . , xn] one has

Θ(p(G1, . . . , Gn)) ≥ p(Θ(G1), . . . ,Θ(Gn)).(9)

(This follows from (6) and (4).) Now if equality holds in (9) for one polynomial p in which
each of the variables x1, . . . , xn occurs, then equality holds in (9) for all polynomials p. For
this result of Wigderson and Zuiddam [2022] we also give an elementary proof in Section 4.

2. Shannon’s inequality

For self-containedness of this paper, we give a proof of Shannon’s inequality:

Theorem 1 (Shannon [1956]). Θ(G+H) ≥ Θ(G) + Θ(H).

Proof. For all n, t ≥ 1, using (1) and (2):

(10) α((G+H)n) = α(

n∑
k=0

(
n
k

)
GkHn−k) =

n∑
k=0

(
n
k

)
α(GkHn−k) ≥

n∑
k=0

(
n
k

)
α(Gk)α(Hn−k) ≥

n∑
k=0

(
n
k

)
α(Gt)bk/tcα(Ht)b(n−k)/tc ≥
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n∑
k=0

(
n
k

)
α(Gt)k/tα(Gt)−1α(Ht)(n−k)/tα(Ht)−1 =

(α(Gt)1/t + α(Ht)1/t)nα(Gt)−1α(Ht)−1.

So for each t ≥ 1:

(11) Θ(G+H) = sup
n∈N

α((G+H)n)1/n ≥

sup
n∈N

(α(Gt)1/t + α(Ht)1/t)α(Gt)−1/nα(Ht)−1/n = α(Gt)1/t + α(Ht)1/t.

So letting t→∞ gives the theorem.

(Note that this proof also applies if α is replaced by any superadditive and supermulti-
plicative graph function.)

3. Equivalence of Θ(GH) > Θ(G)Θ(H) and Θ(G + H) >
Θ(G) + Θ(H)

Theorem 2. Θ(GH) > Θ(G)Θ(H) if and only if Θ(G+H) > Θ(G) + Θ(H).

Proof. Necessity follows from (7). To see sufficiency, assume Θ(GH) ≤ Θ(G)Θ(H). Then
for all i, j ∈ N, using (4) and (5):

(12) Θ(GiHj)Θ(G)jΘ(H)i = Θ(GiHj)Θ(Gj)Θ(H i) ≤ Θ((GH)i+j) = Θ(GH)i+j ≤
Θ(G)i+jΘ(H)i+j .

So Θ(GiHj) ≤ Θ(G)iΘ(H)j . Hence for each n, using (1):

(13) α((G+H)n) = α(

n∑
k=0

(
n
k

)
GkHn−k) =

n∑
k=0

(
n
k

)
α(GkHn−k) ≤

n∑
k=0

(
n
k

)
Θ(GkHn−k) ≤

n∑
k=0

(
n
k

)
Θ(G)kΘ(H)n−k = (Θ(G) + Θ(H))n.

Taking n-th roots and letting n→∞ gives Θ(G+H) ≤ Θ(G) + Θ(H).

4. Extension to polynomials

We also give an elementary proof of the following extension of Theorem 2, that was shown
by Wigderson and Zuiddam [2022] using Kadison-Dubois duality and the Axiom of choice.

For given graphs G1, . . . , Gn, define

P = {p ∈ N[x1, . . . , xn] | Θ(p(G1, . . . , Gn)) = p(Θ(G1), . . . ,Θ(Gn))}.(14)

Theorem 3. Let G1, . . . , Gn be graphs with at least one vertex. Then P = N[x1, . . . , xn] if
and only if P contains a polynomial in which all variables x1, . . . , xn occur.
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Proof. Necessity being trivial, we prove sufficiency. Let G := (G1, . . . , Gn) and Θ(G) :=
(Θ(G1), . . . ,Θ(Gn)). So p(Θ(G)) ≤ Θ(p(G)) for any polynomial p ∈ N[x1, . . . , xn].

We first show that for p, q ∈ N[x1, . . . , xn]:

(15) if p+ q ∈ P, then p ∈ P.

Indeed,

(16) Θ((p+ q)(G)) = (p+ q)(Θ(G)) = p(Θ(G)) + q(Θ(G)) ≤ Θ(p(G)) + Θ(q(G)) ≤
Θ(p(G) + q(G)) = Θ((p+ q)(G)).

Hence we have equality throughout, implying Θ(p(G)) = p(Θ(G)). This proves (15).
Similarly,

(17) if pq ∈ P and q 6= 0, then p ∈ P.

Indeed,

(18) Θ((pq)(G)) = (pq)(Θ(G)) = p(Θ(G))q(Θ(G)) ≤ Θ(p(G))Θ(q(G)) ≤
Θ(p(G)q(G)) = Θ((pq)(G)).

Hence we have equality throughout, implying Θ(p(G)) = p(Θ(G)). This proves (17).
Moreover, for p ∈ N[x1, . . . , xn] and k ∈ N,

(19) if p ∈ P then pk ∈ P.

Indeed, if p ∈ P, then

(20) Θ(pk(G)) = Θ(p(G)k) = (Θ(p(G)))k = (p(Θ(G)))k = (pk(Θ(G))),

proving (19).
Now let p ∈ P with each x1, . . . , xn occurring in p. Then for some k ∈ N, pk contains

as term a monomial q in which each variable occurs at least once. As pk ∈ P by (19), we
know by (15) that q ∈ P. Now for each monomial µ in N[x1, . . . , xn] there exists a large
enough N such that µ is a divisor of qN . So by (14), each monomial belongs to P.

Now consider any polynomial r = q1 + · · · + qt in N[x1, . . . , xn], where each qi is a

monomial. Then for each i1, . . . , it ∈ N, µ :=
∏t

j=1 q
ij
j is a monomial, implying

(21) Θ(
t∏

j=1

qj(G)ij ) = Θ(µ(G)) = µ(Θ(G)) =
t∏

j=1

qj(Θ(G))ij .

This implies, for each k ∈ N, using the additivity ((1)) of the function α:

(22) α(r(G)k) = α((

t∑
j=1

qj(G))k) = α(
∑

i1,...,it∈N
i1+···+it=k

(
k

i1,...,it

) t∏
j=1

qj(G)ij ) =

∑
i1,...,it∈N

i1+···+it=k

(
k

i1,...,it

)
α(

t∏
j=1

qj(G)ij ) ≤
∑

i1,...,in∈N
i1+···+it=k

(
k

i1,...,it

)
Θ(

t∏
j=1

qj(G)ij ) =
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∑
i1,...,in∈N
i1+···+it=k

(
k

i1,...,it

) t∏
j=1

qj(Θ(G))ij = (
t∑

j=1

qj(Θ(G)))k = (r(Θ(G)))k.

Taking k-th roots and letting k →∞ we obtain Θ(r(G)) ≤ r(Θ(G)). So r ∈ P.
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